BOLLETTINO UNIONE MATEMATICA ITALIANA

NATHALIE GONZALEZ, SÉBASTIEN PELLERIN

Boundary map and overrings of half-factorial domains

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 8-B (2005), n.1, p. 173–185.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2005_8_8B_1_173_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2005.

Boundary Map and Overrings of Half-factorial Domains.

NATHALIE GONZALEZ - SÉBASTIEN PELLERIN

Sunto. – In questo articolo studiamo la fattorizzazione di elementi nei sopranelli di un dominio metà-fattoriale A in funzione del comportamento della funzione di bordo di A. A tale riguardo, troviamo che gioca un ruolo centrale una condizione sulle estensioni, che chiamiamo condizione C*. Quindi studiamo quando questa condizione CC* è verificata. Infine, applichiamo i risultati ottenuti al caso speciale degli anelli di polinomi.

Summary. – We investigate factorization of elements in overrings of a half-factorial domain A in relation with the behaviour of the boundary map of A. It turns out that a condition, called C^* , on the extension plays a central role in this study. We finally apply our results to the special case of A + XB[X] polynomial rings.

In 1960, Carlitz [4] proved that the class number of an algebraic number ring is less or equal to 2 if and only if each nonzero nonunit x factors as a product of irreducible elements so that the number of such irreducible factors only depends on the element x. Then, we say that a domain R is *atomic* if each nonzero nonunit of R factors as a product of irreducible elements, and that an atomic domain is a *half-factorial domain* (or HFD) if each equality

$$\pi_1 \dots \pi_r = \tau_1 \dots \tau_s$$

with the π_i , τ_i 's irreducible in R, implies r = s.

The study of the properties of HFDs has been a fruitful topic these last past years (see [5] for a survey). In particular, since HFDs generalize UFDs, we aim to know which of the properties of UFDs are still true for HFDs. For instance, a domain R may be a HFD whereas the polynomial ring R[X] is not – more precisely, Coykendall proved in [8] that, if R[X] is a HFD, then R is integrally closed whereas there are non-integrally closed HFDs (for instance $\mathbb{Z}[\sqrt{-3}]$). Another question in the same vein was to know if a localization of a HFD is a HFD, this question has been studied by D.F. Anderson, Chapman and Smith in [1] and by D.F. Anderson and Park in [2] for the case of Dedekind domains. More generally, we can ask if an overring of a HFD is a HFD. Of course, it is false in general (for instance, if R is not one-dimensional, then it admits non-discrete valuation overrings, whence non-atomic overrings) but we aim to characterize which overrings are HFDs. In particular, a natural conjecture then turns out: if R is a HFD, is its integral closure \overline{R} also a HFD? In 1983, Halter-Koch gave a positive response for the case of orders in quadratic algebraic number rings [14], which was generalized to the general case of algebraic number rings by Coykendall in 1999 [9] who nevertheless proved in [11] that this conjecture fails in general. Anyway, in [9], Coykendall introduced a new tool, the boundary map of a HFD, which allows us better investigations of factorization properties in the overrings of a HFD.

The aim of this paper is, given a half-factorial domain A, to study the behaviour of the boundary map of A on its overrings and then, to derive conditions for these overrings to be half-factorial.

If *R* is an integral domain, then $\mathcal{U}(R)$ will denote its group of units and R^* its set of nonzero elements. We will often use the word *atom* for an irreducible element of an integral domain. As usual, \mathbb{Z} will denote the ring of integers and \mathbb{N} the set of nonnegative integers. All rings are commutative with identity and integral domains.

1. - Integral characters of an integral domain.

DEFINITION 1.1. – Let A be an integral domain with quotient field K. We call an integral character on A, each function $\varphi: A \to \mathbb{Z}$ such that

$$\varphi(xy) = \varphi(x) + \varphi(y)$$

for all $x, y \in A$. If $\varphi(A) \neq \{0\}$, we say that φ is non trivial on A.

Then, for every $x, y \in A$, set:

$$\varphi\left(\frac{x}{y}\right) = \varphi(x) - \varphi(y).$$

That is, we extend the integral character φ to K, and we then say that φ is an *integral character* on K. If $\varphi(K) \neq \{0\}$, we say that φ is *non trivial* on K.

