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On the Derivation of the Gross-Pitaevskii Equation.

RICCARDO ADAMI (*)

Sunto. – Il presente articolo riproduce nel contenuto la conferenza che l’autore ha tenu-
to al XVII Congresso dell’Unione Matematica Italiana, svoltosi a Milano, 8-13 set-
tembre 2003. Vengono presentati alcuni recenti risultati sul problema della deriva-
zione dell’equazione di Gross-Pitaevskii in dimensione uno a partire dalla dina-
mica di un sistema quantistico che contiene un grande numero di bosoni identici.
Sono spiegati i motivi per alcune scelte particolari (forma del potenziale di intera-
zione, riscalamento, dato iniziale). Sono evidenziati i problemi aperti e sottolinea-
te le difficoltà e gli ostacoli all’applicazione della stessa strategia in dimensione
superiore.

Summary. – This article reflects in its content the talk the author gave at the XVII Con-
gresso dell’Unione Matematica Italiana, held in Milano, 8-13 September 2003. We
review about some recent results on the problem of deriving the Gross-Pitaevskii
equation in dimension one from the dynamics of a quantum system with a large
number of identical bosons. We explain the motivations for some peculiar choices
(shape of the interaction potential, scaling, initial datum). Open problems are
pointed out and difficulties and hindrances in replicating the strategy in higher di-
mension are put in evidence.

1. – Introduction.

Since four decades the Gross-Pitaevskii equation (GPE) has been used to
represent the ground state of a Bose-Einstein condensate (BEC). Indeed,
even though the seminal papers are now eighty years old ([B], [E]), a satisfac-
tory proposal for an effective equation for the state of the condensate has been
achieved only fourty years later ([G], [P]). Nevertheless, a rigorous derivation
for such an equation from microscopic dynamics is still lacking, at least for the
time-dependent model. Here we report on a recent attempt in this direction,
whose details can be found in [ABGT].

As a rough idea, one can think of a BEC as a three-dimensional system
consisting of a large number of identical bosons at very low temperature: as
predicted by Bose and Einstein there exists a critical value of the temperature

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.
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under which a significant fraction of the particles of the system collapses to a
well-defined quantum state. The wave function c(t , x) associated to this state
is supposed to be the stationary, lowest energy solution of the GPE

(1.1) iˇ¯t c(t , x) 42
ˇ2

2m
Dc(t , x)1aNc(t , x)N2 c(t , x)1Vext (x) c(t , x)

where ˇ is the Planck’s constant, m is the mass of the generic particle, t�R is
the time variable, x�R3 is the spatial coordinate, aD0, and Vext represents an
external potential term, whose role is to trap the condensate in some bounded
spatial region.

Equation (1.1) has been widely investigated from various points of view, in-
cluding the rigorous derivation of the corresponding stationary problem
([LSY]).

Our perspective is different, since we look for a rigorous derivation of the
time-dependent problem (1.1).

In this spirit, it is worth noticing that eq. (1.1) refers to a one-particle
system, whereas, according to standard rules of quantum mechanics, the evo-
lution in time for a system consisting of a large number of particles subject to
the potential field Vext and interacting via a two-body potential V , is described
by the Schrödinger equation

(1.2) iˇ¯tC N (t, XN)42
ˇ2

2m
!
j41

N

D xj
C N (t, XN)1a !

1GiEjGN
V(xi2xj) C N (t, XN)

1 !
j41

N

Vext (xj ) C N (t , XN ) .

Here the unknown N-particle wave function C N (t , XN ) depends on time and
on the string XN 4 (x1 , R , xN ), where xj represents the spatial coordinate of
the j-th particle.

Therefore, the following question naturally arises: how -and under which
hypotheses- is it possible to derive the non-linear, one-particle equation (1.1)
from the linear, N-particle equation (1.2)?

Problems like this are usually dealt with in the framework of the scaling li-
mits: the «mesoscopic regime» (i.e. GPE) emerges from the «microscopic regi-
me» (i.e. Schrödinger equation) as the number of particles of the systems in-
creases (NKQ), the time and space scales are suitably magnified and the
strength of the potential correspondingly rescaled.

