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Mechanical Aspects of Growth in Soft Tissues.

D. AMBROSI - F. GUANA

Sunto. – Negli ultimi anni grande attenzione è stata dedicata alla comprensione dei
processi di crescita dei tessuti molli regolati dallo stato di sforzo. Recenti sviluppi
teorici suggeriscono che esista un accoppiamento sforzo-crescita attraverso il ten-
sore Eshelby, indipendente dal tessuto biologico in esame. In questo articolo si stu-
diano le proprietà meccaniche e il comportamento qualitativo dettati dalle equa-
zioni che caratterizzano il modello sotto alcune semplici ipotesi. Le equazioni de-
dotte da un principio di dissipazione sono confrontate con le equazioni fenomeno-
logiche che descrivono in modo accurato i dati sperimentali. Vengono inoltre di-
scussi i risultati di simulazioni numeriche sulla crescita di un anello simmetrico
elastico in relazione al processo di rimodellamento osservato nelle arterie.

Summary. – In the last years many efforts have been devoted to understand the stress-
modulated growth of soft tissues. Recent theoretical achievements suggest that a
component of the stress-growth coupling is tissue-independent and reads as an
Eshelby-like tensor. In this paper we investigate the mathematical properties and
the qualitative behavior predicted by equations that specialize that model under
few simple assumptions. Equations strictly deduced from a dissipation principle
are compared with heuristic ones that fit well the experimental data. Numerical si-
mulations of the growth of a symmetric annulus are discussed.

Introduction.

The stress-modulated growth of soft tissues has been the subject of several
of experimental papers concerning a variety of specific biological systems. The
most extensively studied biological systems are probably arterial walls [5, 7],
with their complex behavior in response to changes in blood pressure or blood
flow rate [9]. While few heuristic growth laws based on these experimental ob-
servations have been devised, equations strictly deduced from a priori princi-
ples are almost lacking. In a recent paper DiCarlo and Quiligotti [3], on the ba-
sis of the theory of Rodriguez et al. [6], state a dissipative principle involving
standard forces and accretive forces. The exploitation of such an inequality
yields constitutive relationships that, in addition to the classical results, provi-
de a direct coupling between stress and growth in terms of an Eshelby-like
tensor. Aim of this paper is to investigate the nature of the equations that ari-
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se from such an approach for a simple material: an elastic solid that can only
store mechanical energy.

For a more extended analysis as well as for further results we refer to [2].

1. – Kinematics and balance equations.

In this section are reviewed the main results about kinematics and dy-
namics of growing one-component solids according to [6] and [3]. Consider a
continuous medium in its initial configuration B0 that, after motion and gro-
wth, results in the configuration Bt at time t . We call F the deformation gra-
dient, i.e. the gradient of the motion function, and J»4det F . The coordinate X
spans the body B0 . If the system undergoes a quasi-static motion, mass and
momentum balance equations written in a reference frame fixed on the solid in
its initial configuration read

(rJ)
.

4GrJ , Div (JTF2T ) 40 ,(1.1)

where r(X , t) is the mass density, G (the inverse of a characteristic time) is the
mass production rate, T is the Cauchy stress tensor and inertial terms and bo-
dy forces are supposed to be negligible. The superposed dot indicates time
differentiation.

According to [6], the space of the descriptors of the system is enlarged by
introducing a multiplicative decomposition of the deformation gradient, simi-
lar to the one used in plasticity theory: F4Fr G . In this framework G is the
growth tensor and Fr accounts for mechanical behavior of the grown body. In
general, inhomogeneous growth originates residual stresses in a body. Then
Br has to be understood as the configuration that a body would take when the
integrity condition is relaxed and internal stresses vanish, even if, out of very
special cases, it cannot be a physical state; this is why we prefer to call Br the
relaxed state. This characterization of the state Br corresponds to require
that

G4
J
.

g

Jg

4 trace (G
.

G21 ),(1.2)

where Jg »4det G [1]. The continuity equation (1.1)1 , with Jr »4det Fr , rewri-
tes in the form:

(rJr

.
) 40 .(1.3)

REMARK. – Consider an elastic body. As well known, the mechanical beha-
vior of the material must be independent on any rotation of the observer and
therefore the stress field cannot depend on the rotation part of the polar de-
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composition of Fr . It follows that after operating the multiplicative decomposi-
tion of the deformation gradient described above, we can always take the polar
decomposition of the tensor Fr , incorporate the rotation part into G and then
keep such a decomposition to replace the original one. Therefore we can alwa-
ys suppose that Fr is a symmetric positive definite tensor.

