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Bollettino U. M. 1.
(8) 8-B (2005), 453-460

Canonical Brauer Induction and Symmetric Groups (*).

ROBERT BOLTJE - BURKHARD KULSHAMMER

Sunto. - Imitando lapproccio della formula canonica dellinduzione, otteniamo una
Jormula che esprime ogni carattere del gruppo simmetrico come combinazione li-
neare intera di caratter: di Young. E diversa dalla formula ben nota che usa la forma
del determinante.

Summary. — I'mitating the approach of canonical induction formulas we derive a for-
mula that expresses every character of the symmetric group as an integer linear
combination of Young characters. It is different from the well-known formula that
uses the determinantal form.

Let n be a positive integer. We denote by Irr(S,) the set of irreducible
characters of the symmetric group S, of degree n. It is well-known that every
x € Irr (S,,) can be written as an integral linear combination of Young characters,
i.e., permutation characters on cosets of Young subgroups. An explicit formula is
given by the determinantal form (cf. Theorem 2.3.15 in [JK]).

In this short note we will present a somewhat differently looking formula. In
order to explain this in more detail, let us introduce the following notation. By
P(n) we denote the set of partitions of the set {1,...,n}. Then P(n) is a partially
ordered set (poset) with respect to the refinement relation <. Moreover, S,, acts
on P(n) by

gA:={g(1), ..., 94)}  (A={M, ..., &} € Pn), g € Sy)

This action is compatible with the partial order < on P(n), so that P(n) becomes

(*) Research supported by the NSF, DMS-0200592 and 0128969.
Research supported by the DAAD.
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an S, —poset in this way. For example, the poset P(3) can be illustrated by the
diagram

{{1,2,3}}

{{1},{2,3}} {{2},{1,3}} {{3h,{1,2}}

T~ |

{{1}, {2}, {3}}-
We denote the Mobius function of P(n) by u. Recall that u is defined recursively by

- BEE= 0 otherwise,

Ir<a<a

for I',4 € P(n). Suppose that I'={I"y,..., I} <A={4,...,4}. Further-
more, suppose that each block 4; of 4 contains precisely m; blocks I'; of I'". Then,
as is well-known (cf. Example 2.2.23 in [SO]), we have

l
w4 = (=D T omy — 11
j=1

Every A = {A,... 4} € P(n) defines a Young subgroup
SA ::SA1 X ... XSAk

of S,,. Then gSAg’l = SgA forg eS,. If4; = {(lil, A 7ail,¢} withaj; < ... < ail; for
1=1,...,k then let

= (o11,...,013) ... (a1, ..., 00,) €Sq < Sy.
It is easy to see that
%AGSA@A§A<:>SA§SA.

We can now state our main result.

THEOREM 1. — For y € Irr (S,,), we have

1
1=g 2 ISrlal D plen) I,
r<4

where the sum runs over all pairs (I', A) € Pn)? with I' < A.



CANONICAL BRAUER INDUCTION AND SYMMETRIC GROUPS 455

PROOF. — Let ® € P(n). Then

Y= ISr|ul, 4) ylas) 15 (ze)

<4
=Y Wl Myles Y 1.
I'<4 9€Sn
g.’c(_)y’lesl-

Note that xg € g7* Sy g = S, if and only if @ < g~'I". Hence

y=>Y > wl 4z

9€8, 9O<I'<4
=D > den) Y ur.a
9€S, 90<4 gO<I'<4

The inner sum vanishes unless g® = 4. Thus

Y= xlage) =n!yxe),
9€Sn

and the result is proved. O

Let us illustrate Theorem 1 with two specific examples. In case n = 3, the
formula yields

X = X((1,2,3)) 26)) + [X((Lz)) - ){((172, 3))](0(271)

+ %[xu) 3((1,2) + 24((1,2,3) ] g 11

here we have used partitions 1 of n in order to label the Young characters
0, = 1§ of S,. For n = 4, the formula reads as follows:

X = X((17 2a 87 4)) D) + [X((:l? 27 3)) - X((17 27 3a 4))] (/)(3,1)
+ %[x<<1,2><3, 1) — 7(1,2,3,4)] 90,
+ %[x((l,Q)) 2/((1,2,3)) — 7((1,2)(3,4)) + 2((1,2,3,4)] 911

+ i [x(1) — 6x((1,2)) + 8x((1,2,3)) + 3x((1,2)(3,4)) — 6x((1,2,3,4)] 0111, -

Note the difference between Theorem 1 and the determinantal form (ef.
Theorem 2.3.15 in [JK]). Theorem 1 gives a generic formula which works
for all y € Irr(S,) and, more generally, for every generalized character y
of S,,.
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On the other hand, the determinantal form looks different for irreducible
characters y, labeled by different partitions 4 of n. For example, the number
k = U(2) of parts of 1 = (44,...,4;) is responsible for the size of the determinant.
Of course, since the Young characters ¢, form a Z—basis for the group of gen-
eralized characters of S,,, both Theorem 1 and the determinantal form yield the
same expression when applied to y; € Irr(S,).

Although the proof of Theorem 1 is quite short and elementary it does not tell
how the induction formula was found. This resulted from applying the general
machinery of «canonical induction formulae», cf. [B], to the special case of the
«Mackey functor» for S,, given by the representation rings of S,, and its Young
subgroups and to the constant «restriction functor» for S,, given by assigning 7.
to each Young subgroup of S,,. Strictly speaking, the setting in [B] is not general
enough to cover the above situation, since there only Mackey functors and re-
striction functors on all subgroups were considered. But it would be straight-
forward to adapt all the results to the more general situation where one con-
siders only subgroups satisfying certain axioms (cf. [BB], where such a notion
was introduced as a Mackey system). The symmetric group S,, together with its
Young subgroups forms a Mackey system. Since we have the above direct proof
of Theorem 1, there was no need to introduce all these notions.