Note that $\varphi(K)$ is a subgroup of \mathbb{Z} . Thus we can always assume that $\varphi(K) = \mathbb{Z}$. From now on, we will always make this assumption. The following example will be the main interest of this paper.

EXAMPLE 1.2. – Let us consider an atomic domain A with quotient field K and a pseudo-length function $\ell: A \to \mathbb{N}$ on A that is [13]:

- (i) $\ell(xy) = \ell(x) + \ell(y)$ for all x, y in A*
- (*ii*) $\ell(x) > 0$ for each nonprime irreducible element x of A.

We can then extend this function to K^* by setting:

$$\partial_{A,\ell}\left(\frac{a}{b}\right) = \ell(a) - \ell(b)$$

for each $a, b \in A^*$. The function $\partial_{A, \ell}$ is called the *boundary map related to A* and ℓ .

In the particular case of a HFD *A*, there exists a (pseudo-)length function ℓ on *A* such that $\ell(x) = 1$ if and only if *x* is an atom [17] (in particular, $\ell(x) = 0$ if and only if *x* is a unit of *A*). Then the associated *boundary map* is defined by

 $\partial_A(x) = r - s$ where $x = \frac{\pi_1 \dots \pi_r}{\tau_1 \dots \tau_s}$ with the π_i, τ_j 's irreducible in A [9].

If A is an integral domain with quotient field K and φ is an integral character on K, then we will often say that φ is an integral character on A.

DEFINITION 1.3. – Let *A* be an integral domain with quotient field *K* and let φ be a non trivial integral character on *K*. Then φ is said to be *positive* on *A* if $\varphi(x) \ge 0$ for all $x \in A$. If moreover, $\varphi(x) > 0$ for all nonunit $x \in A$, then φ is said to be *strictly positive* on *A*.

Respectively, we say that φ is *negative on* A if $\varphi(x) \leq 0$ for all $x \in A$, and that φ is *strictly negative on* A if moreover $\varphi(x) < 0$ for all nonunit $x \in A$.

EXAMPLE 1.4. – Let us consider an atomic domain A with quotient field K and a pseudo-length function ℓ on A. Then the boundary map associated to ℓ is positive on A.

EXAMPLE 1.5. – Let us consider a (rank-one) discrete valuation ring V with quotient field K and let us denote v the valuation. Then v is a non-trivial integral character on K^* which is strictly positive on V.

We first give a consequence of the positiveness of an integral character.

LEMMA 1.6. – If φ is positive on A, then $\varphi(u) = 0$ for each unit u of A.

PROOF. – We have $\varphi(u) + \varphi(u^{-1}) = \varphi(1) = 0$ and the result follows as φ is positive.

Note that it may occur that $\varphi(u) = 0$ for each unit u of A but φ takes both positive and negative values on A. Indeed, consider the integral character φ defined on K[X, Y] by $\varphi = v_X - v_Y$, where v_X and v_Y respectively denote the X-adic and the Y-adic valuations on K[X, Y]. Then $\varphi(u) = 0$ for each unit u of K[X, Y] nevertheless $\varphi(X) = 1$ and $\varphi(Y) = -1$.

PROPOSITION 1.7. – If A is not a field and φ is an integral character on A, then the following are equivalent:

- (i) φ is either strictly positive or strictly negative on A
- (ii) $\varphi(x) \neq 0$ for each nonunit $x \in A$.

PROOF. – The fact that (*i*) implies (*ii*) is clear. Conversely, assume that $\varphi(x) \neq 0$ for each nonunit $x \in A$, it suffices to show that φ is either positive or negative. Assume, by way of contradiction, that there exist nonunits x, y in A with $\varphi(x) = m > 0$ and $\varphi(y) = -n < 0$, then we have:

$$\varphi(x^n y^m) = 0.$$

It follows that the element $x^n y^m$ is invertible in A, whence x and y are both invertible in A. This contradicts the choice of x and y.

The next proposition gives an interesting example of a strictly positive integral character which will be useful in the remainder of this paper.

PROPOSITION 1.8. – Let φ be a non-trivial integral character on A and consider the multiplicatively closed set $S = \{x \in A; \varphi(x) = 0\}.$

(i) If φ is positive on A, then $S^{-1}A \neq K$ and φ is strictly positive on $S^{-1}A$.

(ii) If φ takes both positive and negative values, then $S^{-1}A = K$.