The nature of the scaling to apply in our analysis is suggested by an old re-
sult by Spohn ([S]), and some new ones due to Bardos, Golse, Mauser, Erdos,
Yau ([BGM], [EY], [BEGMY]), who, for quite a general choice of W , proved
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that the mesoscopic Hartree equation

iˇ¯t c(t , x) 42
ˇ2

2m
Dc(t , x)1 (W * Nc(t)N2 )(x) c(t , x)(1.3)

can be rigorously derived from the Schrödinger equation (1.2) with Vext 40,
under the three following assumptions:

(1) A suitable choice for the interacting potential: V4W .

(2) A mean-field scaling: VK
V

N
.

Notice that by such a scaling the interaction becomes weaker and weaker
as the number of particles increases. In fact, one refers to this scaling as to the
«weak coupling» one.

(3) The Hartree Ansatz, namely a peculiar choice of the initial datum C N
I

for equation (1.2):

C N (0 , XN ) 4C N
I (XN ) 4 »

j41

N

c I (xj )(1.4)

It is worth remarking that we are modelling a system of identical bosons, the-
refore the wave function of the system must be symmetric under exchange of
pair of particles. Once we choose to start from a factorized state, the Hartree
Ansatz comes automatically. Besides, one can think of (1.4) as the quantum
version of the hypothesis of «molecular chaos», which is currently adopted in
derivation of classical Boltzmann equation from newtonian dynamics. More
precisely, in eq. (1.4) we suppose that every particle lies in a pure quantum sta-
te, whilst the classical molecular chaos involves more general states.

In order to derive the GPE (1.1), one could be tempted by replacing the po-
tential W with a Dirac’s delta potential and applying the machinery developed
in [BGM] to derive equation (1.3).

Unfortunately, in the case of three spatial dimensions a system of quantum
bosons interacting one another via a delta potential is affected by serious pro-
blems of well-posedness, lying in the fact that the hamiltonian operator asso-
ciated to the system is not lower bounded if N is large enough (Thomas effect,
see e.g. [MF], [AGH-KH]). This effect prevents a priori the possibility of con-
sidering such a system as a suitable quantum model.

The Thomas effect is not present in space dimension two ([DFT]), however
the definition of the hamiltonian is quite non trivial since a delta potential can-
not be introduced via the corresponding quadratic form without a renormali-
zation procedure. Anyway, the model constructed in that way is treatable, but
the technicalities required are quite hard.

Therefore, as a starting point we consider the one-dimensional case, where
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systems of particles interacting via a delta potential are well defined ([LL])
and the domain of the energy is the ordinary space H 1 (RN ).

Furthermore, we neglect the external potential Vext , whose possible pre-
sence is not relevant for the strategies and the techniques employed.

In the sequel of the paper we will give the result obtained in [ABGT] (sec.
2) and we will sketch the main steps of the proof (sec. 3). The last section is de-
voted to perspectives and open problems.

2. – The result.

We start considering the Schrödinger equation for a system of N particles
interacting through a delta potential in the mean field scaling

(2.1) iˇ¯t C N (t , XN ) 4

2
ˇ2

2m
D XN

C N (t , XN )1
a

N
!

1 G iE jGN
d(xi 2xj ) C N (t , XN )

where we introduced the shorthand notation D XN
4 !

j41

N

D xj
.

Like in classical contexts (e.g. Boltzmann equation), the mechanism one in-
vokes in deriving the mesoscopic from the microscopic regime is the so-called
«propagation of chaos», which can be illustrated as follows.

As already noticed, the factorization of the initial datum given by the Har-
tree Ansatz represents the quantum version of the molecular chaos.

When time evolution (2.1) is turned on, factorization is destroyed due to the
presence of the mutual interaction between the particles. However, the sym-
metry under exchange of particle pairs remains preserved.

Propagation of chaos states that in the limit NKQ factorization is resto-
red at any time and the elementary factor c(t , x) of the resulting factorized
state solves the mesoscopic equation (1.1).

Tipically, the proof of such a mechanism is done considering a subsystem of
n (GN) particles, letting the number of the particle outside the subsystem
grow to infinity, and seeing what happens to the subsystem under investigation.

If propagation of chaos is verified, one should find that the state of the sub-
system factorizes.

In order to proceed along this line, one is forced to abandon the description
in terms of the wave function C N and to adopt the formalism of the density
matrix r N , which is well fitting for the study of open (i.e. non isolated)
systems.

