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Boundary Map and Overrings of Half-factorial Domains.

NATHALIE GONZALEZ - SÉBASTIEN PELLERIN

Sunto. – In questo articolo studiamo la fattorizzazione di elementi nei sopranelli di un
dominio metà-fattoriale A in funzione del comportamento della funzione di bordo
di A. A tale riguardo, troviamo che gioca un ruolo centrale una condizione sulle
estensioni, che chiamiamo condizione Cx. Quindi studiamo quando questa condi-
zione C C x è verificata. Infine, applichiamo i risultati ottenuti al caso speciale de-
gli anelli di polinomi.

Summary. – We investigate factorization of elements in overrings of a half-factorial
domain A in relation with the behaviour of the boundary map of A. It turns out that
a condition, called Cx , on the extension plays a central role in this study. We finally
apply our results to the special case of A1XB[X] polynomial rings.

In 1960, Carlitz [4] proved that the class number of an algebraic number
ring is less or equal to 2 if and only if each nonzero nonunit x factors as a prod-
uct of irreducible elements so that the number of such irreducible factors only
depends on the element x. Then, we say that a domain R is atomic if each
nonzero nonunit of R factors as a product of irreducible elements, and that an
atomic domain is a half-factorial domain (or HFD) if each equality

p 1 R p r 4t 1 R t s

with the p i , t j’s irreducible in R , implies r4s.
The study of the properties of HFDs has been a fruitful topic these last

past years (see [5] for a survey). In particular, since HFDs generalize UFDs,
we aim to know which of the properties of UFDs are still true for HFDs. For
instance, a domain R may be a HFD whereas the polynomial ring R[X] is not –
more precisely, Coykendall proved in [8] that, if R[X] is a HFD, then R is inte-
grally closed whereas there are non-integrally closed HFDs (for instance
Z[k23]). Another question in the same vein was to know if a localization of a
HFD is a HFD, this question has been studied by D.F. Anderson, Chapman
and Smith in [1] and by D.F. Anderson and Park in [2] for the case of
Dedekind domains. More generally, we can ask if an overring of a HFD is a
HFD. Of course, it is false in general (for instance, if R is not one-dimensional,
then it admits non-discrete valuation overrings, whence non-atomic overrings)



NATHALIE GONZALEZ - SÉBASTIEN PELLERIN174

but we aim to characterize which overrings are HFDs. In particular, a natural
conjecture then turns out: if R is a HFD, is its integral closure R also a HFD?
In 1983, Halter-Koch gave a positive response for the case of orders in
quadratic algebraic number rings [14], which was generalized to the general
case of algebraic number rings by Coykendall in 1999 [9] who nevertheless
proved in [11] that this conjecture fails in general. Anyway, in [9], Coykendall
introduced a new tool, the boundary map of a HFD, which allows us better in-
vestigations of factorization properties in the overrings of a HFD.

The aim of this paper is, given a half-factorial domain A , to study the be-
haviour of the boundary map of A on its overrings and then, to derive condi-
tions for these overrings to be half-factorial.

If R is an integral domain, then U(R) will denote its group of units and R *
its set of nonzero elements. We will often use the word atom for an irreducible
element of an integral domain. As usual, Z will denote the ring of integers and
N the set of nonnegative integers. All rings are commutative with identity and
integral domains.

1. – Integral characters of an integral domain.

DEFINITION 1.1. – Let A be an integral domain with quotient field K. We
call an integral character on A , each function W : AKZ such that

W(xy) 4W(x)1W(y)

for all x , y�A. If W(A) c ]0(, we say that W is non trivial on A.
Then, for every x , y�A , set:

Wg x

y
h4W(x)2W(y) .

That is, we extend the integral character W to K , and we then say that W is an
integral character on K. If W(K) c ]0(, we say that W is non trivial on K.

Note that W(K) is a subgroup of Z. Thus we can always assume that W(K) 4

Z. From now on, we will always make this assumption. The following example
will be the main interest of this paper.

EXAMPLE 1.2. – Let us consider an atomic domain A with quotient field K
and a pseudo-length function l : AKN on A that is [13]:

(i) l (xy) 4 l (x)1 l (y) for all x , y in A *
(ii) l (x) D0 for each nonprime irreducible element x of A.
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We can then extend this function to K * by setting:

¯A , l g a

b
h4 l (a)2 l (b)

for each a , b�A *. The function ¯A , l is called the boundary map related to A
and l .