PROOF. - (i) Let x be a nonzero element of $S^{-1}A$ and write $x = \frac{a}{s}$ with $a \in A^*$ and $s \in S$. Then $\varphi(x) = \varphi(a) - \varphi(s) = \varphi(a) \ge 0$ since φ is positive on A. Therefore φ is positive on $S^{-1}A$. Moreover, if x is a nonunit, then $a \notin S$, that is, $\varphi(a) > 0$. Thus $\varphi(x) > 0$, that is, φ is strictly positive on $S^{-1}A$. Lastly, assume that $S^{-1}A = K$, it follows from Lemma 1.6 that φ is trivial on $S^{-1}A$ thus on A, we reach a contradiction.

(*ii*) Let us consider an element $x \in A$ such that $\varphi(x) \neq 0$, say $\varphi(x) = m > 0$. Then there exists $y \in A$ with $\varphi(y) = -n < 0$. We have $\varphi(x^n y^m) = 0$ that is $x^n y^m$ is invertible in $S^{-1}A$, hence so is x. Since each nonzero element of A is invertible in $S^{-1}A$, $S^{-1}A$ is a field and $S^{-1}A = K$.

Now, we investigate some consequences of the notion of strictly positive integral character.

PROPOSITION 1.9. – If φ is strictly positive integral character on an integral domain A, then A is a bounded factorization domain (BFD). In particular, A is an atomic domain. PROOF. – Let us consider an ascending chain $Ax_0 \subset Ax_1 \subset Ax_2 \subset ...$ of principal ideals of A. Then, for each $n \ge 0$, we can write $x_{n+1} = x_n y_n$ where y_n is a nonunit of A. Since φ is strictly positive on A, we thus have $\varphi(x_{n+1}) < \varphi(x_n)$. Hence the sequence $(\varphi(x_n))_{n \in \mathbb{N}}$ strictly decreases in \mathbb{N} and it thus follows that A satisfies the ascending chain condition on principal ideals. Therefore A is atomic.

Now, consider a nonzero nonunit x of A and a factorization $x = \xi_1 \dots \xi_n$ as a product of irreducible factors. Then

$$\varphi(x) = \varphi(\xi_1) + \ldots + \varphi(\xi_n).$$

Since φ is strictly positive on A, the $\varphi(\xi_i)$'s are positive integers, thus n is bounded by $\varphi(x)$.

REMARK 1.10. – If φ is a strictly positive integral character on an integral domain A and if $\varphi(x) = 1$, then x is an atom. Indeed, write x = ab, then $\varphi(a) + \varphi(b) = \varphi(x) = 1$, whence $\varphi(a) = 0$ or $\varphi(b) = 0$ that is, a or b is a unit of A. Note that the converse fails. Indeed, consider the X-adic valuation v_X on

the integral domain $K[X^2, X^3]$, then X^2 is an atom but $v_X(X^2) = 2$.

In fact, if A is an atomic domain then, A is half-factorial if and only if there is a positive integral character on A which takes the value 1 exactly on the atoms (see [17]).

PROPOSITION 1.11. – Let us consider two domains $A \subset B$ with the same quotient field K and an integral character φ on K. If φ is strictly positive on A and positive on B, then $\mathcal{U}(A) = \mathcal{U}(B) \cap A$.

PROOF. – It is clear that the units of *A* are units of *B*. Conversely, if *u* is a unit of *B* which belongs to *A* then, from Lemma 1.6, $\varphi(u) = 0$. Since φ is strictly positive on *A*, it follows that *u* is a unit of *A*.

Note that it is not sufficient to assume φ strictly positive on B. For instance, the *p*-adic valuation is strictly positive on $\mathbb{Z}_{(p)}$ but not on \mathbb{Z} .

We now focuse on the case of boundary maps. Let A be a half-factorial domain with quotient field K and B be an overring of A. Recall that the *bound-ary map* of A is the function $\partial_A \colon K^* \to \mathbb{Z}$ defined by $\partial_A(u) = 0$ for each $u \in \mathcal{U}(A)$ and

$$\partial_A \left(\frac{\pi_1 \dots \pi_r}{\tau_1 \dots \tau_s} \right) = r - s$$

for every irreducible elements π_i , τ_j of A. Since the boundary map ∂_A is clearly strictly positive on A, we obtain:

COROLLARY 1.12. – If ∂_A is positive on B, then:

- (i) For each unit u of B, $\partial_A(u) = 0$.
- (*ii*) $\mathcal{U}(A) = \mathcal{U}(B) \cap A$.

