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Anisotropic Mesh Adaption: Application
to Computational Fluid Dynamics.

SIMONA PEROTTO (*)

Sunto. – In questa comunicazione vengono presentate tecniche di adattazione di gri-
glia goal-oriented di tipo anisotropo. Punto di partenza è stata la derivazione di
opportune stime di tipo anisotropo per l’errore d’interpolazione, per elementi finiti
lineari a pezzi, su griglie triangolari in 2D. Si sono quindi utilizzate tali stime
d’interpolazione per generalizzare al caso anisotropo l’analisi a posteriori proposta
da R. Rannacher e da R. Becker, basata su un approccio di tipo duale. In questo la-
voro tale analisi a posteriori viene particolarizzata al caso di problemi ellittici, di
trasporto-diffusione-reazione e al problema di Stokes. Vengono da ultimo forniti al-
cuni risultati numerici al fine di validare l’affidabilità dell’approccio proposto.

Summary. – In this communication we focus on goal-oriented anisotropic adaption
techniques. Starting point has been the derivation of suitable anisotropic interpo-
lation error estimates for piecewise linear finite elements, on triangular grids in
2D. Then we have merged these interpolation estimates with the dual-based a poste-
riori error analysis proposed by R. Rannacher and R. Becker. As examples of this
general anisotropic a posteriori analysis, elliptic, advection-diffusion-reaction
and the Stokes problems are analyzed. Finally, numerical test cases are provided to
assess the soundness of the proposed approach.

1. – Motivations.

In Computational Fluid Dynamics (CFD), as well as in many other engineer-
ing areas, mesh adaption is widely used. The leading idea is to reduce the compu-
tational cost associated with the approximation of the phenomenon at hand by
distributing the mesh triangles according to the solution behaviour. We mainly
distinguish between heuristic and theoretically based adaption techniques. In the
first case geometric information, such as estimates of the gradient or of the Hes-
sian of the numerical solution, are essentially exploited. For instance, this is the
case of the well-known Zienkiewicz-Zhu error estimator [39, 40, 41]. On the other
hand, more theoretically sound approaches move from suitable a priori and a
posteriori estimates of the discretization error. In this framework the reference
literature is extensive (see, e.g., [1, 5, 6, 7, 16, 25, 34, 38].

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.
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In the beginning, both heuristic and theoretical strategies have been used
essentially to deal with isotropic computational grids. More recently, the in-
terest has moved towards anisotropic mesh adaption as more efficient in tackl-
ing problems characterized by directional features, that is great variations
along certain directions with less significant changes along other ones (e.g.,
shocks, boundary and internal layers, singularities). An example of anisotropic
behaviour is provided by the function w(x1 , x2 ) 4 [20.5 log ( (x1 20.5)2 1 (x2 2

0.5)2 ) ]1/4 in Fig. 1, the computational domain V being the disk of radius
r40.6, centered at (0.5, 0.5). The function w�H 1 (V)0H 2 (V) is affected by an
internal singularity at (0.5, 0.5).

The leading idea of an anisotropic approach reads as follows: reduce the
number of degrees of freedom involved in the approximation of the problem at
hand for a fixed solution accuracy, or vice versa, given a constraint on the
number of elements, find the mesh maximizing the accuracy of the numerical
solution, by better orienting the mesh elements according to some suitable
features of the solution.

For the function w above, we have chosen, according to the second ap-
proach, to compare an isotropic with an anisotropic mesh both approximatively
of 5700 elements (see Fig. 1, bottom line). By comparing the L 2-norms of the

Fig. 1. – Plots (top line) of the function w on an isotropic mesh (bottom-left) and on an
anisotropic one (bottom-right) driven by an L 2-error a priori estimator.



ANISOTROPIC MESH ADAPTION: APPLICATION ETC. 147

discretization error Veh V , we get Veh V

iso 49.7 e204 and Veh V

aniso 43.6 e204,
i.e., a reduction of nearly one-third on the anisotropic grid. The gain is greater
(even one order!) if we consider the mean-value of the L 2-norms with respect
to the number of elements, as (mean Veh V

iso ) 41.2 e205 and (mean Veh V

aniso ) 4

1.2 e206. Moreover, it is evident that in the anisotropic case the mesh is char-
acterized by concentric zones of stretched triangles: as expected, the triangles
align their longest edges perpendicularly to the direction of maximal varia-
tion, i.e., the radial one.

The results above show an improvement in the approximation quality on
the anisotropic grid with respect to the isotropic case. However, the main
drawback characterizing an anisotropic approach is the higher computational
cost justified by the more complex analysis required to fully describe the ele-
ment dimensions and orientation. Thus, it turns out to be convenient an
anisotropic approach instead of the more traditional isotropic one when the
decrease of the computational cost due to the reduction of the degrees of free-
dom exceeds the increase of the computational complexity associated with the
anisotropic description of the mesh triangles.

Anisotropic analyses of different type are available in the most recent litera-
ture (see, e.g., [3, 12, 13, 23, 26, 30, 35, 37]). Concerning our approach, we have
moved from the derivation of anisotropic interpolation error estimates for
piecewise linear finite elements. This has been obtained by exploiting the
spectral properties of the standard affine mapping between the reference and
the general mesh element [17]. Then we have merged these estimates with the
dual-based a posteriori error analysis proposed by R. Rannacher and R. Beck-
er [18]. This approach turns out to be suitable for a goal-oriented adaptivity as
it allows us to control energy norms as well as suitable functionals of the dis-
cretization error.

