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The Entropy Principle: from Continuum Mechanics
to Hyperbolic Systems of Balance Laws.

TOMMASO RUGGERI (*)

Sunto. – Si presenta una breve rassegna dei diversi ruoli che ha il principio di entro-
pia nella moderna termodinamica. Nell’ambito della termodinamica razionale il
principio di entropia diventa un criterio di selezione per le equazioni costitutive
ammissibili mentre nel caso di soluzioni deboli di sistemi iperbolici non lineari
diventa un criterio di selezione dei processi fisicamente ammissibili. Inoltre tutti i
sistemi iperbolici di leggi di bilancio che sono compatibili con un principio di en-
tropia convessa sono simmetrici ed è possibile riconoscere teorie a nido mediante
l’introduzione dei sottosistemi principali. Particolare attenzione è dedicata all’a-
nalisi qualitativa dimostrando che in presenza di dissipazione il problema di Cau-
chy è ben posto in senso globale ed esistono, per dati iniziali sufficientemente pic-
coli, soluzioni regolari per tutti i tempi che tendono a stati costanti di equilibrio.
Infine vengono applicati questi risultati alla teoria della Termodinamica Estesa
che governa i processi dei gas rarefatti.

Summary. – We discuss the different roles of the entropy principle in modern thermo-
dynamics. We start with the approach of rational thermodynamics in which the en-
tropy principle becomes a selection rule for physical constitutive equations. Then
we discuss the entropy principle for selecting admissible discontinuous weak solu-
tions and to symmetrize general systems of hyperbolic balance laws. A particular
attention is given on the local and global well-posedness of the relative Cauchy
problem for smooth solutions. At the end we give some recent results on closure pro-
cedure for the moments theory associated to the Boltzmann equation (Extended
Thermodynamics).

1. – Entropy principle in continuum mechanics.

The concept and the name of entropy originated in the early 1850’s in the
work of Rudolph Julius Emmanuel Clausius (1822-1888) with the famous
statement of the second principle of thermodynamics: «heat cannot pass by it-
self from a cold to a hot body».

From then on many researchers worked on thermodynamics in the two

(*) Conferenza tenuta a Milano l’8 settembre 2003 in occasione del XVII Congresso
U.M.I.
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complementary aspects: the macroscopic view formulated originally by
Carnot, Clausius, Gibbs, Planck, and Caratheodory and the microscopic ap-
proach associated with Boltzmann and Maxwell.

The thermostatics – the thermodynamics of equilibrium – is fully accepted.
This cannot be said instead for the thermodynamics in the proper sense, i.e.
the theory of non equilibrium processes.

The entropy principle characterizes the irreversibility of the processes and
at the beginning was thought only as an arrow in the time direction. A diffe-
rent important point of view was proposed in the ’60s in the context of Rational
Thermodynamics. In order to explain this, it is necessary to recall the struc-
ture of Continuum theories.
The Physical laws in continuum theories are balance laws:

d

dt
s

V

CdV42s
S

Fi ni dS1s
V

f dV ,(1)

where C(x , t); x�V , t�R 1, is a generic density. The first integral on the
r.h.s. represents the flux of some quantities Fi trough the surface S of unit
normal nK f (ni ) and velocity vK f (vi ), while the last integral represents the
productions (source terms).

Under regularity assumptions the system can be put in the local form:
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we have:
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where r , tf (tij ), qf (qi ), e are respectively the mass density, the stress
tensor, the heat flux and the internal energy.

