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Ultraweakly Compact Operators and Dual Spaces.

TERESA ALVAREZ

Sunto. – In questo articolo si introduce e si caratterizza la classe di tutti gli operatori
ultradebolmente compatti, definiti negli spazi di Banach per mezzo dei loro opera-
tori coniugati. Si analizza la relazione esistente fra un operatore ultradebolmente
compatti e il suo coniugato. Si presentano esempi di operatori appartenenti a que-
sta classe. Inoltre, si studia la connessione fra la compattezza ultradebole di T�
L(X , Y) e i sottospazi minimali di Y 8 e si presenta un risultato relativo alla fatto-
rizzazione degli operatori ultradebolmente compatti.

Summary. – In this paper, the class of all bounded ultraweakly compact operators in
Banach spaces is introduced and characterised in terms of their first and second
conjugates. We analize the relationship between an ultraweakly compact operator
and its conjugate. Examples of operators belonging to this class are exhibited. We
also investigate the connection between ultraweak compactness of T�L(X , Y) and
minimal subspaces of Y 8 and we present a result of factorisation for ultraweakly
compact operators.

1. – Introduction and preliminaries.

We use standard notations: X , Y are Banach spaces, BX the closed unit ball
of X , X 8 the dual space of X , L(X , Y) the set of all bounded linear operators
from X into Y , T 8 , N(T) and R(T) the conjugate operator, the null space and
the range of T�L(X , Y), respectively, JX (or simply, J) the canonical embed-
ding of X into X 9 , IX the identity operator on X. If A%X and L%X 8 , then
A » »4 ]x 8�X 8 : x 8 (x) 40 for all x�A(, » L»4 ]x�X : x 8 (x) 40 for all
x 8�L(; A is called relatively s (X , L)-compact if its s (X , L)-closure in X is
s (X , L) -compact, A is s (X , L)-sequentially compact if every sequence in A
contains a subsequence converging in the topology s (X , L) to some element of
X. If A , B are closed subspaces of X , then we denote by TNA the restriction of
T�L(X , Y) to A and d(A , B) »4 inf ]Va2bV : a�A , VaV41, b�B( is called
the inclination of A to B.

A subspace L of X 8 has positive characteristic if for some aD0 and all
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x�X we have sup ]Nx 8 (x)N : x 8�BL ( FaVxV. The largest a with this property
is called the characteristic r (L) of L and by [6, Theorem 7] it is equal to
sup ]bF0 : bBX 8’ BL

s (X 8 , X) (. A closed, s (Y 8 , Y)-dense subspace N of Y 8 in-
duces a Hausdorff topology s (Y , N) on Y. In [8], s (Y , N) is called an ultra-
weak topology on Y , where an extension of the Eberlein-Smulian theorem is
obtained under certain conditions on N. In this paper, we study some other as-
pects of the ultraweak topologies on Y in relation to operators in L(X , Y).

The following lemmas are elementary and help to read Definition 3 and the
next results.

LEMMA 1. – Let E and N be closed subspaces of Y and Y 8 respectively such
that JEON »4]0(. Then JE1N » is closed if and only if d(JE , N » )D0.

PROOF. – It is easy to see that d(JE , N » ) 41 /VPV , where P is the projec-
tion from JE5N » onto JE with null space N » and by closed graph theorem
JE5N » is closed if and only if P is continuous. r

LEMMA 2. – Let N be a closed, s (Y 8 , Y)-dense subspace of Y 8. Then
JY5N » is closed if and only if N has positive characteristic.

PROOF. – Since the s (Y 8 , Y)-density of N is equivalent to JYON »4 ]0(

and by [6, Theorem 9] the characteristic of N coincides with the inclination of
JY to N » , the desired result follows from Lemma 1. r

Following [1], we recall some facts about bounded operators in Banach
spaces. Let V be a finite dimensional subspace of Y 9 such that JY OV4 ]0(

and let T�L(X , Y). Then TBX is relatively s (Y ,»V)-compact if and
only if R(T 9 ) ’JY5V. We observe that such a V coincides with (»V)» (as
dim VEQ), »V is s (Y 8 , Y)-dense (as JYOV4JYO (»V)»4 ]0() and by
Lemma 2 we have that r (»V) D0.

These observations suggest the following notion:

DEFINITION 3. – Let M be a closed, s (Y 8 , Y)-dense subspace of Y 8 with po-
sitive characteristic. We say that T�L(X , Y) is M » -weakly compact if TBX

is relatively s (Y , M)-compact and T is called ultraweakly compact if T is
M »-weakly compact for some M as above.