In the particular case of a HFD A , there exists a (pseudo-)length function
l on A such that l (x) 41 if and only if x is an atom [17] (in particular, l (x) 40
if and only if x is a unit of A). Then the associated boundary map is defined by

¯A (x) 4r2s where x4
p 1 R p r

t 1 R t s

with the p i , t j’s irreducible in A [9].

If A is an integral domain with quotient field K and W is an integral charac-
ter on K , then we will often say that W is an integral character on A.

DEFINITION 1.3. – Let A be an integral domain with quotient field K and let
W be a non trivial integral character on K. Then W is said to be positive on A if
W(x) F0 for all x�A. If moreover, W(x) D0 for all nonunit x�A , then W is said
to be strictly positive on A.

Respectively, we say that W is negative on A if W(x) G0 for all x�A , and
that W is strictly negative on A if moreover W(x) E0 for all nonunit
x�A.

EXAMPLE 1.4. – Let us consider an atomic domain A with quotient field K
and a pseudo-length function l on A. Then the boundary map associated to l is
positive on A.

EXAMPLE 1.5. – Let us consider a (rank-one) discrete valuation ring V with
quotient field K and let us denote v the valuation. Then v is a non-trivial inte-
gral character on K * which is strictly positive on V.

We first give a consequence of the positiveness of an integral character.

LEMMA 1.6. – If W is positive on A , then W(u) 40 for each unit u of A.

PROOF. – We have W(u)1W(u 21 ) 4W(1) 40 and the result follows as W is
positive. r

Note that it may occur that W(u) 40 for each unit u of A but W takes both
positive and negative values on A. Indeed, consider the integral character W
defined on K[X , Y] by W4vX 2vY , where vX and vY respectively denote the X-
adic and the Y-adic valuations on K[X , Y]. Then W(u) 40 for each unit u of
K[X , Y] nevertheless W(X) 41 and W(Y) 421.
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PROPOSITION 1.7. – If A is not a field and W is an integral character
on A , then the following are equivalent:

(i) W is either strictly positive or strictly negative on A
(ii) W(x) c0 for each nonunit x�A.

PROOF. – The fact that (i) implies (ii) is clear. Conversely, assume that
W(x) c0 for each nonunit x�A , it suffices to show that W is either positive or
negative. Assume, by way of contradiction, that there exist nonunits x , y in A
with W(x) 4mD0 and W(y) 42nE0, then we have:

W(x n y m ) 40 .

It follows that the element x n y m is invertible in A , whence x and y are both in-
vertible in A. This contradicts the choice of x and y. r

The next proposition gives an interesting example of a strictly positive in-
tegral character which will be useful in the remainder of this paper.

PROPOSITION 1.8. – Let W be a non-trivial integral character on A and con-
sider the multiplicatively closed set S4 ]x�A ; W(x) 40(.

(i) If W is positive on A , then S 21 AcK and W is strictly positive on
S 21 A.

(ii) If W takes both positive and negative values, then S 21 A4K.

PROOF. – (i) Let x be a nonzero element of S 21 A and write x4
a

s
with

a�A * and s�S. Then W(x) 4W(a)2W(s) 4W(a) F0 since W is positive on A.
Therefore W is positive on S 21 A. Moreover, if x is a nonunit, then a�S , that is,
W(a) D0. Thus W(x) D0, that is, W is strictly positive on S 21 A. Lastly, assume
that S 21 A4K , it follows from Lemma 1.6 that W is trivial on S 21 A thus on A ,
we reach a contradiction.

(ii) Let us consider an element x�A such that W(x) c0, say W(x) 4mD0.
Then there exists y�A with W(y) 42nE0. We have W(x n y m ) 40 that is
x n y m is invertible in S 21 A , hence so is x. Since each nonzero element of A is
invertible in S 21 A , S 21 A is a field and S 21 A4K. r

Now, we investigate some consequences of the notion of strictly positive in-
tegral character.

PROPOSITION 1.9. – If W is strictly positive integral character on an inte-
gral domain A , then A is a bounded factorization domain (BFD). In particu-
lar, A is an atomic domain.
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PROOF. – Let us consider an ascending chain Ax0 %Ax1 %Ax2 %R of princi-
pal ideals of A. Then, for each nF0, we can write xn11 4xn yn where yn is a
nonunit of A. Since W is strictly positive on A , we thus have W(xn11 ) EW(xn ).
Hence the sequence (W(xn ))n�N strictly decreases in N and it thus follows that
A satisfies the ascending chain condition on principal ideals. Therefore A is
atomic.