Then, from the previous corollary, Proposition 1.9 and Remark 1.10, we derive:

COROLLARY 1.13. – If ∂_A is strictly positive on B then:

(i) ∂_A is positive on B.
(ii) For each unit u of B, ∂_A(u) = 0.
(iii) B is a BFD (in particular B is atomic).
(iv) U(A) = U(B) ∩ A.
(v) Each atom of A is an atom of B.

This result allows us to give an example of an atomic overring which admits a nonunit element of boundary zero (giving a negative answer to the last question of [11] or [6, Problem 27]): it is sufficient to find an irreducible element of A which does not remain irreducible in B.

EXAMPLE 1.14. – Set $A = \mathbb{Z} + X\mathbb{Z}[t][X]$ and $B = \mathbb{Z}[t, X]$. Then A is a HFD [12, Proposition 1.8] and B is a factorial overring of A. The element f = X(t+X) is irreducible in A but not in B and $t + X = \frac{[X(t+X)]}{X}$ is a nonzero nonunit of B with boundary 0.

In this example, the element with boundary 0 is prime (since the top ring is a UFD). We can give another example with a boundary 0 element which is irreducible but not prime in B.

EXAMPLE 1.15. – Set $A = \mathbb{Z} + X\mathbb{Z}[t][X]$ and $B = \mathbb{Z}[t^2, t^3] + X\mathbb{Z}[t][X]$. Then A is a HFD and B is an overring of A which is not an HFD (since $\mathbb{Z}[t^2, t^3]$ is not an HFD). The element $f = Xt^2$ is irreducible in A but not in B and $t^2 = \frac{[Xt^2]}{X}$ is a nonzero nonunit of B with boundary 0 which is not prime in B. It is easy to see that, in Corollary 1.13, (v) implies (iv) (but the converse

fails). Moreover, (v) is an improvement of [9, Corollary 2.6]. Now, we ask:

QUESTION 1. – If B satisfies conditions (i), (iii) and (v), is ∂_A strictly positive on B?

In the following remark, we give a positive answer to the previous question in the case when the conductor $[A : B] = \{x \in B, xB \subseteq A\}$ contains a prime element of *B*.

178

REMARK 1.16. – Let us consider A an HFD, B an overring. We suppose that there exists a prime π of B such that $\pi B \subseteq A$ (that is, $\pi \in [A : B]$). In this case, ∂_A is strictly positive on B if and only if each irreducible element of A remains irreducible in B and $\mathcal{U}(B) \cap A = \mathcal{U}(A)$.

Indeed, if the condition on units is satisfied π is an irreducible element of A. Let $b \in B$ such that $\partial_A(b) = 0$ then $\pi b \in A$ and $\partial_A(\pi b) = \partial_A(\pi) = 1$; thus $\pi b = \tau$ is an irreducible element of A. As each irreducible of A is irreducible in B, we conclude that b is a unit of B. The converse follows from corollary 1.13.

2. - Overrings of half-factorial domains.

Troughout this section, A is a half-factorial domain (HFD) with quotient field K and B is a proper overring of A, that is, $A \subset B \subset K$.

The purpose of the following is to investigate factorization in the overring B of A in relation with the behaviour of the boundary map ∂_A on B. The key fact of this section is that the boundary map is strictly positive on A.

PROPOSITION 2.1. – Assume that the atoms of A are atoms of B and that B is a HFD. Then ∂_A is strictly positive on B.

PROOF. – Let x be a nonzero element of B of boundary 0 and write

$$x = \frac{\pi_1 \dots \pi_r}{\tau_1 \dots \tau_r}$$

where the π_i , τ_j 's are irreducible in A, then we obtain:

$$\tau_1 \dots \tau_r x = \pi_1 \dots \pi_r.$$

Since each atom of *A* is an atom of *B* and since *B* is a HFD, it follows that x is a unit of *B*.

Now, we recall a condition on extensions which is often used in factorization problems (see for instance [10], [12], [14], [15] and [16]).

DEFINITION 2.2. – We say that an extension of integral domains $R \subseteq T$ satisfies the condition \mathcal{C}^* if for each element $t \in T$, there exists a unit u of T such that $ut \in R$.