Of course the balance law systems are not closed, having more unknowns
than equations and we need the so called constitutive equations in order to
close them. In the modern constitutive theory all the constitutive equations
must obey the two principles:

l The objectivity principle: the proper constitutive equations are inde-
pendent of the Observer;

l The second principle of thermodynamics that in the Rational Thermo-
dynamics requires that any solutions of the full system satisfies the inequality
of Clausius-Duhem (Coleman-Noll 1963) [1]:

¯rS

¯t
1

¯

¯x i grSv i 1
q i

T
hF0 for all processes .(5)

S is the entropy density that is given by a constitutive relation to be deter-
mined by the compatibility between (4) and (5) while T denotes the absolute
temperature. The requirement that all the solutions of the balance law system
satisfies also the new balance law (5) is so strong that several restrictions arise
for admissible costitutive equations. For instance in the case of a classical ap-
proach for fluids with Fourier Navier-Stokes assumptions

qi 42x
¯T

¯x i
, s aijb4m

¯vai

¯x jb
, s ll 4n div v ,

the constitutive equations compatible with (5) must satisfy:

TdS4de2
p

r 2
dr ( Gibbs relation )(6)

x , m , nF0 ,

(t42pI1s, s is the shear stress, saijb denotes the deviatoric part, x the heat
conductivity, m the shear viscosity and n the bulk viscosity).

We observe that, within this new approach, the Gibbs relation (6) – that
give a differential link between S , e and r – comes as a consequence of the en-
tropy principle and is not assumed a priori as in the thermodynamics of irre-
versible process (TIP) (local equilibrium assumption).

The same condition (6) hold also in the particular case of hyperbolic Euler
fluids in which x , m and n are zero.

Therefore in the modern Rational Thermodynamics the entropy principle
becomes a constraint for the acceptable constitutive equations.

On the other hand the principle is also supported by the kinetic theory of
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gases. The kinetic theory describes the state of a rarefied gas through the
phase density f (x , t , c), where f (x , t , c)dc is the number density of atoms at
point x and time t that have velocities between c and c1dc. The phase density
obeys the Boltzmann equation

¯f

¯t
1c i ¯f

¯x i
4Q(7)

where Q represents the collisional terms. Introducing as moments (k is the
Boltzmann constant):

rS4s(2k log f ) f dc , f i 4s(2k log f ) fc i dc ,(8)

for the properties of Q we have the so called H-theorem:

¯rS

¯t
1

¯

¯x i
(rSv i 1f i ) F0 .(9)

But it is interesting to observe that the non convective entropy flux f i, given
by (8)2 is in general different from q i /T . In fact, in kinetic theory q i 4

ds fc 2 c i dc. Starting from this observation Ingo Müller (1967) [2], proposed for
a generic continuum model the inequality (9) as extension of the entropy prin-
ciple of Coleman and Noll: not only the entropy density S but also the non con-
vective entropy flux f i are not a priori prescribed but are constitutive equa-
tions to be determined by the compatibility between the system of balance
laws and the entropy law.

Another conceptual advantage of the Müller approach was that it does not
require a priori the definition of the temperature as in the previous Clausius-
Duhem approach. For example in the case of fluids the temperature is not a
primitive concept in the balance laws (4) nor in the new entropy principle (9)
but it’s a consequence of their compatibility. In fact appears as integral factor
of the Gibbs relation (6).

Today the general form (9) is universally accepted in the continuum com-
munity and all the constitutive equations in new models are tested by the en-
tropy principle. For a review concerning these arguments the interested read-
er can refer to the two chapters by Müller that are included in a very recent
book dedicated to the entropy [3].

2. – The Riemann Problem and the non uniqueness of weak solutions.

In a complete different context the entropy principle plays a fundamental
role. It is well known that weak solutions are not unique for hyperbolic sys-
tems of conservation laws. The trivial classroom example of a Riemann pro-
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blems is:

ut 1g u 2

2
h

x

40; u(x , 0 ) 4
.
/
´

u0 for xD0

u1 for xE0
(10)

that admits the two solutions:

u(x , t) 4

.
/
´

u0 for xDst

u1 for xEst

s4
1

2
(u0 1u1 ) Shock Wave(11)

u(x , t) 4

.
`
/
`
´

u0

x

t

u1

for xDu0 t

for u1 tGxGu0 t

for xEu1 t .

