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Bollettino U. M. I.
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The Euler Lagrange Equation
and the Pontriagin Maximum Principle.

ARRIGO CELLINA (*)

Sunto. – Si es a m i n a n o l e c o n d i z i o n i n e c e s s a r i e d e l C a l c o l o d e l l e V a r i a z i o n i ,
e s p r e s s e s o t t o l a f o r m a d e l l ’ e q u a z i o n e d i E u l e r o L a g r a n g e e de l P r i n c i p i o d e l
M a s s i m o d i P o n t r i a g i n ; i n p a r t i c o l a r e , s i e s a m i n a n o i pr o b l e m i s u d o m i n i
m u l t i - d i m e n s i o n a l i .

Summary. – We consider the necessary conditions in the Calculus of Variations,
expressed by the validity of the Euler Lagrange equation, or of the Pontriagin Ma-
ximum Principle; in particular, problems on multi-dimensional domanis are
considered.

1. – Introduction.

We are interested in minimizing a functional of the type

s
a

b

L(t , x(t), x 8 (t) ) dt

or

s
V

L(x , u(x), ˜u(x) ) dx

under suitable boundary conditions.
More precisely, assuming that the minimum problem admits a solution, xA(Q)

or uA(Q),our goal is to discuss appropriate necessary conditions. a basic principle
of analysis is that, given a minimum point j belonging to the interior of the do-

(*) Conferenza tenuta a Milano il 9 settembre 2003 in occasione del XVII Congresso
U.M.I.
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main of a differentiable function F(Q), we obtain necessary condition exploring
a neighborhood of j , and we obtain the condition a˜F(j), db 40, yielding

˜F(j) 40

In the same order of ideas, one considers an admissible variation, i.e., a smooth
function h(Q), equal to zero at the boundary, multiplies this functions by a sca-
lar e and considers the function x1eh . In principle, by deriving with respect
to the parameter e and passing to the limit under the integral sign (this is the
difficult step), one obtains the Euler Lagrange equations (E-L):

s
a

b

a˜x 8 L(t , xA(t), xA8 (t) ), h 8 (t)b1 a˜x L(t , xA(t), xA8 (t) ), h(t)b dt40

or

s
V

[a˜˜u L(x , uA(x), ˜uA(x) ), ˜h(x)b1Lu (x , uA(x), ˜uA(x) )h(x) ] dx40

for every variation h such that h equals zero at the boundary. In the variatio-
nal notation, the Euler lagrange equations are written as

d

dt
˜x 8 L(t , xA(t), xA8 (t) ) 4˜x L(t , xA(t), xA8 (t) )

or

div ˜˜u L(x , uA(x), ˜uA(x) ) 4Lu (x , uA(x), ˜uA(x) )

Let xA be a solution to the problem of minimizing

s
a

b

L(t , x(t), x 8 (t) ) dt x(a) 4a , x(b) 4b .

Let l be a positive scalar, and h be an admissible variation. Then we have
that

0 G
1

l
ys

a

b

L(t , xA(t)1lh(t), xA8 (t)1lh 8 (t) ) dt2s
a

b

L(t , xA(t), xA8 (t) ) dtz4

s
a

b
1

l
[L4 (t , xA(t)1lh(t), xA8 (t)1lh 8 (t) )2L(t , xA(t) )1lh(t), xA8 (t) ) ] dt

1s
a

b
1

l
[L4 (t , xA(t)1lh(t), x 8 (t) )2L(t , xA(t), xA8 (t) ) ] dt .
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Pointwise, the integrands converge to a˜x 8 L(t , xA(t), xA8 (t) ), h 8 (t)b and to
a˜x L(t , xA(t), xA8 (t) ), h(t)b respectively. Establishing the validity of the Euler
Lagrange equation consists simply in proving that one can pass to the limit
under the integral sign. If one assumes that both xA(Q) and xA8 (Q) are continu-
ous on the compact interval [a , b], and also that the gradients of the Lagran-
gean L are continuous in their arguments, there is no problem for passing to
the limit: in fact, in this case, there is some number K that bounds from
above both V˜x L(t , xA(t), xA8 (t) )V and V˜x 8 L(t , xA(t), xA8 (t) )V , hence
Na˜x L(t , xA(t), xA8 (t) ), h(t)bN and Na˜x 8 L(t , xA(t), xA8 (t) ), h 8 (t)bN . By continuity
and compactness, there is a dD0 such that V˜x L(t , y , j)VG (K11) and
V˜x 8 L(t , y , j)VG (K11) whenever Vy2xA(t)VGd and Vj2xA8 (t)VGd . By the
mean value Theorem, the integrands are the scalar products a˜x L , hb and
a˜j L , ˜hb computed nearby the solution: hence, by the previous remark on
continuity, they are dominated by some scalar and one can pass to the limit.
The very same reasoning applies to the case where one minimizes

s
V

L(x , u(x), ˜u(x) ) dx

under additional boundary conditions: the assumption that both ˜uA and uA are
continuous on the closure of V (at least for bounded V) allows one to pass to
the limit by dominated convergence. However, these assumptions, that both xA

and xA8 are continuous, are not satisfied even in very simple cases: consider, for
instance, the problem of minimizing

s
0

1

(x(t)x 8 (t) )2 dt

under the conditions x(0) 40, x(1) 41. Then, the solution is x(t) 4kt , whose
derivative is unbounded on [0 , 1 ].