The outline of the paper is the following. In Sect. 2, after introducing some
notations for the functional environment, we provide the anisotropic framework
for finite elements. Sect. 3 is devoted to the anisotropic interpolation error esti-
mates. These represent the main tool used in the a posteriori error analysis ad-
dressed in Sect. 4. First, this analysis is discussed in the case of a general linear
differential operator and then it is detailed for the elliptic, the advection-diffu-
sion-reaction and the Stokes problems. Finally, in Sect. 5 the effectiveness of the
proposed anisotropic analysis is assessed on some numerical test cases.

2. – Abstract frameworks.

2.1. Functional setting.

In what follows a standard notation is adopted for the Sobolev spaces of
functions with Lebesgue-measurable derivatives, and for their norms [31]. Let
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W k , p (V) 4 ]v�L p (V) : D a v�L p (V), (a s.t. NaNGk( be the Sobolev space
of functions for which the p-th power of their distributional derivatives of or-
der up to kF0 is Lebesgue-measurable, with 1 GpEQ , V%Rd and d4

1, 2 , 3 . In particular, for p42, we let W k , 2 (V) 4H k (V) and when k40, we
have the space L 2 (V) of square-integrable functions. Moreover, H0

1 (V) de-
notes the space of H 1-functions identically equal to zero on the boundary ¯V
of the domain, while H 1

G D
(V) stands for the set of H 1-functions equal to zero

only on the portion G D of the boundary domain. We also recall that L Q (V) is
the space of bounded functions a.e., while W 1, Q (V) %L Q (V) is such that also
the first derivatives are bounded a.e. Finally, C 0 (V) denotes the space of con-
tinuous functions on V.

The norms and seminorms defined on a generic functional space V will be
denoted below with V QVV and N QNV , respectively.

2.2. An anisotropic setting for finite elements.

Let V%R2 be a polygonal domain and, for any 0 EhG1, let ]Rh (h be a
family of conforming triangulations of V into triangles K of diameter
hK Gh .

Following the idea proposed in [17], the additional information for the geo-
metrical description of the mesh elements is derived from the standard affine
transformation TK : K× KK , with K4MK (K×)1bK , MK �R232 and bK �R2 ,
from the reference triangle K× into K , where K× can be, e.g., the right triangle
(0, 0), (1, 0), (0, 1) or the equilateral one (21/2, 0), (1/2, 0), (0, k3/2) (see Fig. 2).
Let MK 4BK ZK be the polar decomposition of the invertible matrix MK , with
BK and ZK a symmetric positive definite and an orthogonal matrix, respec-
tively. Then the matrix BK is factorized in terms of its eigenvalues l i , K (with
l 1, K Fl 2, K) and eigenvectors ri , K , for i41, 2 , as BK 4RK

T L K RK , where
L K 4diag (l 1, K , l 2, K ) and RK 4 [r1, K , r2, K ]T . As shown in Fig. 2, the eigen-
vectors ri , K provide the directions of the semi-axes of the ellipse circum-

Fig. 2. – The standard affine transformation TK from the reference triangle K× into the
general one K .
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scribed to the element K , while the eigenvalues l i , K measure the length of
such semi-axes. It turns out that the shape and orientation of each triangle K
are identified by the quantities ri , K and l i , K . Finally, the deformation of K
with respect to the generic element K× is measured by the so-called stretching
factor sK 4l 1, K /l 2, K (F1), being sK× 41.

3. – Anisotropic interpolation error estimates.

First step towards the anisotropic a posteriori analysis provided in Sect. 4
has been the derivation of suitable interpolation error estimates [17, 18, 32].

We have derived anisotropic estimates for both the Lagrange and the
Clément-like interpolants [10, 11] due to the different regularity characteriz-
ing the function to be interpolated. Denoting by Wh the finite element space of
continuous affine functions, let P h : C 0 (V) KWh and Ih : L 2 (V) KWh be the
Lagrange and Clément linear interpolants, respectively and let their restric-
tions to each element K�Rh be P K and IK . We can state the results
below.

PROPOSITION 3.1. – Let v�H 2 (K), for any K�Rh . Then there exist two con-
stants C1 4C1 (K×) and C2 4C2 (K×) such that

Vv2P K (v)VL 2 (K) GC1k !
i , j41

2

l 2
i , K l 2

j , K LK
i , j (v)l1/2

,(1)

Nv2P K (v)NH 1 (K) GC2 l 2, K
21 k !

i , j41

2

l 2
i , K l 2

j , K LK
i , j (v)l1/2

,

where

LK
i , j (v) 4s

K

(rT
i , K HK (v) rj , K )2 dx , with i , j41, 2 ,(2)

HK (v) is the Hessian matrix associated with vNK , and x4 (x1 , x2 )T �K .