Rarefaction Wave(12)

To restore the uniqueness we observe the two different behavior in Figure
1 of the characteristic curves in space time and we have the so called Lax con-
ditions [4]:

The shock is «stable» and the solution of (10) is (11) if

l(u0 ) EsEl(u1 ) .

Viceversa if l(u1 ) El(u0 ), the solutions is the rarefaction (12). l is the
characteristic velocity that in the present case is l4u.

What is the physical meaning of the Lax conditions? In this trivial example

Fig. 1. – u0Eu1 : Shock Wave; u0Du1 : Rarefaction Wave.
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if we take as entropy law the equation

g u 2

2
h

t

1g u 3

3
h

x

G0 ,(13)

it is a simple matter to verify that all the classical solutions of (10) are solution
of (13) with equality, while the requirement that across the shock the entropy
growth corresponds (for genuinely non linear waves) to the Lax conditions.
This question can be generalized for a generic quasi-linear system of conser-
vation laws compatible with an entropy principle and endowed with a convex
entropy density (Friedrichs and Lax (1971) [5]):

¯t u1¯i Fi (u) 40 ¯t h(u)1¯i h i (u) 4SG0(14)

(¯t 4¯/¯t , ¯i 4¯/¯xi , h, h i and S corresponds to the physical entropy density,
the entropy flux and the entropy production except by a change of sign).

In the one dimensional case the Riemann problem for initial sufficiently
small jump is solved as a «superposition» of shocks, characteristic shocks, rare-
faction waves and constant states. The physical shocks are admissible (see e.g.
[6]):

if

if

˜l Qrc0,

˜l Qrf0,

l(u0 ) EsEl(u1 )

l(u0 ) 4s4l(u1 ).

` hD0

` h40

Shock

Characteristic Shock,

while if l(u1 ) El(u0 ) we have a rarefaction wave (h42s[h]1 [h 1 ] is the en-
tropy production across the shock wave and the square bracket denotes the
jump across the wave front with velocity s , r is the right characteristic eigen-
vector associated with the eigenvalue l and ˜4¯/¯u).

The problem fails in the special case of local exceptionality ˜l Qr40 for
some u . In this case the stability of the shock must be satisfy the Liu condi-
tions [7], [8] that implies the generalized Lax condition l(u0 ) GsGl(u1 ) but
the entropy growth alone is not sufficient for the admissibility. In fact it is
necessary to add a new superposition principle for the shocks (Liu and Rug-
geri (2003) [9]).

Therefore the entropy principle becomes a selection rules for constitutive
equations for classical solutions and a selection rules for physical processes
for weak solutions.

The entropy principle for hyperbolic systems plays an important role not
only in the field of the uniqueness of weak solutions but in recent years we
found also several new properties for the systems that are compatible with
this principle. The main are:

1. The systems endowed with an entropy principle with a convex en-
tropy density can be written as a symmetric system if we choose a privileged
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field variables «the main field» and the local Cauchy problem is well-
posed;

2. The main field induced the possibility to find nesting theories trough
the definition of principal subsystem. In particular there exists an equilibri-
um manifold in which the entropy reach the maximum value;

3. If the hyperbolic system of balance laws have a dissipative character
in the sense of Kawashima, then there exist global smooth solutions and the
equilibrium manifold is attractive provided the initial data are sufficiently
small.

The first two results are valid in three-dimensional space while the last re-
sults are proved only in a one-dimensional case. In the following I will give
some details on this points and then we apply these results to the Extended
Thermodynamics theory.

3. – Balance laws systems, entropy and generators.