The corresponding classes of operators will be denoted by M »2

WC(X , Y) and UWC(X , Y) respectively.
When M4Y 8 our definition of a M »-weakly compact operator coincides

with the standard notion of a weakly compact operator and we have the follow-
ing characterisation:
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THEOREM 4. – Let T�L(X , Y). Then the following properties are equiv-
alent:

a) T is weakly compact.
b) R(T 9 ) ’JY.
c) T 8 is s (Y 8 , Y)2s (X 8 , X 9 ) continuous.

PROOF. – See e.g. [7]. r

In Section 2 we shall obtain characterisations analogous to those of Theo-
rem 4. The properties corresponding to a), b) and c) are:

a 8 ) T is M »-weakly compact.
b 8 ) R(T 9 ) ’JY5M » .
c 8 ) T 8 is s (Y 8 , JY5M » )2s (X 8 , X 9 ) continuous.

Also, we analize the relationship between an ultraweakly compact and its
conjugate operator.

Section 3 describes examples and investigate special cases; in particular,
the upper-semi-Fredholm operators and the strictly singular operators.

Let N%Y 8 be a subspace. According to J. Dixmier [6], we call N minimal if
N is closed, s (Y 8 , Y)-dense and there exists no proper subspace L%N with
both these properties.

A description of minimal subspaces N%Y 8 in terms of compactness is given in

THEOREM 5. – Let N be a closed, s (Y 8 , Y)-dense subspace of Y 8. Then the
following properties are equivalent:

a) N is minimal.
b) Y 94JY5N »

c) BY is relatively s (Y , N)-compact. In this case BY
s (Y , N)

is bounded in
the norm topology on Y.

PROOF. – [6, Theorems 11 and 13]. r

The study of the existence of minimal subspaces turns out to be important
to characterise Banach spaces which are isomorphic to dual spaces as shows
the following result.

THEOREM 6. – A Banach space X is isomorphic to a dual space if and only
if X 8 contains a minimal subspace.

PROOF. – [6, Theorem 17]. r

Clearly a quasi-reflexive space X , (that is, dim X 9 /JX) EQ), is isomorphic
to a dual space (briefly, is a dual space). Clark asks in [3] if a somewhat reflex-
ive space, (that is, a Banach space in which each infinite dimensional closed
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subspace contains an infinite dimensional reflexive subspace), is a dual space.
In order to prove that in general the answer to this question is negative we re-
call the following standard definition

DEFINITION 7. – We say that a subclass A of the class of all Banach spaces
has the three-space property if it satisfies the following condition : If A is a
closed subspace of a Banach space X such that X/A� A and A� A, then
X� A.

The following result is due to J. M. F. Castillo and M. González [2, Theo-
rem 4.4.a.].

THEOREM 8. – The class of somewhat reflexive spaces has the three-space
property.

EXAMPLE 9. – There exists a somewhat reflexive space which is not iso-
morphic to a dual space.

Let W be a Banach space such that W 94JW5 l1 [13] and let Y be a Banach
space with copies of l2 such that Y/l2 is isomorphic to c0 , (see [14] for the exis-
tence of such Y). In [2, Theorem 3.7.b.] it is shown that W5Y 8 satisfies the fol-
lowing properties:

i) There is a Banach space, say X , such that W5Y 8 is isomorphic to X 8.
ii) X contains a copy of l2 with X/l2 isomorphic to W 8.

iii) X is not a dual space.
Since somewhat reflexivity is a three-space property (Theorem 8) and that

if Z is a Banach space such that Z 9 /JZ is separable, then Z 8 is somewhat re-
flexive [3, Theorem 3.3], we conclude from ii) that X is somewhat reflexive.

However, it is not difficult to construct somewhat reflexive spaces isomor-
phic to a dual spaces. We cite two cases:

i) Let J R be the James tree space which is obtained from the James space J

by replacing its index set (that is, the set of integers) by an infinite tree. Then
J R is somewhat reflexive and it is a dual space, [9, Chapter I.9].

ii) Let X»4 (!5 J)2. Since every closed infinite dimensional subspace of J

(respectively, of X 8) contains a subspace isomorphic to l2 [9, Chapter I.9] (re-
spectively, [17, Lemma 5.3]) we obtain that X is somewhat reflexive and X 8

does not contain isomorphic copy of l1 which, by a virtue of a result due to G.
Godofrey [10], implies that X is a dual space.