REMARK 2.3. – Let A be an atomic domain and B be an overring of A such that the extension $A \subset B$ verifies \mathcal{C}^* and such that each atom of A is an atom of B. Thus $\mathcal{U}(B) \cap A = \mathcal{U}(A)$, B is also atomic and the atoms of B are of the form $u\pi$ where π is an atom of A.

Indeed, let x be a nonzero nonunit of B. Then, there exists a unit u of B

such that $ux \in A$. Since *A* is atomic and as ux is a nonunit of *A*, we can write $ux = \pi_1 \dots \pi_n$ where the π_i 's are irreducible in *A*. That is $x = u^{-1}\pi_1 \dots \pi_n$, where u^{-1} is a unit of *B* and π_1, \dots, π_n are atoms of *A*, whence of *B*. Therefore *B* is atomic.

Moreover, since the atoms of A are atoms of B, a product $u\pi$ (where u is a unit of B and π is an atom of A) is an atom of B. Conversely, let τ be an atom of B, then there exists a unit u of B with $u\tau \in A$. Write $u\tau = xy$ with x, y in A. As τ is an atom of B, x or y is a unit of B, say x. Then $x \in \mathcal{U}(B) \cap A$, that is $x \in \mathcal{U}(A)$. Therefore $u\tau$ is an atom of A.

PROPOSITION 2.4. – Assume that the extension $A \subset B$ satisfies C^* and that $\partial_A(u) = 0$ for each unit u of B, then ∂_A is strictly positive on B and B is a HFD.

PROOF. – Let *b* be a nonzero nonunit of *B*. Then there exists a unit *u* of *B* such that *ub* is a nonzero nonunit of *R*, thus $\partial_A(ub) > 0$, therefore $\partial_A(b) = \partial_A(u) + \partial_A(b) > 0$.

It follows from Corollary 1.13 and the previous remark that *B* is atomic. Write $x_1 \ldots x_m = y_1 \ldots y_n$ with the x_i , y_j 's irreducible in *B*. For each *i*, there is a unit u_i of *B* such that $x'_i = u_i x_i$ is an atom of *A*, and for each *j*, there is a unit v_j of *B* such that $y'_j = v_j y_j$ is an atom of *A*. Set $u = u_1 \ldots u_m$ and $v = v_1 \ldots v_n$, then $vx'_1 \ldots x'_m = uy'_1 \ldots y'_n$, thus:

 $\partial_A(v) + \partial_A(x_1') + \ldots + \partial_A(x_m') = \partial_A(u) + \partial_A(y_1') + \ldots + \partial_A(y_n')$

Whence m = n.

EXAMPLE 2.5. – [1] Let A be a Dedekind domain with class group \mathbb{Z}_6 and such that the set of nonzero ideal classes which contain prime ideal is $S_A = \{1, 2, 3\}$. Then A is HFD [7].

Let \mathfrak{p} be a prime ideal of A which lies in class 3. Then there exists an element $t \in \mathfrak{p}$ such that t is not in any prime of classes 1 and 2. Set $T = \{1, t, t^2, ...\}$ and $B = T^{-1}D = D[1/t]$. The extension $A \subset B$ satisfies \mathcal{C}^* but ∂_A is not strictly positive on B. Indeed, there exist units in B with nonzero boundary. For example, as \mathfrak{p} is a prime ideal which lies in class 3, there exists an irreducible element $\alpha \in A$ such that $A\alpha = \mathfrak{p}^2$.

Here is an example of a half-factorial polynomial overring of a HFD such that the extension satisfies the condition C^* .

EXAMPLE 2.6. – Let $A = \mathbb{Z} + X\mathbb{Z}[t, X]$ and $B = \mathbb{Z}[t^2, t^3] + X\mathbb{Z}[t, X]$. We have seen, in Example 1, that there exist elements of B with boundary zero. Set $S = \{b \in B, \partial_A(b) = 0\}$, then:

$$A \subset B \subset \mathbb{Z}[t, X] \subset S^{-1}B$$

and $S^{-1}B \neq \mathbb{Q}(t, X)$. Indeed, let us suppose that $\frac{1}{X} = \frac{b}{s}$ with $b \in B$ and $s \in S$, that is $\partial_A(s) = 0$, thus $\partial_A(bX) = 0$. Since $bX \in A$, bX is a unit of A. We obtain a contradiction and then conclude, by Proposition 1.8, that, for each $b \in B$, $\partial_A(b) \ge 0$.