We rewrite the system and the entropy principle (14) in the most general
case of an hyperbolic system of N balance laws (a40, 1 , 2 , 3 ; x 0 4 t ;
¯a4¯/¯x a ):

¯a Fa (u) 4F(u)(15)

¯a h a (u) 4S(u) G0 .(16)

The compatibility between (15) and (16) implies the existence of a main
field u8 such that [5], [10]:

¯a h a2Sfu8 Q (¯a Fa2F) .(17)

As a consequence of the above identity, we have

dh a4u8 QdFa , S4u8 QFG0 .(18)

Boillat [11] in the non relativistic case and Ruggeri and Strumia [10] in a co-
variant formulation had the idea to use as filed the main field u8 (that, for con-
vexity arguments, is global univalent to the field of the densities in any convex
domain) and to introduce four potentials h 8a (generators):

h 8a4u8 QFa2h a ,(19)

such that from (18)1

Fa4
¯h 8a

¯u8
.(20)

It follows that, upon selecting the main field as the field variables, the ori-
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ginal system (15) can be written with Hessian matrices in the symmetric
form

¯ag ¯h 8a

¯u8
h4F `

¯ 2 h 8a

¯u8 ¯u8
¯a u84F(21)

provided that h4h 0 is a convex function of ufF0 (or equivalently the Legen-
dre transform h 80 is a convex function of the dual field u8). Euler equations
was already written in this form by Godunov [12].

4. – Principal subsystems.

We split the main field u8�R N into two parts u8f (v8 , w8 ), v8�R M , w8�
R N2M , (0 EMEN) and the system (21) with Ff (f , g), reads:

¯ag ¯h 8a (v8 , w8 )

¯v8
h4 f(v8 , w8 ) ,(22)

¯ag ¯h 8a (v8 , w8 )

¯w8
h4g(v8 , w8 ) .(23)

Given some assigned constant value w8* of w8, we call principal subsystem
of (21) the system (1):

¯ag ¯h 8a (v8 , w8*)

¯v8
h4 f(v8 , w8*) .(24)

In other words a principal subsystem (there are 2N 22 of such subsystems)
coincide with the first block of the system putting w84w8*.

The principal subsystems have two important properties: they admit also a
convex subentropy law and the spectrum of the characteristic velocities is con-
tained in the one of the full system (subcharacteristic conditions). In fact it is
possible to prove the following simple theorems [13].

THEOREM 1 (Subentropy Law). – The solutions of a principal subsystem
satisfy also a supplementary law (subentropy law):

¯a ha4 S(25)

where the entropy four-vector ha (v8 , w8*) and the entropy production S are
related to the restrictions of the entropy four-vector h a (v8 , w8*) and of the en-

(1) The definition and the properties remain valid for prescribed values of w8* de-
pending in arbitrary manner on x a. In this case the principal subsystem is not autono-
mous [13].
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tropy production S(v8 , w8*) of the full system through:

h a (v8 , w8*) 4h a (v8 , w8*)2w8* Q g ¯h 8a

¯w8
h

w8fw8*

S4S(v8 , w8*)2w8* Qg(v8 , w8*) .

The subentropy is convex and therefore every principal subsystem are also
symmetric hyperbolic.

Let l (k) (v8 , w8 , nK) and l(k) (v8 , w8*, nK) the characteristic velocities of the to-
tal system and of the subsystem respectively (nK is the unit normal to the wave
front). In general the solutions of the subsystem are not particular solu-
tions of the system (for w84w8*) and the spectrum of the l’s is not part of the
spectrum of the l’s. However let define

l max 4 max
k41, 2 , R , N

l (k) , lmax 4 max
k 41, 2 , R , M

l(k)

and similarly for the minima. Then

THEOREM 2 (Subcharacteristic conditions). – Under the assumption that h o

is a convex function, the following subcharacteristic conditions hold for
every principal subsystem:

.
/
´

l max (v8 , w8*, nK) F lmax (v8 , w8*, nK);

l min (v8 , w8*, nK) G lmin (v8 , w8*, nK),
(26)

(v8�R M and ( nK �R 3 : V nKV41.

The proof of the theorems are in [13].

5. – Equilibrium subsystem.

A particular case of (22), (23) is when the first M equations are conserva-
tion laws, i.e. ff0. In this case it is possible to define, as usual in thermody-
namics, the equilibrium state:

DEFINITION 1. – An equilibrium state is a state for which the entropy pro-
duction 2SNE vanishes and hence attains its minimum value.