Section 4 investigates the connection between ultraweak compactness
of T�L(X , Y) and minimal subspaces of Y 8; in particular, using Dixmiers
results on characteristics and Theorem 11 we obtain some results which
extend Theorems 5 and 6 to ultraweakly compact operators. Finally, a
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sufficient condition is given for that an ultraweakly compact operator admits
factorisations through Banach spaces isomorphic to a dual spaces.

2. – Characterisations.

LEMMA 10. – Let N be a closed, s (Y 8 , Y)-dense subspace of Y 8 and K is a
s (Y 9 , N)-compact subset in Y 9. Then we have:

a) K1N » is s (Y 9 , N)-compact.
b) K1N » is s (Y 9 , N)-closed.
A subset E in Y is s (Y , N)-compact if and only if JE is s (Y 9 , N)-com-

pact.

PROOF. – Let (ua ) be a net in K1N » , ua4ka1va , with ka�K ,
va�N ».

a) As K is s (Y 9 , N)-compact, a subnet (kb) of (ka ) converges in s (Y 9 , N) to
some point k�K. Therefore the subnet (ub ) of (ua ) converges to k with respect
to s (Y 9 , N), so that the set K1N » is s (Y 9 , N)-compact in Y 9.

b) Let uaK u�Y 9 in the s (Y 9 , N)-topology. Then ua (y 8 ) K u(y 8 ) for all
y 8�N. By a) there exists a subnet (ub ) of (ua ) such that ub (y 8 ) 4kb (y 8 ) K

k(y 8 ) 4u(y 8 ) for all y 8�N. Hence u2k�N » and so u4k1 (u2k) �K1

N », showing that K1N » is s (Y 9 , N)-closed in Y 9 .
The remaining part of the Lemma is clear. r

THEOREM 11. – Let M be a closed, s (Y 8 , Y)-dense subspace in Y 8 with po-
sitive characteristic and let T�L(X , Y). Then the following properties are
equivalent:

a) T�M »2WC(X , Y).
b) R(T 9 ) ’JY5M » .
c) JTBX is relatively s (JY5M » , Y 8 )-compact.
d) T 8 is s (Y 8 , JY5M » )2s (X 8 , X 9 ) continuous.
e) The restriction of T 8 on M is s (M , Y)2s (X 8 , X 9 ) continuous

PROOF. – a) ¨ b) Assume a) holds. Then TBX
s (Y , M)

is s (Y , M)-compact and
by Lemma 10 it follows that JTBX

s (Y 9 , M)
1M » is s (Y 9 , M)-closed. Now, since

BX 9 is s (X 9 , X 8 )-compact in X 9 (Alaoglus theorem), JBX is s (X 9 , X 8 )-dense in
BX 9 (Goldstine’s theorem), T 9 is s (X 9 , X 8 )2s (Y 9 , Y 8 ) continuous and the
s (Y 9 , Y 8 )-closure of a set is contained in the s (Y 9 , M)-closure of the
set we obtain the chain of inclusions: T 9 BX 94T 9JBX

s (X 9 , X 8 )
’ T 9 JBX

s (Y 9 , Y 8 )
4

JTBX
s (Y 9 , Y 8 )

’ JTBX
s (Y , Y 8 )s (Y 9 , Y 8 )

’ JTBX
s (Y , M)s (Y 9 , M)

’ JTBX
s (Y , M)

1 M »’
JY5M » as required.

b) ¨ a) Suppose that R(T 9 ) ’JY5M » and let (xa ) be a net in BX. Then
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(Jxa ) is a net in BX 9 which is s (X 9 , X 8 )-compact and accordingly has a subnet,
say (Jxb ), which is s (X 9 , X 8 )-convergent to some point x 9�BX 9. Now, by the
s (X 9 , X 8 )2s (Y 9 , Y 8 ) continuity of T 9 we have T 9 x 94s (Y 9 , Y 8 )2

lim T 9 Jxb . By hyphotesis there exist y�Y , u�M » such that T 9 x 94Jy1u
and consequently lim y 8 (Txb ) 4 lim JTxb (y 8 ) 4 lim T 9 Jxb (y 8 ) 4T 9 x 9 (y 8 ) 4

Jy(y 8 )1u(y 8 ) 4y 8 (y) for all y 8�M. Therefore (Txb ) converges to y in the
s (Y , M)-topology on Y , showing that T is M »-weakly compact.