Let us explain such formalism. The whole N-particle system is described
by the N-particle wave function C N (t ; XN ) obtained as the solution of equa-
tion (2.1) with the initial datum specified by the Hartree Ansatz (1.4). The cor-
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responding density matrix is the orthogonal projection on the linear space
spanned by C N (t) as an element of L 2 (RN ), namely the integral operator
r×N (t) whose kernel reads

r N (t ; XN ; YN ) f (C N (t)7CN (t) )(XN ; YN )(2.2)

Such kernel inherits from C N (t) the dynamics given by (2.1), i.e.

(2.3) iˇ¯t r N (t ; XN ; YN ) 42
ˇ2

2m
(D XN

2D YN
) r N (t ; XN ; YN )1

a

N
!

1 G iE jGN
[d(xi 2xj )2d(yi 2yj ) ] r N (t ; XN ; YN ) .

According to quantum mechanics, the state of the subsystem consisting of the
first n particles is described by means of the «reduced density matrix» r×N , n (t),
namely the trace class operator on L 2 (Rn ) whose integral kernel reads

r N , n (t ; Xn ; Yn ) 4 s
RN2n

dZ n11
N r N (t ; Xn , Z n11

N ; Yn , Z n11
N )(2.4)

where Z n11
N 4 (zn11 , R , zN ).

From (2.3) it follows that for any 1 GnGN the function r N , n defined in
(2.4) solves

(2.5) iˇ¯t r N , n (t ; Xn ; Yn ) 42
ˇ2

2m
(D Xn

2D Yn
) r N , n (t ; Xn ; Yn )1

a

N
!

1 G iE jGn
[d(xi 2xj )2d(yi 2yj ) ] r N , n (t ; Xn ; Yn )1

a
N2n

N
!

1 G iGn
[r N , n11 (t ; Xn , xi ; Yn , xi )2r N , n11 (t ; Xn , yi ; Yn , yi ) ]

which is called the Finite Schrödinger Hierarchy (FSH).
We stress that in general no closed equation is available for the reduced

density matrix; furthermore notice that, since only binary interactions are ta-
ken into account, then the equation for r N , n does not involve any r N , k but
r N , n11 .

FSH is completed defining r×N , n (t) f0 if nDN and considering equation
(2.5) for any n�N . We remark that for the hierarchy constructed in this way
the existence and uniqueness of the solution is immediatly established, since
FSH is equivalent to a system of N linear PDE’s. Moreover, such solution is
global in time and is obtained by the solution C N (t) of (2.1) and definitions
(2.2) and (2.4).
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Now let us introduce the Infinite Schrödinger Hierarchy (ISH)

(2.6) iˇ¯t r n (t ; Xn ; Yn ) 42
ˇ2

2m
(D Xn

2D Yn
) r n (t ; Xn ; Yn )1

a !
1 G iGn

[r n11 (t ; Xn , xi ; Yn , xi )2r n11 (t ; Xn , yi ; Yn , yi ) ]

with N fixed, n�N . Notice that the family of factorized density matrices

r n (t ; Xn ; Yn ) 4 »
j41

n

c(t , xj ) c(t , yj ) n�N*(2.7)

solves the infinite hierarchy (2.6) if and only if c solves equation (1.1) with no
external potential term. By exhibiting such solution we solve the problem of
existence for (2.6), while the problem of the uniqueness remains open.

In [ABGT] the following result has been proven.

THEOREM 2.1 (Convergence of the hierarchies). – Any limit point for NKQ

of r×N , n (t) is a trace class operator r×n (t) whose integral kernel r n (t ; Xn ; Yn )
solves the ISH (2.6) in the sense of distributions D8 (R2n11 ).

Here, limit points are to be understood in the sense of the weak- * topology
for the spaces En , n�N , which will be introduced in the following section.

Let us stress that without a proof of the uniqueness for the solution of the
ISH (2.6) we cannot really prove that equation (1.1) corresponds to a limit pro-
blem for (2.1), but only that the hierarchy (2.6) is a limit for the hierarchy (2.5).
Unfortunately, the uniqueness for (2.6) seems to be a hard problem.

3. – A sketch of the proof.

The two main steps in the proof of theorem (2.1) consist in proving the fol-
lowing statements:

(1) For NKQ the sequence of solutions ]r×N , n ( of FSH converges, in a
sense to be specified, to some r×n .