PROPOSITION 3.2. – Let v�H 1 (V). Then there exist two constants C3 4

C3 (M , C×) and C4 4C4 (M , C×) such that, for any K�Rh ,

Vv2IK (v)VL 2 (K) GC3k!
i41

2

l 2
i , K(ri , K

T GK (v) ri , K)l1/2

,(3)

Nv2IK (v)NH 1 (K) GC4 l 2, K
21 k!

i41

2

l 2
i , K(ri , K

T GK (v) ri , K)l1/2

,

where GK (v) �R232 is the symmetric positive semi-definite matrix with en-
tries (GK (v) )i , j 4 s

D K

¯v/¯xi ¯v/¯xj dx , D K is the patch of all the elements shar-
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ing a vertex with K , and M�N and C× D0 are the constants defined through
the relations

card (D K ) GM and diam (D K× ) G C× ,(4)

with D K× 4T 21
K (D K ).

REMARK 3.1. – Requirements (4) demand the cardinality of any patch D K

as well as the diameter of the reference patch D K× to be uniformly bounded in-
dependently of the geometry of the mesh. In particular, the latter inequality
rules out some too distorted reference patches (see Fig. 2.1 in [32]). Moreover,
notice that the definition provided in Proposition 3.2 for the patch D K holds
if Ih is the Clèment interpolant. It can be suitably modified when another
Clèment-like interpolant is considered [36].

The anisotropic estimates in Propositions 3.1 and 3.2 are certainly more
complex than the corresponding isotropic ones. For instance, let us consider
the isotropic results corresponding to (1) and (3), given by

(5) Vv2P K (v)VL 2 (K) GC1* hK
2 NvNH 2 (K) and Vv2IK (v)VL 2 (K) GC3* hK NvNH 1 (D K ) ,

respectively, with C1*4C *1 (K×) and C3* depends essentially on the regularity of
the mesh. From a dimensional viewpoint, we have both in (1) and in (5)1 the
square of the spacing parameters (i.e., hK in the isotropic case, l 1, K , l 2, K in
the anisotropic one) as well as in (3) and (5)2 the spacing parameters are in-
volved. On the other hand, the H 2- and the H 1-seminorm of v in (5) are re-
placed in (1) and (3) by suitable sums of the LK

i , j (v) and of the (ri , K
T GK (v) ri , K )

quantities. We claim that the information provided by the seminorms NvNH 2 (K)

and NvNH 1 (D K ) have been split along the directions r1, K and r2, K via the
anisotropic quantities LK

i , j (v) and (ri , K
T GK (v) ri , K ), representing the squared

L 2-norms of the directional second- and first-order derivatives of v , respec-
tively. As anticipated in Sect. 1, we are replacing the «lumped» isotropic re-
sults with more «distributed» ones. The pay-off of such a framework is that we
are able to finely tune the adapted meshes in terms of shape and orientation of
the elements.

Finally, in view of the a posteriori analysis of Sect. 4, we also need
anisotropic estimates for the L 2-norm of the interpolation error on the edges e
of the triangulation Rh , i.e.,

Vv2P K (v)VL 2 (e)GC5u l 1, K
2 1l 2, K

2

l 2, K
3

v1/2y !
i , j41

2

l 2
i , K l 2

j , K L i , j
K (v)z

1/2
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and

Vv2IK (v)VL 2 (e) GC6
1

l 2, K
1/2

k!
i41

2

l 2
i , K(rT

i , K GK (v) ri , K)l1/2

,

with C5 4C5 (K×) and C6 4C6 (M , C×), respectively.

4. – Anisotropic a posteriori error analysis: the general procedure.

In this section we show how to control suitable linear continuous func-
tionals J(Q) of the discretization error eh associated with a finite element ap-
proximation of the problem at hand. Our starting point has been the a posteri-
ori dual-based approach developed in [7]. Examples of functionals J(Q) in CFD
are the lift and drag around bodies in external flows or mean and local values,
while in structural mechanics the torsion moment, the pointwise stresses or
the surface tension are typical goal quantities. The leading idea of our a poste-
riori analysis is to combine the advantages characterizing an error functional
control with the richness of information provided by an anisotropic frame-
work.

Let us sketch the general procedure to derive an anisotropic a posteriori
error estimator for a differential linear problem of the form

L(u) 4 f in V ,(6)

completed with suitable boundary conditions. In what follows such a proce-
dure will be particularized to standard model problems in CFD. We refer to
[18, 19, 20] for a detailed description.

Let us move from the weak form associated with (6): find u�V such
that

a(u , v) 4F(v) for any v�V ,(7)

where V is a suitable functional space accounting for the boundary conditions
associated with (6), and a(Q , Q) and F(Q) are the bilinear and linear forms corre-
sponding to the differential operator L and the source term f , respectively.
The discrete formulation of (7) is obtained by projecting onto the space Vh %V
of continuous piecewise linear finite elements which yields: find uh �Vh such
that

a(uh , vh ) 4F(vh ) for any vh �Vh .(8)

As stated in Sects. 4.2 and 4.3, the forms a(Q , Q) and F(Q) have to be suitably sta-
bilized to deal with strong advective/reactive terms, or with the Stokes pro-
blem to guarantee the absence of spurious oscillations or the well-posedness of
the problem, respectively.
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Thus, by suitably combining the weak form (with v4vh) with the discrete
one, we get

a(eh , vh ) 40 for any vh �Vh ,(9)

i.e., the well-known Galerkin orthogonality property stating the orthogonality
of the discretization error eh4u2uh with respect to the discrete space Vh .