2. – The proof of the validity of the Euler Lagrange equations for inte-
grals defined on an interval of R 1, and considerations on the general
problem of its validity.

Is it true that the validity of the Euler Lagrange equations depends only
on suitable assumptions of regularity of the integrand (hence on conditions
that can be checked a priori, i.e., without the knowledge of the minimizer xA and
of its properties, in addition, possibly, to the natural assumption that the inte-

gral s
a

b

L(t , xA(t), xA8 (t) ) dt be finite? In [1], Ball and Mizel built a variational pro-

blem possessing a minimum xA, such that s
a

b

L(t , xA(t), xA8 (t) ) dt is finite, but not
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satisfying the Euler Lagrange equations. What happens in the case of this
example is that the function tK˜x L(t , xA(t), xA8 (t) ) is not in L 1 . Hence the re-
quirement of the integrability of the map tK˜x L(t , xA(t), xA8 (t) ) is essential to
the proof of the validity of (E-L). So far, theorems on the validity of E-L requi-
re a stronger condition. When the Lagrangean L , as well as its gradients w.r.t
x and x 8 , satisfy Carathéodory conditions, i.e. they are measurable in t for fi-
xed (x , x 8 ) and continuous in (x , x 8 ) for a. e. t , a suitable condition to assume
is the existence of an integral bound for V˜x L(t , y , xA8 (t) )V for y in a neighbo-
rhood of the solution xA(t). More precisely, one assumes the existence of a sca-
lar d and of a map S�L 1 (I), such that, for a.e. t in I , we have that Vy2xA(t)VG

d implies V˜j L(t , y , xA8 (t) )VGS(t). This condition, in particular, implies that
the map xKL(t , x , xA8 (t) ) is locally Lipschitzean, in a neighborhood of xA(t),
with Lipschitz constant S(t). The validity of (E-L) under this condition of local
Lipschitzianity w.r.t. x was first proved by Clarke [12] in the context of Diffe-
rential Inclusions. A weaker condition, that does not imply this Lipschitziani-
ty, has been recently presented by Ferriero and Marchini [13] for the stan-
dard case of the Calculus of Variations. Their method of proof consists in pro-
ving first the integrability of the term V˜j L(t , xA(t), xA8 (t) )V and then in deri-
ving further regularity and the validity of (E-L). Here we sketch the main idea
in the proof of the integrability of V˜j L(t , xA(t), xA8 (t) )V. The idea is to write
V˜j L(t , xA(t), xA8 (t) )V as

a˜j L(t , xA(t), xA8 (t) ),
˜j L(t , xA(t), xA8 (t) )

V˜j L(t , xA(t), xA8 (t) )V

b ,

and this formula suggests naturally to consider using a variation h whose gra-
dient is

˜h(t) 4
˜j L(t , xA(t), xA8 (t) )

V˜j L(t , xA(t), xA8 (t) )V

.

Applying this idea, by Lusin’s and Scorza Dragoni’s Theorems, one infers the
existence of Cn , closed subsets of I , such that Cn %Cn11, m(I0Cn ) K0 and that
both the restriction of x 8 to Cn is continuous and so is the restriction of ˜j L to
Cn 3R n 3R n . In particular, there are reals kn that bound V˜j L(t , xA(t), xA8 (t) )V

on Cn; by continuity and compactness, there is a dD0 such that
V˜x 8 L(t , y , xA8 (t) )VG (kn 11) whenever Vy2xA(t)VGd and t�Cn . Consider

u(t) 4
˜j L(t , xA(t), xA8 (t) )

V˜j L(t , xA(t), xA8 (t) )V

,

(u40 whenever ˜j L(t , xA(t), xA8 (t) ) 40. For every n , call An the sets Cn 0Cn21 .
One would like to use the restriction of u to An as the gradient of a variation;
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since, in general, s
An

u(t) dtc0, so that the integral of u would not be an admis-

sible variation on I , fix subsets Bn %C1 such that m(Bn ) 4 s
An

u(t) dt and set

u n8 (t) 42u(t) x An
(t)1

vn

Vvn V

x Bn
(t).

With this definition, u n is an admissible variation and one also infers that
Vu n VL Q G2m(An ). Since both terms appearing in deriving (E-L) are (locally)
bounded, the term with the derivatives w.r.t. x 8 by the choice of Cn and the one
with the derivatives w.r.t. x by the assumption of local Lipschitzianity on that
variable, one can pass to the limit and obtain that, since xA is a minimum,

s
a

b

[a˜x 8 L(t , xA(t), xA8 (t) ), u n8 (t)b1 a˜x L(t , xA(t), xA8 (t) ), u n (t)b] dtF0 ,

i.e., that

s
An

V˜j L(t , xA(t), xA8 (t) )VGs
Bn

[a˜x 8 L(t , xA(t), xA8 (t) ), u n8 (t)b1

a˜x L(t , xA(t), xA8 (t) ), u n (t)b] dt .

By the assumptions on the dependence of L on x and the choice of Bn (a subset
of C1 , where V˜x 8 L(t , xA(t), xA8 (t) )V is bounded by k1), there exists a constant C ,
independent of n , such that

s
An

V˜j L(t , xA(t), xA8 (t) )VGCm(An ) .

At this moment the proof is essentially completed, since the sequence of
functions

(V˜j L(t , xA(t), xA8 (t) )Vx N2
m An

(t))m

converges monotonically to
V˜j L(t , xA(t), xA8 (t) )Vx N2

Q An
(t). In addition, we have the bound k1 on C1 . Hence

we have established that the map V˜j L(t , xA(t), xA8 (t) )V is integrable on
(a , b).