b) ¨ c) Let (xa ) be a net in BX. Then (Jxa ) is a net in BX 9 and there exists a
subnet (xb ) of (xa ) such that x 94s (X 9 , X 8 )2 lim Jxb for some x 9�BX 9 . Now,
by assumption T 9 x 9�JY5M » and since T 9 is s (X 9 , X 8 )2s (Y 9 , Y 8 ) contin-
uous we obtain that T 9 x 9 (y 8 ) 4 lim JTxb (y 8 ) for all y 8�Y 8 which shows that
JTBX is relatively s (JY5M » , Y 8 )-compact, as required.

c) ¨b) Suppose c) holds. Let x 9�BX 9 . Then, since T 9 BX 9 is contained in
the s (Y 9 , Y 8 )-closure of JTBX , there exists a net (xa ) in BX such that JTxaK

T 9 x 9 with respect to the s (Y 9 , Y 8 )-topology.
By hypothesis, (xa ) has a subnet (xb ) for which y 94s (JY5M » , Y 8 )2

lim JTxb for some y 9�JY5M ». Consequently T 9 x 94y 9. Hence R(T 9 ) ’
JY5M ».

b) ¨ d) Let (ya8 ) be a net in Y 8 converging to y 8 in the s (Y 8 , JY5M » )-
topology on Y 8 and let x 9�X 9. Then, by assumption T 9 x 9�R(T 9 ) ’JY5M »

and so x 9 (T 8 y 8 ) 4 lim x 9 (T 8 ya8 ), that is, T 8 y 84s (X 8 , X 9 )2 lim T 8 ya8.
d) ¨ e) Let (ya8 ) be a net in M such that (ya8 ) is s (M , Y)-convergent to

some y 8�M. Then y 84s (Y 8 , JY5M » )2 lim ya8 , so that T 8 y 84

s (X 8 , X 9 )2 lim T 8 ya8.
e) ¨ b) Let T 9 x 9�R(T 9 ). We shall verify that T 9 x 9 NM is s (M , Y)-contin-

uous. For this, let (ya8 ) be a net in M which is s (M , Y)-convergent to some y 8�
M. Then, by hypothesis T 8 y 84s (X 8 , X 9 )2 lim T 8 ya8 and hence T 9 x 9 (y 8 ) 4

x 9 (T 8 y 8 ) 4 lim x 9 (T 8 ya8 ) 4 lim T 9 x 9 (ya8 ), as desired. Now, since M is
s (Y 8 , Y)-dense in Y 8 , there exists a linear functional on Y 8 , say y 9 , such that
y 9 NM 4T 9 x 9 NM and y 9 is s (Y 8 , Y)-continuous. But, since a linear functional
in Y 9 belongs to JY if and only if it is s (Y 8 , Y)-continuous and T 9 x 92y 9 is an
element in Y 9 vanishing on M , we deduce that T 9 x 94y 91 (T 9 x 92y 9 ) �
JY5M ». In consequence, R(T 9 ) ’JY5M ». r

THEOREM 12. – Let T�M »2WC(X , Y). Let (T 9 )1 denote the map
T 9 : X 9KJY5M » and let U be the s (XR , X 9 )-closure of (T 9 )1 ( (M » )8 ). Then
T 8� (»U)»2WC(Y 8 , X 8 )

PROOF. – By Hahn-Banach theorem, we can identify (JY5M » )8 with
JY 85 (M » )8. We shall verify that U»4 (T 9 )18 ( (M » )8 )

s (XR , X 9 )
satisfies the fol-

lowing properties:
i) U4 (»U)».
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ii) »U is a s (X 9 , X 8 )-dense subspace of X 9.
iii) r (»U) D0.
iv) T 8 is U-weakly compact.
The property i) follows immediately from Bipolar theorem.
Let I : JY5M »K Y 9 be the inclusion and J1 denotes the canonical em-

bedding of Y into JY5M ». Then from JY T4T 9 JX , T 94I(T 9 )1 and JY 4IJ1 ,
it is seen that (T 9 )1 JX 4J1 T. Upon noting that N(J18 ) coincides with (M » )8
and N(JX8 ) is s (XR , X 9 )-closed (as JX8 is s (XR , X 9 )2s (X 8 , X) continuous) it
follows that U’N(JX8 ) 4R(JX )». This fact combined with XR4JX 85 (JX)»

[6, Theorem 15], d(JX 8 , U) Fd(JX 8 , (JX)» ) and Lemma 2 gives that »U is
s (X 9 , X 8 )-dense in X 9 and has positive characteristic. Hence ii) and iii) are
true.