Let us introduce now the dual problem associated with (7): find z�V such
that

a *(z , W) 4J(W) for any W�V ,(10)

where J is a linear continuous functional chosen according to the physical
quantity to control and a *(Q , Q) is the adjoint form to a(Q , Q), defined by the re-
lation a *(z , W) 4a(W , z), for any W , z�V .

We are now in a position to estimate the discretization error associated
with the goal quantity, that is J(eh ). With this aim, let us first choose in (10)
W4eh . Then by exploiting the property of the adjoint form a *(Q , Q) and the
Galerkin orthogonality property (9), with vh 4zh , we get

(11) J(eh ) 4a *(z , eh ) 4a(eh , z) 4a(eh , z2zh ) 4F(z2zh )2a(uh , z2zh ),

where, in the last equality, the weak form (7), with v4z2zh , has been used.
So far we have not explicitly chosen zh . Usually, zh is identified with a suitable
interpolant of the dual solution z , according to the regularity of this latter. An
elementwise integration by parts of the right-hand side of (11) together with a
suitable use of anisotropic interpolation error estimates such as those cited in
Sect. 3, lead to an a posteriori error estimate of the general form

NJ(eh )NGC !
K�Rh

r K (uh ) v K (z),(12)

where r K (uh ) is the elemental residual associated with the primal problem (6)
taking into account internal and edge contributions, and v K (z), which gathers
the anisotropic information, depends on the dual solution and weights the
residual term. We remark that r K (uh ) measures the error related to the ap-
proximation uh , while the term v K (z) takes into account the propagation of
such an error driven by the functional J(Q) to control.

In Sects. 4.1, 4.2 and 4.3 we explicitly provide some examples of the estima-
tor (12) by considering standard CFD problems.
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4.1. The elliptic problem.

First benchmark for the general theory above has been the simple elliptic
problem

.
/
´

L(u) 42 !
i , j41

2
¯

¯xi
gaij

¯u

¯xj
h1cu4 f

u40

in V ,

on ¯V ,

(13)

with c4c(x) F0 a.e. in V , f�L 2 (V) and aij 4aij (x) given functions. More-
over, the operator L is assumed elliptic, i.e., there exists a constant bD0 such
that, for any j4 (j 1 , j 2 )T �R2 and for almost every x�V ,

!
i , j41

2

aij (x) j i j j FbNjN2 ,

N QN denoting the standard Euclidean norm in R2 . By introducing a continuous
piecewise linear finite element approximation, we get the discretization corre-
sponding to (8), where the bilinear and linear forms a : V3VKR and
F : VKR , with V4H0

1 (V), are given by

a(u , v) 4s
V

y !
i , j41

2

aij
¯u

¯xj

¯v

¯xi

1cuvz dx and F(v) 4s
V

fv dx ,

respectively. The procedure detailed above for the derivation of a goal-orient-
ed a posteriori error estimator can be applied to (13) (see [18]). With this aim,
let us define the residual of the discrete solution uh on the triangle K

rK (uh ) 4yf1 !
i , j41

2
¯

¯xi
gaij

¯uh

¯xj
h2cuhzN

K

together with the element boundary residual

je
Ellip 4

.
/
´

[¯nL
uh ]e

0

if e� Eh
int ,

if e�¯V ,

where Eh
int denotes the set of the internal edges of the skeleton Eh of the trian-

gulation Rh and [¯nL
uh ]e is the jump across the edge e� Eh

int of the co-normal
derivative of uh

¯nL
uh 4 !

i , j41

2

aij
¯uh

¯xj

ni ,

n4 (n1 , n2 )T being the unit outward normal vector. Then we have derived an a
posteriori error estimate with the same structure as (12) by assuming either
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an H 2- or an H 1-regularity for the dual solution z . In both cases, the element
residual r K (uh ) associated with the primal problem is given by

r K (uh ) 4VrK (uh )VL 2 (K) 1
1

2l 2, K
1/2

V je
Ellip

VL 2 (¯K) ,(14)

while the element weight v K (z) is defined, for z�H 2 (V), by

v K (z) 4
(l 1, K

2 1l 2, K
2 )1/2

l 2, K

y !
i , j41

2

l 2
i , K l 2

j , K L i , j
K (z)z

1/2

,(15)

or, if z�H 1 (V), we have

v K (z) 4 k!
i41

2

l 2
i , K(rT

i , K GK (z) ri , K)l1/2

.

Notice that all the anisotropic information l i , K and ri , K is contained in the
weights v K (z). Moreover, it is evident that for z�H 2 (V) the function zh in (11)
is chosen as the Lagrange finite element interpolant of z , while if z is only an
H 1 (V)-function, zh coincides with the Clément interpolant of z . Finally, we re-
mark that the constant C in (12) depends only on the reference triangle K× in
the case z�H 2 (V), while C4C(M , C×) if z�H 1 (V).

4.2. The advection-diffusion-reaction problem.

Let us address the standard scalar advection-diffusion-reaction problem
with mixed boundary conditions

.
`
/
`
´

L(u) 42mDu1a Q˜u1au4 f

u40

m
¯u

¯n
4g

in V ,

on G D ,

on G N ,

(16)

where G D and G N are measurable non overlapping partitions of the boundary
¯V of V with G D c¯ and such that ¯V4 GD NGN ; the source f�L 2 (V), the
diffusivity m�R1 , the advective field a� [W 1, Q (V) ]2 , with ˜ Qa40, the reac-
tion coefficient a�L Q (V) with aF0 a.e. in V , and g�L 2 (G N ) are given data,
while ¯u/¯n4˜u Qn is the normal derivative of u , n still denoting the unit out-
ward normal to ¯V .