2. – Constitutive theory via a dissipation principle.

In the present context thermal energy is neglected, as usual in biomecha-
nics. Energy is supplied to the system in terms of work of standard external
forces that balance the internal ones and it will be at most all stored as availa-
ble mechanical energy, while the energy required for the growth process is
externally supplied as the work of accretive forces [3]. We therefore write the
following dissipation principle:

(Jrc
.

) GJT QL1JrC QG
.

G21 ,(2.1)

where c is the free energy per unit mass of the body in the initial configur-
ation B0 , supposed to be a convex function c4c(Fr ) and C is the tensor of in-
ternal accretive forces that are balanced by the external ones B (C4B). After
some calculations, from (2.1) we obtain

(Jr TFr
2T 2c 8 ) QF

.
r 1 (Fr

T Jr TFr
2T 1C2cI) QG

.
G21 F0(2.2)

where c 8 denotes the Frechet derivative of c and we have supposed
(rJr )Nt40 41 for all X .

We assume that C can be additively decomposed into two terms correspon-
ding to reversible and irreversible contribution: C4C12Fr

T Jr TFr
2T 1cI .

The inequality (2.2) is always satisfied if Jr TFr
2T 4c 8 , C14KG

.
G21 , where K

is a constant symmetric positive-definite matrix. These assumptions yield the
constitutive relationships

T4
1

Jr

c 8 Fr
T , C4cI2Fr

T Jr TFr
2T 1KG

.
G21 .(2.3)

Finally, thanks the continuity equation in the form (1.3), the equations to solve
are

Div (Jg c 8 G2T ) 40 ,(2.4)

KG
.

4 [2(cI2Fr
T c 8 )1B]G .(2.5)

After specifying the constitutive form for c , the balance equation for standard
forces (2.4) provides the (instantaneous) displacement field for given traction
(or displacement) at the boundary and known growth tensor G . The latter
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evolves according to the ordinary differential equation in time (2.5) which, in
other terms, determines the evolution in time of the relaxed state Br .

3. – Growth rate.

The accretive forces B in (2.5) account for those characteristics of the gro-
wth process that pertain to the specific biological system at hand. In the follo-
wing we restrict to consider the case of B4E0 constant in time and space. Ac-
cording to equation (2.5), the growth rate of G depends on the Eshelby-like
tensor

E»4cI2Fr
T c 8 ,(3.1)

that in one spatial dimension is the opposite of the Legendre transform of the
strain energy. Consider the tensor S»4c 8 , that can be interpreted as the Pio-
la tensor in the coordinate system of the relaxed state. It can be shown that it
exists a one to one relationship between stress S and E . The equilibrium poin-
ts of the system (2.5) are the solutions S0 of the algebraic equation E(S) 4E0 .
When S4S0 every component of the growth tensor is constant in time.

A weaker equilibrium condition is formulated when using equations (2.5)
and (1.2); by the definition (3.1) one finds that the growth rate G is proportio-
nal to the trace of the Eshelby tensor

G42tr (K21 (E2E0 ) ) ,(3.2)

In principle the macroscopic growth of a body can be null even though growth
occurs along single directions. As an example, consider the infinitesimal defor-
mation of an elastic body in the three dimensional space: the strain energy and
the infinitesimal strain read

c4m tr (E2 )1
l

2
( tr (E) )2 , E4

1

2m
gS2

l

2m13l
tr (S) Ih .(3.3)

By some calculations one gets the following expression for the growth
rate:

G4 tr Eo 2
1

4m
tr (S2 )1

l

4m(2m13l)
( tr S)2 1 tr S .(3.4)

The equation G40 defines, in the stress space, a round ellipsoid, centered in
the origin, with the symmetry axis pointing into the direction (1 , 1 , 1 ). When
the stress state lies on this surface the system stops growing macroscopically.