In order for the Euler Lagrange equation to make sense, we must have
that both ˜j L and ˜x L be integrable along the solution. The integrability of
˜j L and of ˜x L along a given function does not follow from the fact that the
integral of L exists finite when computed along that function. For example,
when L(j) is e j2

, the integrability of e Vx 8 (Q)V

2
does not imply the integrability of

2Vx 8 (Q)Ve Vx 8 (Q)V

2
. The meaning of the previous reasoning is as follows:
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to establish the validity of (E-L) we must impose some conditions in order to
have the integrability of the terms ˜x 8 L and ˜x L along the solution. By impo-
sing a condition on ˜x L and building a suitable variation, one has obtained an
integrable bound for ˜x 8 L along the solution, and this has been accomplished
without assuming that the solution and its derivatives are bounded, an assum-
ption that would make the result inapplicable, and without imposing growth
assumptions on the dependence of L on x 8 , an assumption that would greatly
limit the interest of the result.

Consider now a minimization problem for integrals defined on a multidi-
mensional set, for example the problem of minimizing

s
V

[ f (V˜u(x)V)1u(x) ] dx

where f (j) 4e j2
, under suitable boundary conditions. Here the condition of

Lipschitzianity of L w.r.t. u along the solution uA(Q) is obviously satisfied,
since

L(x , u , ˜uA(x) )2L(x , v , ˜uA(x) ) 4u2v .

Still, this author does not know of a result that would ensure that along the
solution to this minimum problem the Euler Lagrange equation holds. The
proof we have sketched for the case of integrals defined on an interval is based
on using special variations that were obtained by defining in an appropriate
way their derivatives on special given sets. Unfortunately, this cannot be ac-
complished on a multi-dimensional setting: we cannot define functions by (ar-
bitrarily) prescribing their gradients on given sets! The validity of the Euler
Lagrange equation for integrands having fast growth in ˜u is an open pro-
blem; some partial results can be found in [8].

3. – The maximum principle.

Around 1950, Pontriagin worked on an innovative minimum problem, that
of minimizing

s
a

b

L(t , x(t), u(t) ) dt

with the additional conditions

x 8 (t) 4 f (t , x(t), u(t) )

and u(t) �U The functions u(Q) are called controls; the corresponding theory,
the theory of optimal control. In the special case when the differential equa-
tion that connects the control u with the state x , i.e., the equation x 8 (t) 4
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f (t , x(t), u(t) ), becomes x 8 (t) 4u(t), so that u(t) is simply a name given to
x 8 (t), we have again the problem of minimizing

s
a

b

L(t , x(t), x 8 (t) ) dt .

In this formulation, however, there appears the new condition that x 8 (t) in
this set «of controls» U . Hence, two are the novelties of the problem: the ap-
pearance of a dynamics (in general, non-linear) linking the variable in the La-
grangean with the state x and that of a constraint on the controls u , or, in the
case of the Calculus of Variations, on the set of x 8 (t) that are allowed.

According to the account given by Boltianski , Pontriagin proposed the
Maximum Principle around as a sufficient condition (that it is not!); the proof
of the validity of the Maximum Principle as a necessary condition is due to
Boltianski. The name of Maximum Principle derives from the basic condition
proposed by Pontriagin: there exists a non-trivial vector function (p0 (Q), p(Q) ),
a solution to

p08 (t) 40; p 8 (t) 4p0 ˜x L(t , xA(t), uA(t) )2p(t) Dx f (t , xA(t), uA(t) )

such that, for a.e. t in (a , b)

p0 L(t , xA(t), uA(t) )2 ap(t), f (t , xA(t), uA(t) )b 4

max
v�U

p0 L(t , xA(t), w)2 ap(t), f (t , xA(t), w)b

In the case of the Calculus of Variations, this condition reduces to: there exists
p0 (Q), p(Q), a solution to

p08 (t) 40; p 8 (t) 4˜x L(t , xA(t), uA(t) )

such that, a.e. in (a , b),

2p0 L(t , xA(t), uA(t) )1p(t) uA(t) 4 max
w�U

]2p0 L(t , xA(t), w)1p(t)w( .

The conditions proposed by Pontriagin differ from the conditions one usually
meets even when the control differential equations reduces to f (t , x , u) 4u ,
i.e., in the Calculus of Variations case. The main feature of these conditions are
the lack of any differentiability condition w.r.t. x 8 and the role of the control
s e t U . Ab o u t t h i s s e t , o n e w o u l d e x p e c t c o n d i t i o n s o f r e g u l a r i t y : w h a t i s
s u r p r i s i n g i s t h a t , f o r t h e v a l i d i t y o f t h e M a x i m u m P r i n c i p l e , t h e r e a r e n o
c o n d i t i o n s o n U; U i s a n y s e t . T h i s f a c t h a s t w o i m p o r t a n t c o n s e q u e n c e s :
f i r s t , s i n c e U i s n o t a s s u m e d t o b e a n o p e n s e t , t h e c l a s s i c a l a p p r o a c h , c o n s i -
s t i n g i n « e x p l o r i n g » a ne i g h b o r h o o d o f t h e s o l u t i o n t h r o u g h v a r i a t i o n s , i s
n o t a p p l i c a b l e . S e c o n d , s i n c e U c a n b e a cl o s e d s e t , c o n s t r a i n e d p r o b l e m



ARRIGO CELLINA330

w i t h c o n s t r a i n t s x 8�U a r e i n c l u d e d . T h i s f o r m u l a t i o n o f t h e c o n t r o l p r o -
b l e m a p p e a r e d i n t h e c l a s s i c a l m o n o g r a p h [ 1 4 ] .