From an anisotropic viewpoint, the most interesting problems are the ad-
vection-reaction dominated ones. This justifies the use of a stabilized scheme
to discretize (16). Thus, the discrete form (8) reads as follows: find uh �Vh %V ,
with V4H 1

G D
(V), such that

at (uh , vh ) 4Ft (vh ) for any vh �Vh ,
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where the subscript t refers to stabilized bilinear and linear forms. As we limit
our analysis to the case of affine linear finite elements, all the standard stabi-
lized techniques, such as GLS, SUPG [9, 29] and the method proposed by Dou-
glas and Wang in [14], do coincide with each other. For instance, by choosing a
streamline-diffusion scheme (see [15]), the stabilized forms at : V3VKR and
Ft : VKR are defined, for smooth enough functions u and v , as

at (u , v) 4s
V

m˜u Q˜v dx1s
V

(a Q˜u1au) v dx

1 !
K�Rh

s
K

t K (2mDu1a Q˜u1au)(a Q˜v) dx ,(17)

Ft (v) 4s
V

fv dx1s
G N

gv ds1 !
K�Rh

s
K

t K f (a Q˜v) dx .

The coefficients t K are elementwise stabilizing parameters for which several
proposals are available in the literature (see, e.g., [4, 7, 8, 32]).

By mimicking the procedure of Sect. 4, we get also for problem (16) an
anisotropic a posteriori error estimator of the form (12) (see [19] for the de-
tails). Let us define the element interior and boundary residuals given by
rK (uh ) 4 ( f1mDuh 2a Q˜uh 2auh )NK and

j Adr
e 4

.
`
/
`
´

0

22gm
¯uh

¯nK

2gh
2m k ¯uh

¯nK
l

e

if e�G D ,

if e�G N ,

if e� Eh
int ,

(18)

respectively. Here ¯uh /¯nK 4˜uh QnK is the normal derivative of uh , nK is the
unit outward normal to ¯K , Eh

int still denotes the set of the internal edges of the
triangulation Rh , while [¯uh /¯nK]e stands for the jump of the normal derivative
of uh over the edge e%¯K . Then the residual r K (uh ) is given by

r K (uh ) 4VrK (uh )VL 2 (K)g11
t K

l 2, K

VaVL Q (K)h1
1

2l 2, K
1/2

V j Adr
e VL 2 (¯K) .(19)

By assuming an H 1-regularity for the dual solution z , we identify zh in (11)
with the Clément interpolant of z . This yields for the weights v K (z) the
expression

v K (z) 4 k!
i41

2

l 2
i , K(rT

i , K GK (z) ri , K)l1/2

.
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In such a case the constant C in (12) depends on the constants M and C× de-
fined in (4).

The a posteriori analysis above has been applied both to academic test cas-
es, such as the one shown in Sect. 5, and to a more realistic problem in haemo-
dynamics [20].

REMARK 4.1. – By letting a40 in (19), as a particular case of the analysis
above we recover the a posteriori result for the diffusion-reaction problem
(13) provided with mixed boundary conditions.

REMARK 4.2. – When the discretization of the primal problem involves a
stabilization procedure, it is not so unusual to stabilize also the weak form
(10) of the dual problem. Even if the stabilization is usually applied to the
discrete formulation only, it has been verified an improvement of the conver-
gence rate (superconvergence) of the error estimator in the presence of a sta-
bilized weak form of the dual problem [7].

4.3. The Stokes problem.

We consider the standard Stokes problem: seek the velocity u and the
pressure p of an incompressible fluid, subject to mixed boundary conditions,
such that

.
`
/
`
´

2mDu1˜p4 f

˜ Qu40

m(˜u) n2pn4g

u40

in V ,

in V ,

on G N ,

on G D ,

(20)

where G D , G N and n are defined as in Sect. 4.2; the source term f� [L 2 (V) ]2 ,
the viscosity m�R1 and g� [L 2 (G N ) ]2 are given data. Notice that the differen-
tial operator L(u) in (6) is now replaced by the operator L(u , p) represented
by the left-hand sides of (20)1-(20)2 . Moreover, the weak space V in (7) is re-
placed by the tensor product space W3Q , with W4 [H 1

G D
(V) ]2 and Q4

L 2 (V). We recall that, in the case G N 4¯ , W4 [H 1
0 (V) ]2 and the space Q coin-

cides with L 2
0 (V) 4 ]v�L 2 (V) s.t. s

V
v dx40(.

Since we discretize both the velocity u and the pressure p in (20) by conti-
nuous piecewise linear finite elements, we have to adopt a stabilized method in
order to guarantee the inf-sup condition, i.e., the well-posedness of the Stokes
problem [9, 14, 21, 28]. As in the case of the advection-diffusion-reaction pro-
blem, the choice of the stabilization scheme is irrelevant as we are using linear
finite elements. For instance, the Galerkin Least-Squares method [22, 28]
yields the stabilized discrete form of (20): find (uh , ph ) in Wh 3Qh %W3Q
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such that

at ( (uh , ph ), (vh , qh ) ) 4Ft (vh , qh ) for any (vh , qh ) �Wh 3Qh ,

where the stabilized forms at : [W3Q]2 KR and Ft : W3QKR are given by

at ( (u , p), (v , q) ) 4s
V

m˜u : ˜v dx2s
V

p˜ Qv dx2s
V

q˜ Qu dx

2 !
K�Rh

t Ks
K

˜p Q˜q dx(21)

Ft (v , q) 4s
V

f Qv dx1s
G N

g Qv ds2 !
K�Rh

t Ks
K

f Q˜q dx .