(2) The integral kernel of such r×n solves ISH.

Point (1) is accomplished considering an energy-type estimate. As pointed out
by Lieb and Liniger ([LL]) the conserved energy reads

(3.1) EN (C N (t) ) 4
ˇ2

2m
V˜N C N (t)V

2
L 2 (RN ; CN ) 1

a

N
!

1 G iE jGN
s

RN21

NC N (t , X ij
N )N2 dX j

N
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where C N (t , X ij
N ) denotes the trace of C N (t) on the hyperplane xi 4xj and

dX j
N 4dx1 R dxj21 dxj11 R dxN . This fact, together with identity of particles,

implies that the L 2-norm of ¯j C N (t) can be bounded uniformly in N and t and
so a uniform estimate for the reduced density matrix r×N , n (t) is provided:

TrN(I2¯n
2 )1/2 r×N , n (t)(I2¯n

2 )1/2 NEM(3.2)

where M is independent of N , n , t , the symbol ¯n denotes the derivation with
respect to the n th variable and I is the identity in L 2 (Rn ).

Estimate (3.2) suggests to consider the space En of all bounded operators T×

on L 2 (Rn ) such that (I2¯n
2 )1/2 T×(I2¯n

2 )1/2 is trace class and to endowe it with
the norm

VT× VEn
fTrN(I2¯n

2 )1/2 T×(I2¯n
2 )1/2 N(3.3)

Notice that the space En is the dual of the space En * of all operators K× such
that (I2¯n

2 )21/2 K×(I2¯n
2 )21/2 is a compact operator on L 2 (Rn ).

The action of T× on K× as a linear functional is defined as follows

K× KTr (T×K×) .(3.4)

Estimate (3.2), together with the Banach-Alaoglu theorem, implies the exi-
stence of a subsequence r×Nk , n which converges in the weak- * topology of
L Q (R , En ) to some r×n , for kKQ . Besides, a standard diagonal procedure
shows that the sequence Nk can be chosen independently of n . In what follows
by r×N , n we will mean an element of a subsequence ]r×Nk , n (k that converges for
any fixed n .

Let us discuss point (2), namely the proof that a limit point r×n of the se-
quence ]r×N , n (N , solves ISH (2.6). Our strategy is to demonstrate that, given
the weak-* convergence of r×N , n to r×n in L Q (R , En ), then every term of FSH
(2.5) converges in D8 (R2n11 ) to the corresponding term of ISH (2.6).

Such a convergence is trivial for the l.h.s. and for the first term of the
r.h.s. of the FSH. To show that the term

a

N
!

1 G iE jGn
[d(xi 2xj )2

d(yi 2yj ) ] r N , n (t ; Xn ; Yn ) converges to zero it is sufficient to consider a test
function W� D(R2n11 ) and to observe that the following estimate holds

(3.5) N s
R2n11

d(xi 2xj ) r N , n (t ; Xn ; Yn ) W(t ; Xn ; Yn ) dt dXn dYnN G
11k2

23/2
Q

Q m(Suppt [W])(VWVL Q(R; L 2 (R2n))1V¯iWVL Q(R; L 2 (R2n))1V¯i11WVL Q(R; L 2 (R2n)))Vr×N, nVL Q(R; En)

where m( Suppt [W] ) is the Lebesgue measure of the support in t of W . Recalling
the uniform bound (3.2) we conclude that, due to the the factor 1 /N , the whole
sum vanishes in the limit NKQ .

It is less evident how to perform the same limit for the last sum in the r.h.s.
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of (2.5), namely how to show that for any W� D(R2n11 ) the limit

(3.6) s
R2n11

W(t ; Xn ; Yn ) r N , n11 (t ; Xn , xi ; Yn , xi ) dt dXn dYnK
NKQ

s
R2n11

W(t ; Xn ; Yn ) r n11 (t ; Xn , xi ; Yn , xi ) dt dXn dYn

holds. The key estimate is

(3.7) s
R2n11

W(t ; Xn ; Yn ) r N , n11 (t ; Xn , xi ; Yn , xi ) dt dXn dYn G

Cs
R

sup
xj�R

y s
R2n21

NW(t , Xn , Yn )N2 dXn
j dYnz

1/2

Vr×N , n11 (t)VEn11
dt

where CD0 and the integration measure dXn
j equals dx1 R dxj21 dxj11 R dxn .