Consider the following Example. (Example 1)
We wish to minimize

s
2a

1a

[F(x 8 (t) )1x(t) ] dt ; x(2a) 4x(1a) 40

where U is the set consisting of the four points ]22, 21, 1 , 2( and F equals 0
when Nx 8N41 and equals 1 when Nx 8N42. Extending F as 1Q to the values

that are forbidden, we wish to minimize s
21

1a

[F(x 8 (t) )1x(t) ] dt with x(2a) 4

x(1a) 40 where

F(x 8 ) 4

.
/
´

0

1

1Q

when Nx 8N41

when Nx 8N42,

otherwise

The solution to this problem (that depends on a), is derived by solving the
equations obtained by the Maximum Principle. Because of the symmetry w.r.t.
the origin, this problem can conveniently be seen as a problem from 2a to 0
with free end point conditions at 0 (and the extends by symmetry to the interval
[0, a]: in this way one obtains the «final» (at time T40) condition p(0) 40. The

Fig. 1. – Epigraph of the function F.
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differential equation for the variable p is simply

p 8 (t) 41 ,

a very smooth differential equation (even for a non smooth problem as the one
we consider!), so we obtain p(t) 4 t; the maximality condition connects the
values of p and of x 8 , in a way that will be clarified in the next section. The solu-
tion one obtains is described in the following picture.

By looking at this solution, one notices that the solution has a derivative in
absolute value 41 in the central part of the interval, while using larger values
for the derivative at the extremes. Hence, from this remark, it follows that
when the interval is small (aG1), the solution will be such as to have derivati-
ve in norm equal 1 only.

4. – Convex functions: the Euler Lagrange equation in semi-classical
form.

Let the Lagrangian be the sum of F(x 8 ) and of G(x), where G is a generic
differentiable function while F is a convex function, possibly extended valued,
i.e. possibly taking the value 1Q .

For the problem we have just considered it makes no difference to have,
under the integral sign, the function F finite only on the four points ]22,
21, 1 , 2( or its convexified, whose epigraph is the convex envelope of the epi-

Fig. 2. – The solution xA.
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graph of the original function. The solution we have found is as well solution to
the problem where F is the convex function

F(x 8 ) 4

.
/
´

0

Nx 8N22

1Q

for Nx 8NG1

for 1 GNx 8NG2,

elsewhere

The effective domain of a convex function (the set of points where the function
takes a finite value) has convex closure and the convex function admits a (non
empty) subdifferential at every interior point of its effective domain. If we as-
sume that the subdifferential ¯F is non-empty at every point of the effective
domain, the necessary conditions provided by the Maximum Principle for the
minimization of

s
a

b

[F(x 8 (t) )1G(x(t) ) ] dt

take the following simple form:
There exists an absolutely continuous p(Q), a solution to

p 8 (t) 4˜G(xA(t) )

such that, for a.e. t ,

p(t) �¯F(xA8 (t) )

In this formulation, the control set U is the effective domain of the convex fun-
ction. The condition on p(Q), solution to the differential equation, is that p(t) is
a selection from the set-valued map tK¯F(xA8 (t) ). This formulation of the
necessary conditions can be called the Euler Lagrange equation in semi-clas-
sical form.

We wish to point out that the Maximum Principle is more general than this
last formulation: consider the problem of minimizing

s
0

1

F(x 8 (t) ) dt ; x(0) 40, x(1) 41

where F is the convex function

F(x 8 ) 4
.
/
´

2k12 (x 8 )2

1Q

for Nx 8NG1

elsewhere .

The function x(t) 4 t whose derivative x 8 (t) f1, is a solution. For this solution
neither the classical Euler Lagrange equation is true (the derivative of F w.r.t.
x 8 does not exist along the solution) nor is true the semi-classical form (the
subdifferential ¯F is empty along the solution). Still, the Maximum Principle
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holds: consider the vector (p0 f0, pf1), a non-trivial solution to p084Fx0
40,

p 84Fx 40: one has

1 4 uA(t) 4 max
w�U

]w( .

A sketch of the proof. We wish to present a sketch of the Proof of the Maxi-
mum Principle in its simplest form, for the problem with free right conditions,
for two reasons: first, to point out the conceptual difference in taking varia-
tions; second, because it is overall a very beautiful proof. Consider the control
system

y 8 (t) 4F(t , y(t), u(t) ); y(0) 4y 0 , and u(t) �U

and, having fixed the final time T (but not the final state), assume that we wish
to maximize c(y(T) ), a given function of the final state. This special form of
the optimization problem brings into evidence the geometric side of the proof.
In the usual case, where we want to minimize

s
a

b

L(t , x(t), u(t) ) dt

subject to

x 8 (t) 4 f (t , x(t), u(t) )

and u(t) �U , it is enough to set: y4 (x 0 , x); F(t , (x 0 , x), u) 4 (2
L(t , x , u), f (t , x , u) ); c( (x 0 , x) ) 4x 0 to obtain a special case of the problem in
this new formulation.