At this stage one wonders if the qualitative behavior predicted by the
system of equations (2.4)-(2.5) resembles, at least at some extent, the experi-
mental one. According to Taber «experiments show that the growth rate in-
creases with the magnitude of the applied stress» [7] and this is in agreement
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with the present model. Moreover, if we consider the case of arterial walls, we
can show that the well known stress-growth relationships [8], that fit well the
experimental data, are included in the theoretical framework provided by the
present theory, where growth rate is deduced from a priori principle. In fact,
under suitable assumptions and through a process of linearization in time, the
growth laws proposed by Taber (omitting shear contributions) in the form

G
.

rr 4kr (Tuu2Tuu
0 ), G

.
uu4ku (Tuu2Tuu

0 ), G
.

zz 40(3.5)

where Tuu
0 is the homeostatic stress, can be deduced from (2.5).

4. – Stress-modulated growth.

In the section above it has been outlined how growth depends on stress,
but how does stress evolve in time depending on the growth tensor G? Let us
consider S as a function of G for a given deformation F :

S4c 8 (FG21 ) .(4.1)

The situation differs substantially if boundary conditions apply to strain or
stress. In the case of pure Dirichlet boundary conditions the growth process is
free to accommodate the stress field according to equation (4.1) in any point of
the body. The volume of the body remains unmodified, although its mass local-
ly and globally changes up to reaching in the whole body the stable homeosta-
tic stress state S4S0 , that is Fr 4I . In case of traction boundary conditions a
load is imposed at least on a portion of the boundary. As the evolution law (2.5)
is strictly local, in the whole body the growth attempts to accomplish stress re-
laxation. However, no possibility exists to reach any steady state because the
condition E(S) 4E0 can never be satisfied in all the domain. The only two pos-
sible scenarios are therefore that the body indefinitely grows (under tension)
or shrinks to a point (under compression). When both tensile and compressive
stress are generated by the boundary conditions, the system will however
evolve case by case toward these two final states and no other equilibrium sta-
tes are expected to exist.

5. – Numerical simulations.

Let us represent the artery as a symmetric annulus of elastic material.
Then the displacement vector u4 (ur (r), 0 , 0 ) 4 (g(r)2r , 0 , 0 ) is a function
only of the radial coordinate r fixed on the body in its initial configuration
(r1 GrGr2). We assume that deformation is small when compared with the re-
laxed state and therefore we adopt the form of the stress tensor S and strain
energy for linear isotropic elastic material (3.3) where E4Sym (Fr 2I ) 4



D. AMBROSI - F. GUANA780

diag (g 8 /gr 21, g/rgu21, 1 /gz 21). Strain is usually not small in mechanics of
soft tissues and exponential strain energies are usually adopted; however
nonlinearity does not affect the qualitative behavior predicted by the math-
ematical model, which is the subject of this early investigation.

If G4G(r) the equation of motion in cylindrical coordinates is

(5.1) (2m1l)
gu gz

gr

g 91

1(2m1l) kg gu gz

gr
h1

1

r

gu gz

gr
l g 81 klg 8z 2 (2m1l)

gr gz

rgu

l g

r
1

1lg 8u 2 (2m13l)( gu gz )81
l

r
(gu2gr )2 (2m13l)

gz

r
(gu2gr ) 40 .

Displacement boundary conditions. Two sets of Dirichlet boundary con-
ditions are considered, corresponding to 50% extension or contraction. In both
cases the numerical simulations agree with the qualitative analysis: the radial
stress is damped exponentially in time thus newly leading to a homeostatic
stress S0 of the grown body.

Load boundary conditions. Consider an applied load at the internal wall
of the cylinder. At t40 the body immediately displaces and the stress field is
provided in terms of classical explicit solutions (see [4]). In this case the radial
stress is compressive, the hoop and axial ones are tensile, the latter being
smaller in magnitude. Corresponding to these states, the components of the
Eshelby tensor prime the growth process in terms of production of mass and
both the internal and external radius grow indefinitely. The process reaches a
steady state if we assume that the body is not homogeneous but composed by
two layers and that there is no growth in the internal one (for the sake of sim-
plicity, take E0 40). The growth process accommodates all the stress in the
ungrown region by a suitable tuning of residual stress.

Note that if there is no growth, i.e. gr 4gu4gz 41, the solution of (5.1) re-
duces to the classical one described by Eringen [4] for a cylindrical tube sub-
ject to internal and external pressures.
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