Now, consider a nonzero nonunit x of A and a factorization x4j 1 R j n as a
product of irreducible factors. Then

W(x) 4W(j 1 )1R1W(j n ) .

Since W is strictly positive on A , the W(j i )’s are positive integers, thus n is
bounded by W(x). r

REMARK 1.10. – If W is a strictly positive integral character on an integral
domain A and if W(x) 41, then x is an atom. Indeed, write x4ab , then W(a)1

W(b) 4W(x) 41, whence W(a) 40 or W(b) 40 that is, a or b is a unit of A.
Note that the converse fails. Indeed, consider the X-adic valuation vX on

the integral domain K[X 2 , X 3 ], then X 2 is an atom but vX (X 2 ) 42.
In fact, if A is an atomic domain then, A is half-factorial if and only if there

is a positive integral character on A which takes the value 1 exactly on the
atoms (see [17]).

PROPOSITION 1.11. – Let us consider two domains A%B with the same quo-
tient field K and an integral character W on K. If W is strictly positive on A
and positive on B , then U(A) 4 U(B)OA.

PROOF. – It is clear that the units of A are units of B. Conversely, if u is a
unit of B which belongs to A then, from Lemma 1.6, W(u) 40. Since W is strict-
ly positive on A , it follows that u is a unit of A. r

Note that it is not sufficent to assume W strictly positive on B. For instance,
the p-adic valuation is strictly positive on Z(p) but not on Z.

We now focuse on the case of boundary maps. Let A be a half-factorial do-
main with quotient field K and B be an overring of A. Recall that the bound-
ary map of A is the function ¯A : K *KZ defined by ¯A (u) 40 for each u�
U(A) and

¯Ag p 1 R p r

t 1 R t s
h4r2s

for every irreducible elements p i , t j of A. Since the boundary map ¯A is clear-
ly strictly positive on A , we obtain:
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COROLLARY 1.12. – If ¯A is positive on B , then:

(i) For each unit u of B , ¯A (u) 40.
(ii) U(A) 4 U(B)OA.

Then, from the previous corollary, Proposition 1.9 and Remark 1.10, we
derive:

COROLLARY 1.13. – If ¯A is strictly positive on B then:

(i) ¯A is positive on B.
(ii) For each unit u of B , ¯A (u) 40.
(iii) B is a BFD (in particular B is atomic).
(iv) U(A) 4 U(B)OA.
(v) Each atom of A is an atom of B.

This result allows us to give an example of an atomic overring which admits
a nonunit element of boundary zero (giving a negative answer to the last ques-
tion of [11] or [6, Problem 27]): it is sufficient to find an irreducible element of
A which does not remain irreducible in B.

EXAMPLE 1.14. – Set A4Z1XZ[t][X] and B4Z[t , X]. Then A is a HFD
[12, Proposition 1.8] and B is a factorial overring of A. The element f4X(t1X)

is irreducible in A but not in B and t1X4
[X(t1X) ]

X
is a nonzero nonunit of B

with boundary 0.
In this example, the element with boundary 0 is prime (since the top ring is

a UFD). We can give another example with a boundary 0 element which is ir-
reducible but not prime in B.

EXAMPLE 1.15. – Set A4Z1XZ[t][X] and B4Z[t 2 , t 3 ]1XZ[t][X]. Then
A is a HFD and B is an overring of A which is not an HFD (since Z[t 2 , t 3 ] is
not an HFD). The element f4Xt 2 is irreducible in A but not in B and t 2 4
[Xt 2 ]

X
is a nonzero nonunit of B with boundary 0 which is not prime in B.

It is easy to see that, in Corollary 1.13, (v) implies (iv) (but the converse
fails). Moreover, (v) is an improvement of [9, Corollary 2.6]. Now, we
ask:

QUESTION 1. – If B satisfies conditions (i), (iii) and (v), is ¯A strictly positive
on B?

In the following remark, we give a positive answer to the previous question
in the case when the conductor [A : B] 4 ]x�B , xB’A( contains a prime ele-
ment of B.
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REMARK 1.16. – Let us consider A an HFD, B an overring. We suppose that
there exists a prime p of B such that pB’A (that is, p� [A : B]). In this case,
¯A is strictly positive on B if and only if each irreducible element of A remains
irreducible in B and U(B)OA4 U(A).