We will take a variation to the optimal control in the following way. Fix an
arbitrary w in U . Let y×(Q), u×(Q) a solution, and fix a time t , a Lebesgue point for
the maps tKF(t , y×(t), u×(t) ) and tKF(t , y×(t), w).
For every e , define a new control ue as

ue (t) 4 u×(t)1x [t2e , t] (t)(w2u×(t) )

so that we substitute w to u×(t) on the interval [t2e , t]. As opposite to the
classical variations, there is no attempt to let w «tend to» u(t). Our purpose is
to estimate the effect of this variation, taken at time t , at the final time T , so as
to compare the result, ye (T), with the solution y×(T). Let us first compute the
effect of the variation at time t , i.e. let us estimate the difference ve (t) 4

ye (t)2y×(t). We have

ye (t)2y×(t) 4 s
t2e

t

[F(t , ye (t), w)2F(t , y×(t), u×(t) ) ] dt4

s
t2e

t

[F(t , ye (t), w)2F(t , y×(t), w) ] dt1 s
t2e

t

[F(t , y×(t), w)2F(t , y×(t), u×(t) ) ] dt .
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Assuming some boundedness (local, near the point (t , y×(t) ) of the map
(t , y) KF(t , y , w), the difference ye (t)2y×(t) is bounded on [t2e , t] by Ke .
Assuming that the map yKF(t , y , w) is Lipschitzean, we obtain the the first
integral at the r.h.s. satisfies

NN s
t2e

t

[F(t , ye (t), w)2F(t , y×(t), w) ] dtNN GK1 e 2 .

Here, by the choice of t , we have

s
t2e

t

[F(t, y×(t), w)2F(t, y×(t), u×(t))] dt4e([F(t, y×(t), w)2F(t, y×(t), u×(t)))]1O(e)) .

Hence we have obtained that ve (t) 4e( [F(t , y×(t), w)2F(t , y×(t), u×(t) ) ]1

O(e) ) 4e(vt1O(e) ).
On the interval [t , T], the differential equations for ye and for y× are the sa-

me, i.e.

y 8 (t) 4F(t , y(t), u×(t) )

and the two solutions differ by the initial (at time t) condition.
By a basic result on the differentiability of a solution with respect to initial

conditions, one obtains that the difference ye (T)2y×(T) can be written as

ye (T)2y×(T) 4e[v(T)1O(e) ]

where v(T) is the solution at time T to the Cauchy problem

v 8 (t) 4Dy F(t , y×(t), u×(t) ) v(t); v(t) 4vt .

Here, by Dy F(t , y×(t), u×(t) ) we mean the matrix of partial derivatives of F w.r.t.
y , computed along the solution y×, u×.

Since y× is a maximum, we must have that

a˜c(y×(T) ), v(T)b G0 .

It is this geometric condition at time T that we wish to transfer at time t: let
p(Q) be a solution to the Cauchy problem:

p 8 (t) 42p(t) Dy F(t , y×(t), u×(t) ); y(T) 4˜c(y×(T) ) .

By the product rule for derivatives, we obtain that

d

dt
ap(t), v(t)b 40 ,

and, since the maximum condition gives ap(T), v(T)b G0, it follows that, for
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every t ,

ap(t), v(t)b G0,

in particular at t4t . We have already obtained that, at almost every t , v(t) 4

F(t , y×(t), w)2F(t , y×(t), u×(t) ), so that we have obtained that, at almost every
t ,

ap(t), F(t , y×(t), w)b G ap(t), F(t , y×(t), u×(t) )b.

Since w was arbitrary in U , we have proved the Maximum Principle.
The variations we have used are called «needle variations»; as e tends to

zero, the graph of such a variation in effect looks like a needle.
Although some special results in the taste of the Maximum Principle have

been proved for multi-dimensional problems, the reasoning used are not an
extension of what has been presented above for one-dimensional domains.

5. – Multi dimensional domains.

Let us consider again Example 1, but on a domain V%R N: we wish to
minimize

s
V

[F(v(x) )1u(x) ] dx

where

F(˜u) 4

.
/
´

0

V˜uV22

1Q

for V˜uVG1

for 1 GV˜uVG2,

elsewhere

and zero boundary condition. In Example 1, in the one-dimensional case, when
the domain of integration was «small», the solution was such that its derivati-
ve was 2dist(t , ¯I), i.e. the distance to the boundary with a negative sign in
front. On a multi-dimensional domain will it be true that when the domain is
«small» (in what sense?) the function «distance to the boundary» (with a nega-
tive sign in front) is a solution? And

how small the domain has to be?

If the proposed function u(x) 42dist(x , ¯V) is a solution, its gradient is
a.e. such that V˜uV41 so that

¯F(˜u(x) ) 4 ]l˜u(x) : 0 GlG1( .

The semiclassical formulation of the Euler Lagrange equation, implies the exi-
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stence of p(x),a solution to the differential equation

div p(x) 41

such that p(x) 4l(x)˜u(x) where 0 GlG1.
Hence, we wish to solve

div p(x) 41

p(x) 4l(x) ˜u(x)

i.e., a˜l(x), ˜u(x)b1l(x) div ˜u(x) 41. Integrating along the trajectories of
the ordinary differential equation

x 8 (t) 4˜u(x(t) )

we have that the Euler Lagrange partial differential equation becomes

d

dt
l(x(t) )1l(x(t) ) div ˜u(x(t) ) 41

The important point that we wish to make is that, by knowing the properties of
¯V , we can compute the map xKdiv ˜u(x), hence integrate the resulting
equation for l . As an example, let us consider (Example 2), the two-dimensio-
nal domain (depending on a parameter l )

V l 4 ](x , y) : NyNG l ; NxNG l 1kl 2 2y 2( .