Several proposals are available in the literature to choose the elementwise sta-
bilizing parameters t K in (21) [22, 32, 33].

As now problem (20) has two unknowns, we are in a position to control two
continuous linear functionals, the first one J1 (Q) associated with the discretiza-
tion error eu 4u2uh of the velocity and the second one J2 (Q) related to the
discretization error ep 4p2ph of the pressure. Likewise, we can define either
the element interior and boundary residuals associated with the momentum
equation (20)1 , r 1

K (uh , ph ) 4 (f1mDuh 2˜ph )NK and

jStokes
e 4

.
/
´

0

2(g2 (m(˜uh nK )2ph nK ) )

2[ (m(˜uh nK )2ph nK ) ]e

if e�G D ,

if e�G N ,

if e� Eh
int ,

respectively, or the interior residual r 2
K (uh )4(˜ Quh )NK related to the continui-

ty equation (20)2 . Here m(˜uh nK )2ph nK is the normal component of the
Cauchy stresses, the quantities nK , Eh

int and [Q]e being defined as in
Sect. 4.2.

The generic a posteriori analysis provided above can be extended to the
case of systems of partial differential equations. In the case of problem (20),
the a posteriori estimate (12) is replaced by the new one

NJ1 (eu )1J2 (ep )NGC !
K�Rh

(r 1
K (uh , ph ) v 1

K (w)1r 2
K (uh , ph ) v 2

K (r) ),(22)
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with C4C(M , C×, K×) and (w , r) the dual velocity-pressure pair, while

r 1
K (uh , ph ) 4Vr1

K (uh , ph )VL 2 (K) 1
1

2
u l 1, K

2 1l 2, K
2

l 2, K
3

v1/2

V jStokes
e VL 2 (¯K) ,

r 2
K (uh , ph ) 4Vr 2

K (uh )VL 2 (K) 1
t K

l 2, K

Vr 1
K (uh , ph )VL 2 (K) ,

v 1
K (w) 4 y !

i , j41

2

l2
i , K l 2

j , K LK
i , j (w)z

1/2

,

v 2
K (r) 4 k!

i41

2

l 2
i , K (ri , K

T GK (r) ri , K )l1/2

,

where the quantities LK
i , j (w) are the straightforward extension to vector-

valued functions of the terms (2) (see [19, 32] for the details). The test-func-
tions pair (wh , rh ) corresponding to zh in (11), has been chosen as
(P h (w), Ih (r) ) because of the regularity characterizing the velocity and the
pressure of the Stokes problem (20). Finally, we point out that (22) consists of
the contributions associated with the error propagation due to both the dual
velocity and the dual pressure.

5. – Numerical results.

A typical numerical adaptive process for the approximation of a given pro-
blem consists of an iterative procedure based on the concept of metric. Start-
ing from an a posteriori error estimator, a second-order tensor field, collecting
the information about the mesh spacing and orientation, is defined on the ac-
tual mesh and employed for the generation of the new mesh.

In the first part of this section we provide some further detail on the adap-
tive algorithm used for the construction of an «optimal» mesh, i.e., the mesh
for which we have maximum accuracy for a given number of degrees of free-
dom. Then we assess the soundness of the adopted procedure on some aca-
demic test cases, by referring to [17, 18, 19, 20, 32] for a larger range of nume-
rical examples.

5.1. The adaptive procedure.

The anisotropic information provided by the error estimators in Sects. 4.1,
4.2 and 4.3 can be employed within a mesh adaption procedure in a predictive
fashion. A standard technique consists of endowing the domain V with a me-
tric updated via an iterative process by employing the data stemming from the
actual mesh. A possible metric for the domain V is identified by a symmetric
positive definite tensor field MA such that MA 4 RA L

A22 RAT , where L
A

4
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diag (lA1 , l
A

2 ) and RAT 4 (rA1 , rA2 ) are a positive diagonal and an orthogonal matrix,
respectively. The matrix MA should be chosen in order that the newly generat-
ed mesh satisfies (as far as possible) an optimality criterion, requiring that all
the edges of the new mesh be of unit length according to the metric induced by
MA. Thus, the metric MA is identified when l

A
1 , l

A
2 , rA1 , rA2 are determined. For this

purpose, we approximate these quantities by piecewise constant functions over
the triangulation Rh , that is rAi NK 4 rAi , K and l

A
i NK 4 l

A
i , K , with i41, 2 .

Relation (12) defines a local estimator h K , such that

NJ(eh )NGC !
K�Rh

h K ,

with h K4r K(uh) v K(z). After a suitable scaling of h K , we resort to two classi-
cal requirements for a mesh adaption procedure: i) equidistributing the error,
and ii) maximizing the area of the triangles, i.e. minimizing the degrees of free-
dom of the new mesh. More precisely, since we can only act on the local estima-
tors, we impose on the one hand that h K4t , for any K�Rh , where t is a given
tolerance, and on the other hand that NKN be as large as possible. This amounts
to solving a minimization problem involving the LK’s and/or the GK’s terms, for sK

and r1, K (see [19] for all the details). Finally, by denoting with sAK4 l
A

1, K /lA2, K and
rA1, K the solution of such a minimization problem, we use requirement i) to obtain
separately the two values l

A
1, K and l

A
2, K . The metric MA is thus identified.