It is possible to prove the following theorem [14], [13]:
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THEOREM 3 (Equilibrium manifold). – In an equilibrium state, under the
assumption of dissipative productions i.e. if

D4
1

2
{ ¯g

¯w8
1g ¯g

¯w8
hT}N

E
is negative definite ,(27)

the production vanishes and the main field components vanish except for the
first M ones. Thus

gNE 40, w8NE 40 .(28)

Therefore, in the main field components the equilibrium manifold is the hy-
perplane w840 and this confirm once again the importance of the main
field.

Now we have another important characteristic property of the equilibrium
state [15], [16]:

THEOREM 4 (Maximum of entropy). – At equilibrium the entropy density
2h is maximal, i.e.

hDhNE ( ucuNE , where hNE 4h(v , wNE (v) ) .

Hence we find also at this general level the well known thermodynamical
statement of maximum of entropy in equilibrium.

In the present case, when we limit our attention to the case of one dimen-
sional space, the system (22), (23) assume the form:

.
/
´

vt 1 (k 8v8 )x 40

wt 1 (k 8w8 )x 42G(v8 , w8 ) w8
(29)

with v4h 8v8 , w4h 8w8 and G(v8, 0 ) is a definite positive (N2M)3(N2M) ma-
trix.

6. – Qualitative analysis.

In this section we discuss the importance of the entropy principle on the
Cauchy problem.

6.1. Local well posedness.

In the general theory of hyperbolic conservation laws and hyperbolic-
parabolic conservation laws, the existence of a strictly convex entropy function
is a basic condition for the well-posedness. In fact, if the flux’s Fi and the pro-
duction F are smooth enough, in a suitable convex open set D�R n , it is well
known that system (15) has a unique local (in time) smooth solution for smooth
initial data [5], [17], [18].
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However, in the general case, and even for arbitrarily small and smooth ini-
tial data, there is no global continuation for these smooth solutions, which may
develop singularities, shocks or blowup, in finite time, see for instance [19],
[6].

On the other hand, in many physical examples, thanks to the interplay bet-
ween the source term and the hyperbolicity there exist global smooth solu-
tions for a suitable set of initial data. This is the case, for example, of the isen-
tropic Euler system with damping. Roughly speaking, for such a system the
relaxation term induces a dissipative effect. This effect then competes with the
hyperbolicity. If the dissipation is sufficiently strong to dominate the hyper-
bolicity, the system is dissipative, and we aspect that the smooth solution
exists for all time and converges to a constant state. Otherwise, the dissipation
and the hyperbolicity are equally important. Then we expect that only part of
the perturbation diffuses. In the latter case the system is called of composite
type by Zeng [20].

6.2. The Kawashima condition.

In general, there are several ways to identify whether a hyperbolic system
with relaxation is dissipative or of composite type. One way is completely pa-
rallel to the case of the hyperbolic-parabolic system, which was discussed first
by Kawashima [17] and for this reason is now called the Kawashima condition
[21] or genuine coupling [16]:

In the equilibrium manifold any characteristic eigenvector is not in the
null space of ˜F.

It is possible to verify that the Kawashima condition is equivalent in our
notation to the following requirement (see [21]):

For every l�R and every X�R M 0]0(, the vector gX

0
h�R N is not in the

null space of 2lA08
0 1A08

1 , where

A80 4
¯ 2 h 8

¯u8 ¯u8
, A81 4

¯ 2 k 8

¯u8 ¯u8

and the index 0 denotes the equilibrium state.

If we denote with r8 the right eigenvectors of the symmetric system

(2lA80 1A81 ) r840 ,
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the K-condition is satisfied if every eigenvectors

r80 cgX

0
h .(30)

We observe that r84A80 r.