We believe that the function u(x) 42dist(x , ¯V) is the solution when l is suf-
ficiently small.

To get insight on the problem, let us integrate the differential equation

d

dt
l(x(t) )1l(x(t) ) div ˜u(x(t) ) 41

from two different initial conditions, namely, P1 4 (0 , 0 ) e P2 4 (1 , 0 ); along
the trajectories defined by the vector field ˜u(x) we have, in the first

case, div ˜u(x) 40, while, in the second case, div ˜u(x) 4
1

VxV

. The solutions

to the corresponding differential equations satisfying the initial condition
l(0) 40, are: when issued from P1 , the solution is l 1 4 t , while, when

issued from P2 , is l 2 4
1

2
t . To provide an answer to the problem of «how

large» V has to be, notice that the vector p(x) 4l(x) ˜u(x) ceases to
belong to the subdifferential ¯F(˜u(x) ), computed for V˜uV41, when NlNF1.
This happens at t41 for the initial point P1 and at t42 for P2 . The
variable t in this case represents the distance from P1 or from P2 . Sum-
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Fig. 3. – V l for l 41.

marizing what we have found, we can say that when l G1, the map
u(x) 42dist(x , ¯V l ) is a solution to the minimum problem.

These computations, for a generic convex V with piecewise smooth bounda-

Fig. 4. – The function «‘- distance to the boundary of a square’».



ARRIGO CELLINA338

ry, have been introduced in [6] in R 2 and in [15] in R N ; Celada-Cellina [5]
show that, when V is a square, this condition cannot be improved.

6. – Minimum problems on multi-dimensional domains.

Let F be a convex function, finite on R N . Let uA be a solution to the mini-
mum problem

s
V

[F(˜u(x) )1G(u(x) ) ] dx

under the constraint V˜uVG1. There are three ways to look at this pro-
blem:

1. As an optimal control problem: to minimize the integral functional, de-
pending on the control v(x) and the state u

s
V

[F(v(x) )1G(u(x) ) ] dx

under the (Hamilton Jacobi) differential equation and the control set

˜u4v where v�U4B1 .

The natural conditions should be expressed in the form of a Maximum
Principle.

2. As an unconstrained problem of the Calculus of Variations, that of
minimizing

s
V

[FA(˜u(x) )1G(u(x) ) ] dx

where FA is the extended-valued convex function

FA(˜u) 4
.
/
´

F(˜u)

1Q

if V˜uVG1

otherwise

From the assumption that the original F was finite on R N , it follows that the
subdifferential of FA is non-empty on its effective domain, we expect that the
necessary conditions be expressed by the validity of the Euler Lagrange equa-
tion in its semi-classical form.

3. As a minimization problem of a functional constrained to the closed,
bounded and convex set K of those functions u satisfying

uN¯V4u 0 N¯V e V˜uVG1 .

The necessary conditions traditionally associated to this formulation of the
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problem consists in a variational inequality: we should prove that

sV[a˜F(˜uA(x) ), ˜h(x)b1Gu (uA(x) ) h(x) ] dxF0

for every admissible variation h ,i.e. such that h4u2u 0 with u�K .
While the two first points of view are equivalent one to the other, and both

lead to conditions like Pontriagin’s conditions: there exists p(x) �
¯FA(˜uA(x) ):

sV[ap(x), ˜h(x)b1G 8 (uA(x) ) h(x) ] dx40

for every sufficiently regular h that vanishes at the boundary of V , the third is
not. In fact, it is enough to consider the case where the conditions

uN¯V4u 0 N¯V and V˜uVG1

are met by only one function, the boundary datum u 0 itself. Then, this datum is
the solution to the minimum problem, since every other function gives the
value 1Q to the functional. The point of view of differential inequalities is
useless in this case, since the condition that a certain inequality be satisfied by
every admissible variation h gives no information since there are no non-tri-
vial admissible variations. The condition involving a selection from the subdif-
ferential computed along the solutions, instead, have to be verified for every
variation h , independent on whether they are admissible or not, and provide
useful information on the solution even in this case.

7. – The few known results and a sketch of the proof of a basic
result.

Has the validity of these necessary conditions been established? Actually,
only in a few special cases.

1. Brézis [3], [4], proves the validity of the semi-classical formulation of the
Euler Lagrange equation for the problem of minimizing the integral functio-
nal where

F(j) 4
1

2
VjV

2 ; G(u) 4u ; u 0 40 and V is a smooth convex set

2. Cellina-Perrotta [10] prove the validity of these conditions for the pro-
blem where

F(j) 40; G(u) a strictly monotonic function; u 0 Lipschitzian and
V a bounded open set
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3. Cellina [9] proves the condition when

F(j) 4
1

2
VjV

2 ; G(u) 40; V a circular R 2 having radius r and

u 0 (x) 412
1

r
VxV

Some details on the result of Cellina-Perrotta.
We wish to minimize

s
V

[iB (˜u(x) )1G(u(x) ) ] dx

where iB is indicator of the unit ball B , i.e.,

iB (˜u) 4
.
/
´

0

1Q

when V˜uVG1

elsewhere

and G(u) is strictly monotonic, the boundary condition u 0 is Lipschitzian and
V is an open bounded set (no regularity is needed). As it will be evident in the
proof, we might as well have that G4G(x , u), as long as the strict monotonici-
ty requirement w.r.t. u holds for a.e. x�V .