The derivation of (3.7) is the subject of lemma 4.3 in [ABGT] and this is the
main point where the techniques used are specific to the choice of delta poten-
tial and differ from the ones employed in [BGM] and [EY]. For details we re-
fer to [ABGT].

Inequality (3.7) shows that at any t the l.h.s. of (3.6) is the action of some li-
near functional on r×N , n11 (t), namely

(3.8) s
R2n11

W(t ; Xn ; Yn ) r N, n11 (t ; Xn , xi ; Yn , xi ) dXn dYn4Tr [B×(t) r×N, n11 (t)]

where B×(t) belongs to En11* , which is the space of operators B× such that (I2

¯n
2 )21/2 B×(I2¯n

2 )21/2 is a bounded operator on L 2 (Rn ). The integral kernel of
(I2¯n

2 )21/2 B×(t)(I2¯n
2 )21/2 equals, in the Fourier space,

kA(t ; J n11 ; L n11 ) f

WA(t ; L i21 , l i 1l n11 1j n11 , L n
i11 ; J n )

(11l n11
2 )1/2 (11j n11

2 )1/2
(3.9)

where the tilde denotes the Fourier transform ([ABGT], formula (4.21)). Noti-
ce that kA(t) is a square integrable function, therefore (I2¯n

2 )21/2 B×(I2¯n
2 )21/2

is not only bounded, but also compact, therefore B×(t) belongs to En11* .
Thus we can interpret the l.h.s. of (3.8) as the action of r×N , n11 (t) intended

as a linear operator on B×(t).
Moreover, since W has compact support, by direct computation one

can prove that s
R

dtVB×(t)VEn11
EQ , so B�L 1 (R , En11* ) which is the pre-dual

of L Q (R , En11 ). Thus, we have shown that

(3.10) s
R2n11

W(t ; Xn ; Yn ) r N , n11 (t ; Xn , xi ; Yn , xi ) dt dXn dYn 4 ar×N , n11 , B×b
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where a , b denotes the duality product in B�L 1 (R , En11* ). Applying the
definition of weak-* convergence, the limit (3.6) is proven.

4. – Comments.

At first sight one could be disappointed by the weakness of the convergen-
ce established. Nevertheless, let us recall the physical meaning of the density
matrix: the expected value of a measurement of an observable A on a system
whose state is represented by the density matrix r× is given by

aAbr× 4Tr (A×r×)(4.1)

where A× is the self-adjoint operator which represents the observable A . The-
refore, what is relevant from a physical point of view is the duality product
(4.1) between states and observables, then to obtain the convergence of the
expected values the convergence of interest for the density matrix is in the
weak topology for trace class operators.

We proved a weak- * convergence for density matrices in a subset of the
space of the trace class operators; in particular, we proved convergence for the
mean values of a class of observables.

The step from the derivation of the hierarchy ISH to the derivation of
equation GPE is non trivial, at least in our opinion. The point is that ISH is the
hierarchy associated to a system of infinite, identical, independent particles
following GPE, but at this stage we cannot exclude the possibility that the sa-
me hierarchy is also associated to some other systems. One cannot get rid of
this ambiguity by an a priori argument since we are dealing with infinite par-
ticle systems.

This consideration leads to the problem of the uniqueness of the solution
for ISH, for which the techniques developed in [BGM], [EY], [BEGMY], and
[S1] are not sufficient.

Another problem is the generalization of our results to systems in dimen-
sion more than one. As already mentioned, while the two-dimensional case is
well-defined although complicated, the three-dimensional is irreparably pa-
thologic. A way to approach it could consist in giving up delta interactions and
employing a smooth potential and some sort of short-range scaling.

Anyway, the general procedure due to Bardos, Golse and Mauser ([BGM]),
together with estimates developed in [ABGT] can provide a powerful machine-
ry that can enable one to derive various effective, nonlinear, one-particle equa-
tions from fundamental, N-particle, linear dynamics.

In this spirit we plan to treat the problem of two species of particles inte-
racting each other and the derivation of the Jona-Lasinio, Presilla, Sjöstrand
model ([J-LPS]) of concentrated nonlinearity.
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