6.3. Global Existence and stability of constant state.

For dissipative one dimensional systems (29) satisfying the K-condition it
is possible to prove the following global existence theorem due to Hanouzet
and Natalini [21]:

THEOREM 5 (Global existence). – Assume that the system (29) is strictly dis-
sipative and the K-condition is satisfied. Then there exists dD0, such that, if
Vu8 (x , 0 )V2 Gd , there is a unique global smooth solution, which verifies

u8�C 0 ( [0 , Q); H 2 (R)OC 1 ( [0 , Q); H 1 (R) ).

Moreover Ruggeri and Serre [16] have proved that the constant state are
stable:

THEOREM 6 (Stability). – Under natural hypotheses of strongly convex en-
tropy, strict dissipativeness, genuine coupling and «zero mass» initial for
the perturbation of the equilibrium variables the constant solution stabi-
lizes

Vu(t) )V2 40(t 21/2 ).

In [21] the authors report several examples of dissipative systems satisfy-
ing the K-condition: the p-system with damping, the Suliciu model for the
isothermal viscoelasticity, the Kerr-Debye model in non linear electroma-
gnetism and the Jin-Xin relaxation model.

6.4. A counterexample of global existence without K-condition.

Zeng [20] have considered a toy model of vibrational non equilibrium gas in
Lagrangian variables, proving that also if the system is of composite type the
global existence holds. Therefore the K-condition is only a sufficient condition
for the global existence of smooth solutions.

An intriguing open problem is if it exists a weaker K-condition that is also
necessary to ensure global solutions. And if it exists such condition, the ques-
tion is if it has a physical meaning such that it is possible to consider it as a
possible new principle of Extended Thermodynamics adding to the convexity
of entropy.
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Now we apply the previous results to the case of Extended Ther-
modynamics [22].

7. – The extended thermodynamics.

In the context of rarefied gas, as it is well known, most macroscopic ther-
modynamic quantities are identified as moments of the phase density

Fk1 k2 R kj
4s fck1

ck2
R ckj

dc ,(31)

and due to the Boltzmann equation (7), the moments satisfy an infinity hierar-
chy of balance laws in which the flux in one equation becomes the density in
the next one:

¯t F1¯i Fi 40
8

¯t Fk1
1¯i Fik1

40
8

¯t Fk1 k2
1¯i Fik1 k2

4Pk1 k2

8
¯t Fk1 k2 k3

1¯i Fik1 k2 k3
4Pk1 k2 k3

QQ
Q

¯t Fk1 k2 R kn
1¯i Fik1 k2 R kn

4Pk1 k2 R kn

QQ
Q

Taking into account that Pkk 40, the first five equations are conservation laws
and coincides (using different symbols) with (4), while the remaining ones are
balance laws.

7.1. The closure of extended thermodynamics.

When we cut the hierarchy at the density with tensor of rank n, we have
the problem of closure because the last flux end the production terms are not
in the list of the densities. The idea of Rational Extended Thermodynamics
(Müller and Ruggeri [22]) was to view the truncated system as a phenomeno-
logical system of continuum mechanics and then we consider the new quanti-
ties as constitutive functions:

Fk1 k2 R kn kn11
fFk1 k2 R kn kn11

(F , Fk1
, Fk1 k2

, R Fk1 k2 R kn
)

Pk1 k2 R kj
fPk1 k2 R kj

(F , Fk1
, Fk1 k2

, R Fk1 k2 R kn
), 2 GjGn .
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According with the continuum theory, the restrictions on the constitutive
equations come only from universal principles, i.e.: Entropy principle, Objec-
tivity Principle and Causality and Stability (convexity of the entropy).

The restrictions are so strong (in particular the entropy principle) that, at
least, for processes not to far from the equilibrium the system is completely
closed and in the case of 13 moments the results are in perfect agreement with
the kinetic closure procedure proposed by Grad [23].