Each nonzero nonunit u of $S^{-1}B$ has a nonzero boundary. From Corollary 1.13, $S^{-1}B$ is atomic, $\mathcal{U}(S^{-1}B) \cap A = \mathcal{U}(A)$ and each irreducible element in A remains irreducible in $S^{-1}B$. We now prove that each irreducible element of $S^{-1}B$ is associated to an irreducible element of A, that is, the extension $A \subset S^{-1}B$ satisfies \mathcal{C}^* .

Let g be an irreducible element of $S^{-1}B$, write $g = \frac{\alpha}{\beta}$ with $\alpha \in B$ and $\beta \in S \subset \mathcal{U}(S^{-1}B)$. So, up to a unit of $S^{-1}B$, we can assume that $g \in B$. If $g \in A$ then g is irreducible in A (by the condition on units), thus assume that $g \notin A$ and that g is not associated to any element of A. Consider the nonzero nonunit element gX of A and consider the following factorization $gX = f_1 \dots f_n$, where f_1, \dots, f_n are atoms of A. Assume that n = 1 then $gX = f_1$. It follows that $\partial_A(g) = 0$ (indeed, $\partial_A(g) + \partial_A(X) = \partial_A(f_1)$) which contradicts the fact that g is irreducible in $S^{-1}B$. Thus $n \ge 2$. One of the f_i 's is of order 1, say $f_1 = Xh$, where $h \in \mathbb{Z}[X, t] \subset S^{-1}B$. Thus we can write $g = h(f_2 \dots f_n)$. As g is irreducible in $S^{-1}B$ and $(f_2 \dots f_n)$ is a nonunit of A, we conclude that h is a unit of $S^{-1}B$. Consequently, g is associated to an element of A which contradicts our hypothesis. From Proposition 2.4, we then conclude that $S^{-1}B$ is HFD.

Recall that $\partial_A(\alpha) \ge 0$ whenever $\alpha \in K$ is almost integral over A [9, Lemma 2.3]. We first summarize some properties in this case.

PROPOSITION 2.7. – If the extension $A \in B$ is almost-integral, then:

- (i) For each nonzero α in B, $\partial_A(\alpha) \ge 0$.
- (ii) For each unit u of B, $\partial_A(u) = 0$.
- (*iii*) $\mathcal{U}(A) = \mathcal{U}(B) \cap A$.

Note that Coykendall gave, in [11], an example of an integral extension $A \subset B$ such that there exist nonunit elements with boundary 0, moreover in this case *B* is exactly the integral closure of the half-factorial domain *A*. It leads to the following question:

QUESTION 2. – Find an example of an integral extension $A \subset B$ such that B is atomic and there exist nonunit elements with boundary 0.

It seems that all known examples of integral extensions $A \subset B$ with A HFD and B atomic satisfy the condition \mathcal{C}^* . This remark stresses the interest of the following result which can easily be deduced from Proposition 2.4.

THEOREM 2.8. – Assume that the extension $A \subset B$ is almost-integral and satisfies C^* , then:

(i) ∂_A is strictly positive on B.
(ii) Each atom of A is an atom of B.
(iii) B is a HFD.

Now, we give a sufficient condition for an extension to satisfy \mathcal{C}^* .

PROPOSITION 2.9. – Assume that there exists a prime element π of B such that $\pi B \subseteq A$ and that $\mathcal{U}(A) = \mathcal{U}(B) \cap A$. Then, for each atom x of B with $\partial_A(x) \ge 1$, there exists a unit u of B such that $ux \in A$. In particular, if $\partial_A(x) = 1$, then ux is an atom of A for some unit u of B.

PROOF. – Since $\pi B \subseteq A$ and $\mathcal{U}(B) \cap A = \mathcal{U}(A)$, π is also an atom of A, thus $\partial_A(\pi) = 1$. Let x be an atom of B, set $\partial_A(x) = k \ge 1$, πx is in A and $\partial_A(\pi x) = k + 1 \ge 2$. Thus we can write $\pi x = \tau_1 \dots \tau_{k+1}$ where the τ_i 's are irreducible in A. Since π is a prime element of B, one of the τ_i 's, say τ_1 , is in πB . Hence, there exists y in B such that $\tau_1 = \pi y$ and $x = y\tau_2 \dots \tau_{k+1}$. Since x is an atom of B, either y or one of the τ_i 's for some $i \ge 2$ is a unit of B, whence a unit of A as $\mathcal{U}(B) \cap A = \mathcal{U}(A)$. Since the τ_i 's are irreducible in A, they are nonunits, thus $u = y^{-1}$ is a unit of B such that $ux = \tau_2 \dots \tau_{k+1} \in A$.