The main properties of the solution uA, that will be used to prove the validity
of the Euler-Lagrange equation are derived from two Lemmas. The first lem-
ma says: let x0 be any point in V and let rD0 be such that B(x0 , r) %V .
Then:

sup
x�V : Vx2x0 V4r

uA(x)2uA(x0 ) 4r .

In other words: given any point in V (not: almost every point!) and rD0, there
is a point x at a distance r from x0 , such that u(x)2u(x0 ) is the maximum pos-

Fig. 5. – The function iB .



THE EULER LAGRANGE EQUATION ETC. 341

Fig. 6. – u 0.

sible; as a consequence (but this consequence is not strong enough for our pur-
poses) the gradient of u equals 1 whenever it exists. The proof of this Lemma
goes by showing that, if the claim of the Lemma is not true, one can build a va-
riation h l (Q), h l (x) G0 and h l (x) g0, such that, for every sufficiently small
tD0, uA(Q)1 th l (Q) is admissible, i.e., for a.e. x , V˜uA(x)1 t˜h l (x)VG1. Since
this variation strictly decreases (pointwise) the value of G(u(x) ), it strictly de-
creases the value of the functional, a contradiction. So the whole point relies
on the construction of h l (Q), and this is a delicate task: in general, one should
expect that the gradient of the solution uA already satisfies V˜uA(x)V41 a.e., so
it is not easy to obtain a nontrivial h l giving V˜uA(x)1 t˜h l (x)VG1.

By this lemma, through each point x0 there is (at least) a direction of maxi-
mal growth for the function uA. Now, the lemma can be applied to the point x , at
the boundary of B(x0 , r), of maximal growth from x0 : from it, a new direction
of maximal growth is defined: however, it turns out that this new direction
cannot differ from the previous one, otherwise we would contradict the Lip-
schitzianity of uA. Hence the process can be continued along the same direction
until we reach the boundary of V , so that from the initial arbitrary x0 there
exists a half line of maximal growth reaching the boundary. These half lines
cannot cross in V (but several half lines can be issued from the same point).
Hence, the collection of these half lines (actually,their intersection with V), in
addition to a set of measure zero, gives a partition of V .

The properties of the solution uA obtained by this Lemma are independent
of the function G(u(x) ), or G(x , u(x) ), as long as it is pointwise monotonic in u .
Notice that there is no problem in proving the existence of a solution to the mi-
nimum problem, since the functional is certainly coercive. Hence through this
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Lemma one proves the existence of a special solution to boundary value pro-
blem for a Hamilton Jacobi inclusion as

V˜uA(x)V41; uN¯V4u 0

having a special property of maximality among the solutions of the same inclu-
sion; sometimes, this problem is faced through the definition of viscosity
solutions.

Although the previous properties give an accurate description of the beha-
viour of the solution uA, they are not sufficient to prove the validity of (E-L) for
this problem: some additional regularity will have to be proved.

Since we have that ¯F(j) 4a
j

VjV

and V˜uA(x)V41 for a.e. x , to prove the

validity of the Euler Lagrange equation, in its semiclassical form, we have to
show that there exists a real valued a(x) such that:

1. a(x) F0

2. for every test function (or variation) h�Cc
Q (V), one has

s
V

a(x)a˜uA(x), ˜h(x)b dx1s
V

G 8 (uA(x) ) h(x) dx40

Hence we have to define a(x) and, given a variation h , compute

s
V

aa˜uA, ˜hb dx

and show that it is zero.
The idea is to define a(x) on each half line, and to perform the integration

on V by a change of variables, integrating first along each line; this method
will allow us to exploit all the properties of integrals defined on subsets of the
real line.
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Fix one component, say the k-th, of a N2 vector x to be q and consider Eq ,
the set of all vectors x�V such that xk 4q . Call x× the N21 dimensional vec-
tor x1 , R , xk21 , xk11 , R , xN . Set X(x×, t) to be the solution at time t of the
Cauchy problem

d

dt
X(t) 4˜u(X(t) ); X(0) 4x1 , R , xk21 , q , xk11 , R , xN .

The map xKX(x×, t) can be seen as a change of variables from x to (x×, t). In or-
der to take advantage of this change of variables for our integration, we must
investigate its regularity, hence the regularity of the vector field appearing at
the r.h.s. of the differential equation, i.e., ˜u(x). We have already found that
this is a field of unit vectors, or directions; however, in order to make use of
the change of variables xKX(x×, t) under the integral sign, it must be differen-
tiable a.e.

The second Lemma is about the regularity (differentiability a.e.) of a field
of directions, described by the map d(x), with d a unit vector, with the proper-
ties described above. This Lemma can be described as follows. Consider again
the set Eq . From every point of this set is issued (at least) one half line (descri-
bed by a direction), going to the boundary; we can consider (x1a(x) d(x), x1

b(x) d(x) ), the maximal open interval (of R N) contained in V , so that the point
x1b(x)d(x) will be on ¯V . On Eq , consider only (for the moment) those x’s
such that the corresponding interval (x1a(x)d(x), x1b(x)d(x) ) has two pro-
perties: it is (uniformly) transversal to Eq , in the sense that dk , the k-th compo-

nent of d(x), is at least
1

kN
, and it extends to both sides of Eq by at least e:

(x2ed( ), x1ed(x) ) % (x1a(x) d(x), x1b(x) d(x) ). The Lemma then says

that the map xKd(x) is Lipschitzian with Lipschitz constant
2kN

e
.