We now illustrate how Theorem 1 can be used in order to prove Solomon’s
formula for the alternating character of S,, (cf. Theorem (66.29) in [CR]). In the
following, we denote by g(n) the set of partitions 4 of n, and

n B n!
ay,...,q all...&k!

denotes a multinomial coefficient (where a; + ... + a;, = n).

COROLLARY 2. —-Let ¢ denote the alternating character of S,. Then
_ () n—10))
=D, <al<z>,azu>, . .>( —U e
Aep(n)
Here we have written a partition 2 of n in the form 1 = (1@, 2@ ),
ProOF. - By Theorem 1, we have
e=> ISr] (I, 4) el ) 137
- n! lu ) 4 Sr*
r<4
Letus fix I' = {I'1,..., Iy} € P(n). Then the coefficient ¢, of lg’; is

_|Sr|
T onl

>l ees).

<4

cr
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Let I' < A= {4,..., 4}, and suppose that each block 4; of 4 contains exactly
mj(4) blocks I'; of I'. Then, as above, we have

l
w4 = (= DT s — 1)1
j=1

Moreover we have e(xy) = (— 1)""!. Thus

4|

'SF'Z _wkn mi(4) = 1)!
n: <4
Ny " A
-l e VA | B2V VIR
n AEP) =1

Now we would like to replace the summation over P(k) by a summation over p(k).
Each 2 =(1%,2% ...) € p(k) corresponds to exactly

k!
AN ay! @)% ay! ...

elements 4 € P(k). Thus

|Sr| n—k k!
er =" (S0 100 ay ()1 20D ay(1 ...

rep(k)

The fraction on the right hand side equals the length of the conjugacy class of Sy,
parametrized by A. Hence

er =0 1yt
n!

so that we have

S -
e= > %'(—1) Trm g

rePmn)

Next we replace the summation over P(n) by a summation over p(n) and
obtain

e — z |S77 ]\]&7 lS | (— l)nfl()’) () lgn

yEP(N)

= > INs,(8) S, (= "G g, .

/
yEpn)
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Let us fix y = (1%, 2%,...) € p(n). Then
IS, = (@)™ @n™ ...,
INs, (S,)| = )™ ay! @) %2as! ...,
INs,(S,): S| =arlas! ...,
)=a+as+....
We conclude that

and the proof is complete. O

It is not immediate from Theorem 1 that every y € Irr(S,) is an integral
linear combination of Young characters. For completeness, we will now give an
easy proof of this well-known fact.

In the following, we denote by X'(S,,) the group of virtual characters of S,,, by
Y(S,,) the group generated by all Young characters ¢, (1 € p(n)), and by Z(S,)
the group of all class functions S,, — Z. Then we have

V(Sy) C X(S,) € Z(Sy).

PROPOSITION 3. —- We have Y(S,) = X(S,).

Proor. - It suffices to show that
|Z(Sy) : V(Sp)| = |12(S5) : X(S,)| < .

Let us first compute | Z(S,,) : Y(S,)|- This index coincides with the absolute value
of the determinant of the matrix

Y, = (p;(x,) : A, 1 € pn))
provided that det Y,, # 0. Note that
0@ = 151 @) = {gS; € 8u/S; i w, € 98,97
=NHgS,€8,/S,:8, < 93,1971}|,

for A, u € p(n). Hence, with an appropriate ordering of o(n), Y,, is an upper tri-
angular matrix with diagonal entries [Ng, (S,) : S)|, 2 € p(n) . We conclude that

detY, = [ INs, (S0 :S:l= [ aa@lax)! ... .

Aep(n) A€pn)

Next we compute | Z(S,,) : X(S,,)|- This index coincides with the absolute value of
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the determinant of the character table

Xy = (@) : 4, p € pn))
of S,, provided that det X,, # 0. The orthogonality relations imply that
XX, = diag (|Cs, (x;)] : 1 € p(n)).
Hence

(detXn)Zz H |CS7L(%').)|

A€pn)

= [ 1“%Ya:(a)2Pax(2)! ... .

Aep(n)

We now use the following well-known fact:

(%) I] 1=@2=" . H a1(2)! az(2)!

Jepn) Jiepn
Let us indicate a short proof of (x ). We set

T:={(41,)) € pn) x N x N:j<a;(1)}
and define amap ©: T — T by ©(4,1,7) := (1,7, %) where u € p(n) is obtained from

A by replacing j parts equal to 7 by 7 parts equal to j. It is immediate that
7(4,1,7) € T and that 7> = idy; in particular, 7 is a bijection. Hence

S | LS | A | R T

A€p(n) (A2 eT (Zi))eT Aep(n)
and () is proved. It follows that
|detX,| = J[ (D! aa(d)! ... =detY, #0
A€p(n)

which finishes the proof. O

We can use the result above in order to characterize the group of virtual
characters X(S,,) as a subgroup of the group of class functions Z(S,) by a system
of congruences.

COROLLARY 4. —A class function a : S, — 7 is a virtual character if and
only if
> wr, Mates) =0 |Ng, (Sr) : S,

r<4

for I' € P(n).
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PRrOOF. - Let A be the subgroup of Z(S,,) consisting of all a € Z(S,,) satisfying
the congruences above. Theorem 1 implies that A contains X(S,,). On the other
hand, A has index

IT Vs, 88yl = J[ ax)aa)! ...

yEpn) yEpn)

in Z(S,,). In the proof of Proposition 3, we have seen that this is also the index of
X(S,,) in Z(S,,). So the result follows. O
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