Indeed, if the condition on units is satisfied p is an irreducible element of
A. Let b�B such that ¯A (b) 40 then pb�A and ¯A (pb) 4¯A (p) 41; thus
pb4t is an irreducible element of A. As each irreducible of A is irreducible in
B , we conclude that b is a unit of B. The converse follows from corollary
1.13.

2. – Overrings of half-factorial domains.

Troughout this section, A is a half-factorial domain (HFD) with quotient
field K and B is a proper overring of A , that is, A%B%K.

The purpose of the following is to investigate factorization in the overring
B of A in relation with the behaviour of the boundary map ¯A on B. The key
fact of this section is that the boundary map is strictly positive on A.

PROPOSITION 2.1. – Assume that the atoms of A are atoms of B and that B
is a HFD. Then ¯A is strictly positive on B.

PROOF. – Let x be a nonzero element of B of boundary 0 and write

x4
p 1 R p r

t 1 R t r

where the p i , t j’s are irreducible in A , then we obtain:

t 1 Rt r x4p 1 R p r .

Since each atom of A is an atom of B and since B is a HFD, it follows that x is a
unit of B. r

Now, we recall a condition on extensions which is often used in factoriza-
tion problems (see for instance [10], [12], [14], [15] and [16]).

DEFINITION 2.2. – We say that an extension of integral domains R’T satis-
fies the condition Cx if for each element t�T , there exists a unit u of T such
that ut�R.

REMARK 2.3. – Let A be an atomic domain and B be an overring of A such
that the extension A%B verifies Cx and such that each atom of A is an atom of
B. Thus U(B)OA4 U(A), B is also atomic and the atoms of B are of the form
up where p is an atom of A.

Indeed, let x be a nonzero nonunit of B. Then, there exists a unit u of B
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such that ux�A. Since A is atomic and as ux is a nonunit of A , we can write
ux4p 1 R p n where the p i’s are irreducible in A. That is x4u 21 p 1 R p n ,
where u 21 is a unit of B and p 1 , R , p n are atoms of A , whence of B. Therefore
B is atomic.

Moreover, since the atoms of A are atoms of B , a product up (where u is a
unit of B and p is an atom of A) is an atom of B. Conversely, let t be an atom of
B , then there exists a unit u of B with ut�A. Write ut4xy with x , y in A. As t
is an atom of B , x or y is a unit of B , say x. Then x� U(B)OA , that is x�
U(A). Therefore ut is an atom of A.

PROPOSITION 2.4. – Assume that the extension A%B satisfies Cx and that
¯A (u) 40 for each unit u of B , then ¯A is strictly positive on B and B is a
HFD.

PROOF. – Let b be a nonzero nonunit of B. Then there exists a unit u of B
such that ub is a nonzero nonunit of R , thus ¯A (ub) D0, therefore ¯A (b) 4

¯A (u)1¯A (b) D0.
It follows from Corollary 1.13 and the previous remark that B is atomic.

Write x1 R xm 4y1 R yn with the xi , yj’s irreducible in B. For each i , there is a
unit ui of B such that x 8i 4ui xi is an atom of A , and for each j , there is a unit vj

of B such that y 8j 4vj yj is an atom of A. Set u4u1 R um and v4v1 R vn , then
vx 81 R x 8m 4uy 81 R y 8n , thus:

¯A (v)1¯A (x 81 )1R1¯A (x 8m ) 4¯A (u)1¯A (y 81 )1R1¯A (y 8n )

Whence m4n. r

EXAMPLE 2.5. – [1] Let A be a Dedekind domain with class group Z6 and
such that the set of nonzero ideal classes which contain prime ideal is SA 4

]1, 2 , 3(. Then A is HFD [7].
Let ] be a prime ideal of A which lies in class 3. Then there exists an ele-

ment t�] such that t is not in any prime of classes 1 and 2. Set T4

]1, t , t 2 , R( and B4T 21 D4D[1 /t]. The extension A%B satisfies Cx but ¯A

is not strictly positive on B. Indeed, there exist units in B with nonzero bound-
ary. For example, as ] is a prime ideal which lies in class 3 , there exists an ir-
reducible element a�A such that Aa4]2.

Here is an example of a half-factorial polynomial overring of a HFD such
that the extension satisfies the condition Cx.