By this Lemma one easily obtains that (for x restricted to this subset of
points of Eq with the properties above), JX(x×, t), the Jacobian of the map
X(x×, t), exists and it is non zero.

We have identified a subset of V , consisting of a family of intervals rea-
ching the boundary of V and a map, that on this family is enough regular. We
can obtain a countable family of sets, covering V , with the exception of a set of
measure zero, by changing in a countable way the value q of the k-th coordina-
te and by considering all the coordinates k in (1 , R , N). Hence, the integra-
tion over V will be carried on the union of this countable family of sets.

Assume we have defined a as

a(x×, t) 4
1

JX(x×, t)
s

a(x×)

t

g 8 (u(X(x×, t) ) ) J(X(x×, t) dt ;

(actually, the true definition of a has to be that of a map on V , hence in the va-
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riable x , not in the variables (x×, t): we should compose it with the inverse of X).
Fix any h and perform the integral

s
V

a(x)a˜uA(x), ˜h(x)b dx1s
V

G 8 (uA(x) ) h(x) dx .

Consider the first term: by the change of variables formula; the definition of a
and Fubini’s Theorem in the variables (x×, t), one obtains

s
V

a(x)a˜uA(x), ˜h(x)b dx4

su s
a(x×)

b(x×)u s
a(x×)

t

g 8 (u(X(x×, s) ) ) J(X(x×, s) dsv a˜h(X(x×, t) ), ˜uA(X(x×, t) )b dtv dx×

(the integral at the r.h.s. has to be performed over the union of the countable
family of sets we have defined.)

Consider the map tKh(X(x×, t) ): we have

d

dt
h(X(x×, t) ) 4 o˜h(X(x×, t) ),

d

dt
X(x×, t)p4 a˜h(X(x×, t) ), ˜uA(X(x×, t) )b ,

hence

s
V

aa˜uA, ˜hb dx4su s
(ax×)

b(x×)u s
a(x×)

t

G 8 (u(X(x×, s) ) ) J(X(x×, s) dsv d

dt
h(X(x×, t) ) dtv dx× .

Integrating by parts, and noticing that h(X(x×, b(x×) ) ) 40, we have

s
V

aa˜uA, ˜hb dx42su s
a(x×)

b(x×)

h(X(x×, t) ) G 8 (uA(X(x×, t) ) J(x×, t) dtv dx× 4

2s
V

h(x) ) G 8 (uA(x) dx .

We have proved that

s
V

a(x)a˜uA(x), ˜h(x)b dx1s
V

G 8 (uA(x) ) h(x) dx40 ,

i.e., the validity of the Euler Lagrange equation.
An important remark: although, as we have noticed, the solution uA is inde-

pendent of G(u) or G(x , u), as long as this map is strictly monotonic in u , the
function a does depend on G .

A connection with problems of optimal transportation.
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In Bouchitté lectures on Optimal Transportation [2] one finds the problem
of maximizing

a f , ub

on those functions u that are Lipschitzian, such that V˜uVG1, u40 on S ,
where f is a measure on V , and S%V , under the condition the either f (V) 40
or that Sc0. The problem we have considered is very similar to the second
case: take S4¯V , f42 the Lebesgue measure, and the problem translates
into the problem of minimizing

s
V

[F(˜u(x) )1u(x) ] dx

where

F(˜u) 4
.
/
´

0

1Q

when V˜uVG1

elsewhere

and uN¯V40. We have treated this problem for a general boundary condition
u4u 0 at the boundary of V .

8. – A connection with the fundamental theory of ordinary differential
equations.

Under what conditions a solution to an ordinary differential equation of the
kind

x 8 (t) 4˜uA(x(t) )

can be defined, in such a way that it is possible to integrate along the corre-
sponding trajectories? The theory of differential equations during last century
has considerably weakened the conditions to be imposed to the right hand si-
de, passing from the condition of continuity to Carathéodory conditions, then
to the requirement of measurability w.r.t. x (solutions in the sense of Filippov),
but the problem one had in mind was the Cauchy problem for a given initial
datum. Today, one would need a different theory.

Our purpose is to perform a multiple integration by means of successive in-
tegrations, by integrating first on the initial data and then on the trajectories
to a given differential equation, arising from a variational problem. Since, in
any case, we will integrate also on initial data, what happens on sets of zero
measure of initial data it is of no importance, so that it is not the single Cauchy
problem that matters. Moreover, the right hand side of the equation is a map
in a Sobolev space, not a regular map.

The theory one wishes to develop is not a generalization of theorems like
Peano’s theorem for continuous r.h.s.: solutions provided by this theorem do
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Fig. 7.

not possess the properties required by a change of variables formula. It is
enough to consider the equation

x 8 (t) 4 f (x(t) )

where

f (x) 4
.
/
´

kx

0

when xF0

elsewhere .

The set A%V , as presented in the figure, is of positive measure in the plane,
but it is seen as a set of measure zero if we compute its area by successive inte-
grations. The problem of the uniqueness of the solution to a Cauchy problem
for almost all initial conditions is very difficult. Some partial results can be
found in [7] and in [11]
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