7.2. Principal subsystems in ET.

Now, that we have stated, that for any n we may use the closure of ET, the
following question arises: What kind of relation do exist between two closure
theories with different index, a theory Sn and a theory Sm with nDm, say?
Boillat and Ruggeri [13] have proved, that

THEOREM 7 (Nesting theories). – Sm is a principal subsystem of Sn ob-
tained from Sn by setting u 8a40, (a4m11, R , n) and neglecting the cor-
responding equations for a4m11, R , n , i.e.

Sn :

.
`
/
`
´

¯u a (u 8b , u 8b )

¯t
1

¯Fi
a (u 8b , u 8b )

¯xi

4P a (u 8b , u 8b ),

¯u a (u 8b , u 8b )

¯t
1

¯Fi
a (u 8b , u 8b )

¯xi

4Pa (u 8b , u 8b )

(32)

a40, R , m ; a4m11, R , n .

Sm :
¯u a (u 8b , 0 )

¯t
1

¯Fi
a (u 8b , 0 )

¯xi

4P a (u 8b , 0 ).(33)

In particular the Euler systems becomes the equilibrium subsystem of any
ET theory.

In a work in progress, we have verified that the K-condition is satisfied and
therefore for the previous theorems on the qualitative analysis if the initial
data are sufficiently small, smooth solutions of ET exists for all time and con-
verge to a constant state of the equilibrium Euler manifold!

7.3. Examples of principal subsystems in E.T.: The 13 Moments Grad
system

As an example of the nesting theory of subsystems and the subcharacteris-
tic properties we present the most simple case of Extended Thermodynamics:
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the case of 13-moments know as Grad system [23]. In the usual symbols equa-
tions are:

¯

¯t
r1

¯

¯x i
(rvi ) 40 ;

¯

¯t
(rvj )1

¯

¯x i
(rvi vj 1pd ij 2s ij ) 40 ;

¯

¯t
gre1r

v 2

2
h1

¯

¯x k mgre1r
v 2

2
1ph vk 1qk 2s kj vjn40

¯

¯t
mrgvi vj 2

v 2

3
d ijh2s ijn1

¯Faijbk

¯xk

4t 0 s ij

¯

¯t
](rv 2 15p) vk 12qk 22s kj vj (1

¯Fppik

¯xk

42t 0 s kj vj 2t 1 qk ,

where

Faijbk 4Fijk 2
1

3
Fhhk d ij ;

Fijk 4rvi vj vk 1gpvk 1
2

5
qkh d ij 1pvi 1

2

5
qi d jk 1

gpvj 1
2

5
qjh d ik 2s ij vk 2s ik vj 2s jk vi ;

Fppij 4 (rv 2 17p) vi vj 1 (pd ij 2s ij ) v 2 22s ik vk vj 22s jk vk vi 1

14

5
(qi vj 1qj vi )1

4

5
qk vk d ij 1

p

r
(5pd ij 27s ij ) .

The first five equations are the usual conservation laws of mass, momentum
and energy, while the remaining eight are the new evolution balance laws cor-
responding to the non-equilibrium variables qi , heat flux, and s ij, shear stress
(symmetric and traceless tensor). The equations (34)4 and (34)5 when relax-
ation times are small reduces – via the Maxwellian iteration procedure [22] –
to the Navier-Stokes and Fourier equations respectively.
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The components of the main field u8 in the present case are:

u8f (j , L j , z , L aijb , V k )

j4
1

T
{m2

v 2

2
1

1

2p
s ij vi vj 2

r

5p 2
qi vi v 2} ;

L i 4
1

T
mvi 2

1

p
s ij vj 1

r

5p 2
(v 2 qi12qj vj vi )n ;

z42
1

T
m12

2r

3p 2
qk vkn ;

L aijb42
1

T
m 1

2p
s ij 1

r

5p 2 gvi qj 1vj qi 2
2

3
vk qk d ijhn ;

V i 4
r

5Tp 2
qi ,

(m4e1p/r2TS is the chemical potential).
For non degenerate mono-atomic ideal gas p4 (k/m)rT , e43p/(2r), the

maximum characteristic velocity evaluated in an equilibrium state is

l max 41.65cS

where cS 4o 5

3

k

m
T is the sound velocity.