EXAMPLE 2.6. – Let A4Z1XZ[t , X] and B4Z[t 2 , t 3 ]1XZ[t , X]. We
have seen, in Example 1, that there exist elements of B with boundary zero.
Set S4 ]b�B , ¯A (b) 40(, then:

A%B%Z[t , X] %S 21 B
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and S 21 BcQ(t , X). Indeed, let us suppose that 1

X
4

b

s
with b�B and s�S ,

that is ¯A (s) 40, thus ¯A (bX) 40. Since bX�A , bX is a unit of A. We obtain a
contradiction and then conclude, by Proposition 1.8, that, for each b�B ,
¯A (b) F0.

Each nonzero nonunit u of S 21 B has a nonzero boundary. From Corollary
1.13, S 21 B is atomic, U(S 21 B)OA4 U(A) and each irreducible element in A
remains irreducible in S 21 B. We now prove that each irreducible element of
S 21 B is associated to an irreducible element of A , that is, the extension A%
S 21 B satisfies Cx.

Let g be an irreducible element of S 21 B , write g4
a

b
with a�B and b�

S% U(S 21 B). So, up to a unit of S 21 B , we can assume that g�B. If g�A then
g is irreducible in A (by the condition on units), thus assume that g�A and
that g is not associated to any element of A. Consider the nonzero nonunit ele-
ment gX of A and consider the following factorization gX4 f1 R fn , where
f1 , R , fn are atoms of A. Assume that n41 then gX4 f1 . It follows that
¯A (g) 40 (indeed, ¯A (g)1¯A (X) 4¯A (f1 )) which contradicts the fact that g is
irreducible in S 21 B. Thus nF2. One of the fi’s is of order 1 , say f1 4Xh , where
h�Z[X , t] %S 21 B. Thus we can write g4h( f2 R fn ). As g is irreducible in
S 21 B and ( f2 R fn ) is a nonunit of A , we conclude that h is a unit of S 21 B.
Consequently, g is associated to an element of A which contradicts our hypoth-
esis. From Proposition 2.4, we then conclude that S 21 B is HFD.

Recall that ¯A (a) F0 whenever a�K is almost integral over A [9, Lemma
2.3]. We first summarize some properties in this case.

PROPOSITION 2.7. – If the extension A%B is almost-integral, then:

(i) For each nonzero a in B , ¯A (a) F0.
(ii) For each unit u of B , ¯A (u) 40.
(iii) U(A) 4 U(B)OA.

Note that Coykendall gave, in [11], an example of an integral extension A%
B such that there exist nonunit elements with boundary 0 , moreover in this
case B is exactly the integral closure of the half-factorial domain A. It leads to
the following question:

QUESTION 2. – Find an example of an integral extension A%B such that B is
atomic and there exist nonunit elements with boundary 0.

It seems that all known examples of integral extensions A%B with A HFD
and B atomic satisfy the condition Cx. This remark stresses the interest of the
following result which can easily be deduced from Proposition 2.4.

THEOREM 2.8. – Assume that the extension A%B is almost-integral and
satisfies Cx , then:
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(i) ¯A is strictly positive on B.
(ii) Each atom of A is an atom of B.
(iii) B is a HFD.

Now, we give a sufficient condition for an extension to satisfy Cx.

PROPOSITION 2.9. – Assume that there exists a prime element p of B such
that pB’A and that U(A) 4 U(B)OA. Then, for each atom x of B with
¯A (x) F1, there exists a unit u of B such that ux�A. In particular, if
¯A (x) 41, then ux is an atom of A for some unit u of B.

PROOF. – Since pB’A and U(B)OA4 U(A), p is also an atom of A , thus
¯A (p) 41. Let x be an atom of B , set ¯A (x) 4kF1, px is in A and ¯A (px) 4

k11 F2. Thus we can write px4t 1 R t k11 where the t i’s are irreducible in
A. Since p is a prime element of B , one of the t i’s, say t 1 , is in pB. Hence, there
exists y in B such that t 1 4py and x4yt 2 R t k11 . Since x is an atom of B , ei-
ther y or one of the t i’s for some iF2 is a unit of B , whence a unit of A as
U(B)OA4 U(A). Since the t i’s are irreducible in A , they are nonunits, thus
u4y 21 is a unit of B such that ux4t 2 R t k11 �A.

In the case where ¯A (x) 41, we then obtain an element ux of A with
¯A (ux) 4¯A (u)1¯A (x) 41, that is, ux is an atom of A. r

Then, from Proposition 2.4, we derive the following corollary which gives a
partial positive answer to the conjecture stated in [11].