In the case where $\partial_A(x) = 1$, we then obtain an element ux of A with $\partial_A(ux) = \partial_A(u) + \partial_A(x) = 1$, that is, ux is an atom of A.

Then, from Proposition 2.4, we derive the following corollary which gives a partial positive answer to the conjecture stated in [11].

COROLLARY 2.10. – Assume that there exists a prime element π of B such that $\pi B \subseteq A$ and that ∂_A is strictly positive on B. Then, the extension $A \subset B$ satisfies the condition \mathbb{C}^* . In particular, B is a HFD.

That is, the conjecture of [11] is true whenever the conductor of B in A contains a prime element of B.

3. – Application to polynomial rings.

In this section, we change the notations. Let $A \subset B$ be an extension of integral domains (not necessarily an overring). We set R = A + XB[X] and study the factorization of elements in the overring B[X] when R is a HFD.

So, we assume that R = A + XB[X] is a HFD. Firstly, since the extension $R \in B[X]$ is almost-integral, we have:

LEMMA 3.1. – The boundary map ∂_R is positive on B[X]. In particular, we have $\mathcal{U}(A) = \mathcal{U}(B) \cap A$.

Now, we investigate the boundary of the atoms of B[X].

LEMMA 3.2. – Let f be an irreducible element of B[X], then either $\partial_R(f) = 0$ or $\partial_R(f) = 1$.

PROOF. – Let f be an irreducible element of B[X] such that f is in R then, as $\mathcal{U}(A) = \mathcal{U}(B) \cap A$, f is also irreducible in R and $\partial_R(f) = 1$. If f is associated to an element of R, there exists a unit u of B[X] such that $uf \in R$. Hence uf is irreducible in R and $\partial_R(f) = \partial_R(uf) = 1$. So, assume that f is an irreducible of B[X] which is not associated to any element of R. Then $fX \in R$ and fX is irreducible in R. Indeed, write fX = gh. We may assume that $h = Xh_1$ where $h_1 \in B[X]$. Then $f = gh_1$. As $h_1 \notin \mathcal{U}(B)$ (from the hypothesis), we have $g \in \mathcal{U}(B) \cap R$, that is, $g \in \mathcal{U}(R)$. Since fX is irreducible in R, one has $\partial_R(fX) = 1$. Whence $\partial_R(f) = 0$.

EXAMPLE 3.3. – Let $A \subset B$ be an extension such that R = A + XB[X] is a HFD. Set T = B[X] and $S = \{t \in T, \partial_R(T) = 0\}$. Then $R \subset S^{-1}T$ satisfies \mathcal{C}^* . In particular, $S^{-1}T$ is HFD.

Indeed, from Proposition 1.8, we have $S^{-1}T \neq L(X)$ where L is the quotient field of B. Moreover, $S^{-1}T$ is atomic and $\mathcal{U}(S^{-1}T) \cap R = \mathcal{U}(R)$. Thus we just have to prove that each irreducible element of $S^{-1}T$ is associated to an (irreducible) element of R which is given by Proposition 2.9. From Proposition 2.4, we immediately have the last assertion.

Of course, it follows that when there are no boundary zero element in the overring B[X], we obtain a positive answer to the following question:

QUESTION 3. – If R = A + XB[X] is a HFD, is B[X] a HFD? In fact, we have a bit more than this partial answer:

THEOREM 3.4. – Let $A \subset B$ an extension of integral domains such that the domain R = A + XB[X] is a HFD and the domain B[X] is atomic. Then the following two conditions are equivalent:

(i) The extension $A \in B$ satisfies the condition C^* .

(ii) Each atom f of B[X] verifies $\partial_R(f) = 1$.

In particular, if the previous conditions are fulfilled, then B[X] is a HFD.