Taking into account the theorem 7 and (32), (33), the 10-moments system is
a principal subsystem of the 13-moments, putting

V i 40 K qi 40

and neglecting the last equation of (34):

¯

¯t
r1

¯

¯x i
(rvi ) 40 ;

¯

¯t
(rvj )1

¯

¯x i
(rvi vj 1pd ij 2s ij ) 40 ;

¯

¯t
gre1r

v 2

2
h1

¯

¯x k mgre1r
v 2

2
1ph vk 2s kj vjn40

¯

¯t
mrgvi vj 2

v 2

3
d ijh2s ijn1

¯Faijb k

¯xk

4t 0 s ij

(Faijb k 4Faijb k Nqm40 ). The maximum characteristic velocity is now smaller ac-
cording with the subcharacteristic theorem:

l max 41.34cS .
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While the equilibrium Euler system is a principal subsystem of the 13 and
10 moments system with

V i 40, L ai , jb40 K qi 40, s ij 40

and neglecting the last equation of (35):

¯

¯t
r1

¯

¯x i
(rvi ) 40 ;

¯

¯t
(rvj )1

¯

¯x i
(rvi vj 1pd ij ) 40 ;

¯

¯t
gre1r

v 2

2
h1

¯

¯x k
mgre1r

v 2

2
1ph vkn40 .

The maximum velocity is now

l max 41 cS .

7.4. Characteristic velocities.

Therefore for any n we have an ET theory with symmetric hyperbolic dif-
ferential system and finite characteristic velocities.

Now we ask what happens if n become large. The special form of symme-
tric hyperbolic system permits (via Routh-Hurwitz inequalities) to deduce a
lower bound for the maximum characteristic velocity in terms of the number n
of truncation:

In the classical case, we have (Boillat and Ruggeri (1997) [24]):

l max

cS

Fo 6

5
gn2

1

2
h(36)

where cS is the sound velocity. Therefore, we have the surprising result that
l max becomes unbounded when nKQ. While in the relativistic theory we ob-
tain (c is the light velocity and Kn denotes Bessel functions of the second
kind):

(2n21)

g

Kn11 (g)

Kn12 (g)
G

l max
2

c 2
G1, g4

mc 2

kT
.

and it is easy to prove that when the number of moments tends to infinity the
maximum velocity in equilibrium tends to the light velocity (Boillat and Rug-
geri (1999) [25], [26]; Brini and Ruggeri (1999) [27]).
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7.5. Applications of ET.

The Extended Thermodynamics was applied in several physical problems
with a good agreement with experimental data. In fact if the gas is very rar-
efied the Navier-Stokes Fourier theory gives bad results while the ET with
many moments gives very satisfactory results.

Some of these new results concerns the dispersion relation of sound waves
(Weiss 1990) [28]; Light Scattering (Weiss and Müller, 1995 [29]); Extended
Thermodynamics of Radiation (Struchtrup, 1997 [30]); Evaluation of the heat
conductivity and Bulk Viscosity in Reacting Gases (Kremer and Müller 1996
[31]); Hydrodynamical Models for Semiconductors (Anile et Coworkers see
e.g. [32]); The nesting of theories of increasing order (Boillat and Ruggeri,
1996 [13]); The Extended Thermodynamics at kinetic level and Maximum En-
tropy Principle (Dreyer 1987 [33], Boillat and Ruggeri, 1996 [24]); Shock
Structure problem (Ruggeri, 1993 [34], Weiss 1996 [35], Boillat and Ruggeri
1998 [14]).

8. – Conclusions.

We have seen that the entropy principle is not only an indication of an ar-
row in the time direction but plays an important role: to select the constitutive
equations, to restore the uniqueness for weak solutions, to identify symme-
tries and nesting structure, to establish the well-posedness of the Cauchy
problem and to close the system of the Extended Thermodynamics.
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