COROLLARY 2.10. – Assume that there exists a prime element p of B such
that pB’A and that ¯A is strictly positive on B. Then, the extension A%B
satisfies the condition Cx. In particular, B is a HFD.

That is, the conjecture of [11] is true whenever the conductor of B in A con-
tains a prime element of B.

3. – Application to polynomial rings.

In this section, we change the notations. Let A%B be an extension of inte-
gral domains (not necessarily an overring). We set R4A1XB[X] and study
the factorization of elements in the overring B[X] when R is a HFD.

So, we assume that R4A1XB[X] is a HFD. Firstly, since the extension
R%B[X] is almost-integral, we have:

LEMMA 3.1. – The boundary map ¯R is positive on B[X]. In particular, we
have U(A) 4 U(B)OA.

Now, we investigate the boundary of the atoms of B[X].
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LEMMA 3.2. – Let f be an irreducible element of B[X], then either
¯R ( f ) 40 or ¯R ( f ) 41.

PROOF. – Let f be an irreducible element of B[X] such that f is in R then, as
U(A) 4 U(B)OA , f is also irreducible in R and ¯R ( f ) 41. If f is associated to
an element of R , there exists a unit u of B[X] such that uf�R. Hence uf is irre-
ducible in R and ¯R ( f ) 4¯R (uf ) 41. So, assume that f is an irreducible of
B[X] which is not associated to any element of R. Then fX�R and fX is irre-
ducible in R. Indeed, write fX4gh. We may assume that h4Xh1 where h1 �
B[X]. Then f4gh1. As h1 � U(B) (from the hypothesis), we have g� U(B)OR ,
that is, g� U(R). Since fX is irreducible in R , one has ¯R ( fX) 41. Whence
¯R ( f ) 40. r

EXAMPLE 3.3. – Let A%B be an extension such that R4A1XB[X] is a
HFD. Set T4B[X] and S4 ]t�T , ¯R (T) 40(. Then R%S 21 T satisfies Cx. In
particular, S 21 T is HFD.

Indeed, from Proposition 1.8, we have S 21 TcL(X) where L is the quo-
tient field of B. Moreover, S 21 T is atomic and U(S 21 T)OR4 U(R). Thus we
just have to prove that each irreducible element of S 21 T is associated to an
(irreducible) element of R which is given by Proposition 2.9. From Proposition
2.4, we immediately have the last assertion.

Of course, it follows that when there are no boundary zero element in the
overring B[X], we obtain a positive answer to the following question:

QUESTION 3. – If R4A1XB[X] is a HFD, is B[X] a HFD?
In fact, we have a bit more than this partial answer:

THEOREM 3.4. – Let A%B an extension of integral domains such that the
domain R4A1XB[X] is a HFD and the domain B[X] is atomic. Then the
following two conditions are equivalent:

(i) The extension A%B satisfies the condition Cx.
(ii) Each atom f of B[X] verifies ¯R ( f ) 41.

In particular, if the previous conditions are fulfilled, then B[X] is a
HFD.

PROOF. – Firstly, we assume that the extension A%B satisfies Cx. It is clear
that the extension A1XB[X] %B[X] satisfies also Cx. Let f be an atom of B[X],
by Lemma 3.2, ¯R ( f ) 40 or ¯R ( f ) 41. There exists a unit u of B such that uf is
an (irreducible) element of R and ¯R ( f ) 4¯R (uf ) 41.

Conversely, we conclude by using Proposition 2.9 (where the prime ele-
ment is X). The last assertion follows from Proposition 2.4. r

Note that the previous theorem improves one implication of [15, Theorem
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13], namely it was proved that R is an HFD if and only if B[X] is an HFD un-
der the condition Cx and another condition. Note that we can not improve the
second implication in the same way, as attested by the next example [12,
Example 2.8].

EXAMPLE 3.5. – We set B4Cetf (the ring of power series with complexes
coefficients) and A4R1 tR1 t 2 Cetf. This ring has been proved to be atomic
by Anderson and Park [3, theorem 2.1], and A is not a HFD since r(A) 42 [3,
Theorem 3.2]. Thus A1XB[X] is not a HFD, B[X] is a HFD (in fact it is a
UFD) and the extension A%B satisfies Cx. Indeed, let f be a non zero element
in B. We may write f4 t r g where r is the order of f and g is a unit of B. Then
g 21 f4 t r is in A.
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