5.2. Numerical assessment.

In the subsections below we test the effectiveness of the adaptive proce-
dure described above on three test cases, one for each of the differential pro-
blems in Sects. 4.1, 4.2 and 4.3. The software used for the mesh generation is
BAMG [27].

We highlight that here we are not interested in discussing how the solution
z of the dual problem is actually computed. In other words, we are not con-
cerned with the discretization issue of the dual problem: we just assume that
we have some accurate enough approximation of z to compute the LK’s and the
GK’s quantities (see also [2]).

The elliptic case.

Let us apply the a posteriori analysis of Sect. 4.1 to an elliptic toy problem,
namely the Poisson equation

2Du4 f in V4 (0 , 1 )2 ,(23)

provided with homogeneous Dirichlet boundary conditions. The forcing term f
is chosen in such a way that the exact solution u of (23) is

u(x1 , x2 ) 44x2 (12x2 )[12e 2ax1 2 (12e 2a ) x1 ] ,
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with a4100. The function u exhibits an exponential layer along the boundary
x40 with an initial steepness of a . The presence of the boundary layer justi-
fies the employment of an anisotropic mesh adaption technique.

As u�H 2 (V), we have applied the adaption procedure of Sect. 5.1 to the
error estimator (12) identified by the residual r K (uh ) in (14) and by the
weights v K (z) defined in (15). As goal quantity to be controlled we choose the
flux of the solution u across the boundary edge x40, i.e.

J(W) 4s
0

1
¯W

¯x
(0 , y) dy .(24)

Notice that, to apply the analysis of Sect. 4, we need to regularize the func-
tional J as it is not linear on H 1 (V). With this aim, we replace (24) with the
regularized one

J *(W) 4s
0

1
W(e , y)2W(0 , y)

e
dy for any W�H 1 (V) ,

e being a small positive constant, here taken equal to 0.04. By starting the
adaptive procedure of Sect. 5.1 on an initial uniform mesh of about 1000 trian-
gles, we get the anisotropic mesh of Fig. 3 (left) which has approximately 2500
elements. The regions of the computational domain V more affecting the
evaluation of the goal quantity, are detected by the anisotropic error estimator
as the distribution of the mesh triangles highlights. To underline the advan-
tages deriving from an anisotropic mesh adaption, let us consider the isotropic
mesh on the right of Fig. 3 obtained simply by choosing l 1, K 4l 2, K and
r1, K fr2, K in (15). The two grids have approximately the same number of ele-
ments but the functional of the discretization error eh is given by
NJ *(eh

aniso )N47.831023 in the anisotropic case while, with the isotropic

Fig. 3. – An adapted anisotropic mesh (left) compared with the corresponding isotropic
one (right) for the Poisson problem (23). Both grids have approximately 2500
elements.
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grid, we have NJ *(eh
iso )N430.031023 . A reduction of more than one-third

is guaranteed in the anisotropic case.
We finally refer to [18] where other numerical examples for the elliptic

case are provided.

The advection-diffusion-reaction case.

A typical instance of problems exhibiting directional features are the ad-
vection dominated problems.

Let V4 (0 , 1 )2 be the computational domain. Then we choose m41024 ,
a4 (2 , 1 )T , a40 and f40 in (16). Let us assign Dirichlet conditions on all the
boundary ¯V: in more detail, we demand u41 on the left and top sides of V
and u40 on the remaining edges. This choice yields a solution u characterized
by an internal and a boundary layer of thickness O(1022 ) and O(1024 ),
respectively.

The functional J in (10) is chosen as J(W) 4a0 (W , u), for any W�V , where
the subscript 0 refers to the non-stabilized bilinear form derived from (17).
This choice allows us to control the energy norm of the discretization error, as
J(eh ) 4a0 (u2uh , u) 4a0 (u2uh , u2uh ), thanks to the Galerkin orthogona-
lity property (9).

Moving from an initial uniform mesh of about 350 elements, after two steps
of the adaptive procedure described in Sect. 5.1, we get the anisotropic mesh
shown in Fig. 4 (in the middle).

It is evident that the two layers are sharply captured and their thickness is
correctly detected. The orientation and deformation of the mesh elements
(longest edges parallel to the boundary layers) thus guarantee a reduction of
the number of triangles, that is of the computational cost associated with the
approximation of the problem at hand.

The numerical solution computed on the adapted grid and a zoom of the
mesh in correspondence of the boundary layer are also provided on the left
and on the right of Fig. 4, respectively.

We finally remark that, even if the analysis of Sect. 4.2 has been derived
for mixed boundary conditions, it can be easily extended to the case of full

Fig. 4. – Numerical solution (left) computed on the second anisotropic adapted mesh
(middle) and a zoom of the boundary layer (right).
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Dirichlet boundary conditions, provided that the definitions of the functional
space V and of the boundary residual je

Adr in (18) are properly modified.

The Stokes problem case.