PROOF. – Firstly, we assume that the extension $A \,\subset B$ satisfies \mathcal{C}^* . It is clear that the extension $A + XB[X] \subset B[X]$ satisfies also \mathcal{C}^* . Let f be an atom of B[X], by Lemma 3.2, $\partial_R(f) = 0$ or $\partial_R(f) = 1$. There exists a unit u of B such that uf is an (irreducible) element of R and $\partial_R(f) = \partial_R(uf) = 1$.

Conversely, we conclude by using Proposition 2.9 (where the prime element is X). The last assertion follows from Proposition 2.4.

Note that the previous theorem improves one implication of [15, Theorem

13], namely it was proved that R is an HFD if and only if B[X] is an HFD under the condition \mathcal{C}^* and another condition. Note that we can not improve the second implication in the same way, as attested by the next example [12, Example 2.8].

EXAMPLE 3.5. – We set $B = \mathbb{C}[t]$ (the ring of power series with complexes coefficients) and $A = \mathbb{R} + t\mathbb{R} + t^2 \mathbb{C}[t]$. This ring has been proved to be atomic by Anderson and Park [3, theorem 2.1], and A is not a HFD since $\varrho(A) = 2$ [3, Theorem 3.2]. Thus A + XB[X] is not a HFD, B[X] is a HFD (in fact it is a UFD) and the extension $A \subset B$ satisfies \mathbb{C}^* . Indeed, let f be a non zero element in B. We may write $f = t^r g$ where r is the order of f and g is a unit of B. Then $g^{-1}f = t^r$ is in A.

Acknowledgments. The authors wish to thank Jim Coykendall for numerous useful conversations related to this work.

REFERENCES

- D. F. ANDERSON S. T. CHAPMAN W. W. SMITH, Overrings of half-factorial domains, Canad. Math. Bull., 37 (1994), 437-442.
- [2] D. F. ANDERSON J. PARK, Locally half-factorial domains, Houston J. Math., 23 (1997), 617-630.
- [3] D. F. ANDERSON J. PARK, Factorization in subrings of K[X] and K[X], Lecture Notes in Pure and Applied Mathematics, vol. 189, Marcel Dekker, New York, 1997, 227-241.
- [4] L. CARLITZ, A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc., 11 (1960), 391-392.
- [5] S. T. CHAPMAN J. COYKENDALL, Half-factorial domains, a survey, in Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2001.
- [6] S. T. CHAPMAN S. GLAZ, One hundred problems in commutative ring theory, in Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2001.
- [7] S. T. CHAPMAN W. W. SMITH, Factorization in Dedekind domains with finite class group, Israel J. Math, 71 (1990), 65-95.
- [8] J. COYKENDALL, A characterization of polynomial rings with the half-factorial property, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 189 (1997), 291-294.
- [9] J. COYKENDALL, The half-factorial property in integral extensions, Comm. Algebra, 27 (7) (1999), 3153-3159.
- [10] J. COYKENDALL, Half-factorial domains in quadratic fields, J. Algebra, 235 (2001), 417-430.
- [11] J. COYKENDALL, On the integral closure of a half-factorial domain, J. Pure Appl. Algebra, 180 (2003), 25-34.

- [12] N. GONZALEZ, *Elasticity of A + XB*[X] domains, J. Pure Appl. Algebra, 138 (1999), 119-137.
- [13] N. GONZALEZ S. PELLERIN R. ROBERT, Elasticity of A + XI[X] domains where A is a UFD, J. Pure Appl. Algebra, 160 (2001), 183-194.
- [14] F. HALTER-KOCH, Factorization of algebraic integers, Ber. Math. Stat. Sektion im Forschungszentrum, 191 (1983), 1-24.
- [15] H. KIM, Examples of half-factorial domains, Canad. Math. Bull., 43 (2000), 362-367.
- [16] M. PICAVET-L'HERMITTE, Factorization in some orders with a PID as integral closure, Algebraic number theory and Diophantine analysis (Graz, 1998), 365-390, de Gruyter, Berlin, 2000.
- [17] A. ZAKS, Half factorial domains, Israel J. Math., 37 (1980), 281-302.
- Laboratoire de Mathématiques, Faculté des Sciences et Techniques de Saint-Jérôme Université d'Aix-Marseille 3, 13397 Marseille Cédex 20, France E-mail: nathalie.gonzalez@univ.u-3mrs.fr; sebastien.pellerin@univ.u-3mrs.fr

Pervenuta in Redazione

il 17 marzo 2003 e in forma rivista il 4 settembre 2003