We assess the soundness of the a posteriori estimate (22) on a standard nu-
merical example, the driven cavity flow test case. The motion of a flow inside a
plane square domain V4 (0 , 1 )2 , with velocity u4 (1 , 0 )T prescribed on the
top boundary, is analyzed. Furthermore, a no-slip boundary condition is im-
posed on the vertical sides as well as on the bottom horizontal side and m is
chosen equal to 1021 . This choice for the boundary conditions yields a pres-
sure field p characterized by two spikes at the points (0 , 1 ) and (1 , 1 ).

The adaptive procedure of Sect. 5.1 has been extended to the error estimator
(22). The presence of the two goal functionals J1 and J2 leads to a minimization
problem involving both the LK’s and the GK’s terms. In this case, we solve two
decoupled subproblems for sAK and rA1, K , the first one associated with the LK’s
terms and the second one with the GK’s terms. Two metrics MA1 and MA2 are thus
derived from the two subproblems. The final metric MA is obtained by summing
the metrics MA1 and MA2 , weighted with the corresponding residuals [24].

As in the previous test cases, we start the adaptive procedure on an initial
uniform mesh, of about 1300 elements. The target functionals J1 and J2 in (22)
are chosen as J1 (v) 40 and J2 (q) 4 s

V
2pq dx . This choice allows us to control

the L 2-norm of the pressure through the linearized functional J2 (q).
The pressure fields computed on the initial and on the second adapted grid

(6136 triangles) are shown in Fig. 5. The two spikes at the points (0 , 1 ) and

Fig. 5. – Pressure fields computed on the initial uniform mesh and the second anisotro-
pic adapted one.
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(1 , 1 ) are not well captured on the initial mesh (see Fig. 5, on the left), while
the anisotropic adapted mesh turns out to be better to capture these features
(Fig. 5, right, compare the vertical scales of the two plots).

6. – Conclusions.

In this paper we have presented a goal-oriented anisotropic adaption tech-
nique combining the good properties of the error functional control theory in
[7], with the richness of information provided by the anisotropic framework in
[17]. As examples of this general theory we consider the elliptic, advection-dif-
fusion-reaction and the Stokes problems. A numerical validation is also carried
out to assess the soundness of the theoretical approach.
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a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-
order interpolations, Comput. Methods Appl. Mech. Engrg., 59 (1986), 85-99.

[29] T. J. R. HUGHES - L. P. FRANCA - G. M. HULBERT, A new finite element formulation
for computational fluid dynamics: VIII. the Galerkin/least-squares method for ad-
vective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73 (1989),
173-189.

[30] G. KUNERT, A posteriori error estimation for anisotropic tetrahedral and triangu-
lar finite element meshes, Ph.D. thesis, Fakultät für Mathematik der Technischen
Universität Chemnitz, Chemnitz, 1999.



ANISOTROPIC MESH ADAPTION: APPLICATION ETC. 165

[31] J. L. LIONS - E. MAGENES, Non-homogeneous boundary value problem and appli-
cation, Volume I. Springer-Verlag, Berlin, 1972.

[32] S. MICHELETTI - S. PEROTTO - M. PICASSO, Stabilized finite elements on anisotropic
meshes: a priori error estimates for the advection-diffusion and Stokes problems,
SIAM J. Numer. Anal., 41, no. 3 (2003), 1131-1162.

[33] S. MITTAL, On the performance of high aspect ratio elements for incompressible
flows, Comput. Methods Appl. Mech. Engrg., 188 (2000), 269-287.

[34] J. T. ODEN - S. PRUDHOMME, Goal-oriented error estimation and adaptivity for the
finite element method, Computers Math. Applic., 41, no. 5-6 (2001), 735-756.

[35] M. PICASSO, An anisotropic error indicator based on Zienkiewicz-Zhu error esti-
mator: application to elliptic and parabolic problems, SIAM J. Sci. Comput., 24,
no. 4 (2003), 1328-1355.

[36] L. R. SCOTT - S. ZHANG, Finite element interpolation of non-smooth functions sat-
isfying boundary conditions, Math. Comp., 54 (1990), 483-493.

[37] K. G. SIEBERT, An a posteriori error estimator for anisotropic refinement, Numer.
Math., 73 (1996), 373-398.

[38] R. VERFÜrth, A review of a posteriori error estimation and adaptive mesh-refine-
ment techniques, B. G. Teubner, Stuttgart, 1996.

[39] O. C. ZIENKIEWICZ - J. Z. ZHU, A simple error estimator and adaptive procedure
for practical engineering analysis, Int. J. Numer. Methods Eng., 24 (1987),
337-357.

[40] O. C. ZIENKIEWICZ - J. Z. ZHU, The superconvergent patch recovery and a posteri-
ori error estimates, Part 1: the recovery technique, Int. J. Numer. Methods Eng.,
33 (1992), 1331-1364.

[41] O. C. ZIENKIEWICZ - J. Z. ZHU, The superconvergent patch recovery and a posteri-
ori error estimates, Part 2: error estimates and adaptivity, Int. J. Numer.
Methods Eng., 33 (1992), 1365-1382.

Simona Perotto: MOX-Department of Mathematics «F. Brioschi»,
Politecnico of Milano, Via Bonardi 9, 20133 Milano, Italy

simona.perottoHmate.polimi.it

Pervenuta in Redazione
il 14 gennaio 2004