It only remains to prove iv). Since TRYR4 (T 9 )18 (JY5M » )84

(T 9 )18 (JY 85 (M » )8 ) ’ (T 9 )18 JY 81U’JX 85U , by Theorem 11 we can con-
clude that T 8 is (»U)»-weakly compact, as desired. r

The converse of this Theorem does not hold in general. Indeed, since XR4

JX 85 (JX)» , the conjugate operator T 8�L(Y 8 , X 8 ) is always (JX)»-weakly
compact for any T�L(X , Y).

3. – Examples of ultraweakly compact operators.

We recall that T�L(X , Y) is said to be upper-semi-Fredholm, (briefly, T�
SF1 (X , Y)), if it has finite dimensional null space and closed range.

Follows immediately from [12, Proposition and Theorem 1] that if T�
L(X , Y) is upper-semi-Fredholm and weakly compact, then X is reflexive. In
order to obtain the analogue of this property for ultraweakly compact opera-
tors we shall need the following result.

THEOREM 13. – Let A be a closed infinite dimensional subspace of X such
that A is a dual space and X/A is reflexive. Then X is a dual space.

PROOF. – See [2, Proposition 3.7.a.] r

THEOREM 14. – Let T�SF1 (X , Y)OUWC(X , Y). Then X is a dual
space

PROOF. – Assume that T�SF1 (X , Y). Then there exists a closed finite
codimensional subspace A of X for which (TNA )21 is continuous. Hence IA 4

(TNA )21 (TNA ). If T�UWC(X , Y), then it is clear that TNA is ultraweakly com-
pact and so is IA . Now, by Theorems 5, 6 and 11, A is isomorphic to a dual space
and hence by above Theorem we have that X is a dual space, as re-
quired. r
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It is well-known that the classes of reflexive spaces and quasi-reflexive
spaces have the three-space property. However, to be isomorphic to a dual
space is not a three-space property. The construction of a counterexample in
full details can be seen in [2, Theorem 3.7.b.].

As an application of Theorem 14 we obtain a result which gives conditions
under which an ultraweakly compact operator is strictly singular. Recall that
T�L(X , Y) is called strictly singular, abbreviated T�SS(X , Y), if it does not
have a bounded inverse on any closed infinite dimensional subspace of X.

DEFINITION 15. – We say that a Banach space X belongs to V I D if no
closed infinite dimensional subspace of X contains a closed infinite dimen-
sional subspace isomorphic to a dual space.

THEOREM 16. – Let T�UWC(X , Y). Then T�SS(X , Y) if X or Y belongs to
V I D.

PROOF. – Suppose that T is not strictly singular, then there exists a closed
infinite dimensional subspace A of X such that TNA is injective and open.
Hence from Theorem 14, A is a dual space and so is T(A), contradicting the as-
sumption for X and Y. r

Unfortunately not all the properties enjoyed by weakly compact operators
are shared by ultraweakly compact operators. The following examples illus-
trate this fact.

It is clear that if X or Y is reflexive, then any T�L(X , Y) is weakly com-
pact. However we have:

EXAMPLE 17. – If Y is isomorphic to a dual space, then T�L(X , Y) is ul-
traweakly compact.

It is a consequence of Theorems 5 and 11.

EXAMPLE 18. – There exist Banach spaces X , Y and T�
L(X , Y)0UWC(X , Y) with X isomorphic to a dual space.

To prove this we need only to remind that there is a surjective strictly sin-
gular operator T : l1 K c0 [15, p. 75, 108]. Then l1is a dual space (as lQ8 4

Jl1 5 (Jc0 )») but T is not ultraweakly compact since if T�M »2WC(l1 , c0 ) for
some subspace M of l1 as in Definition 3, then by Theorem 11 we have that
R(T 9 ) 4 lQ4Jc0 5M » which contradicts the well-known fact that Jc0 is not
complemented in lQ .

If T�L(X , Y) then T is weakly compact if and only if TBX is s (Y , Y 8 )-se-
quentially compact. The following examples show that if M is a closed,
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s (Y 8 , Y)-dense subspace of Y 8 with positive characteristic, then the state-
ments «T is M »-weakly compact» and «TBX is s (Y , M)-sequentially compact»
are not equivalent.

EXAMPLE 19. – There exist a Banach space X and a closed, s (X 8 , X)-dense
subspace M of X 8 with positive characteristic such that BX is s (X , M)-se-
quentially compact but not relatively s (X , M) -compact.

Let X be the Banach space of all scalar-valued bounded functions on an un-
countable set G , with countable support, equipped with the sup norm. Let M
be the closed linear span of p(G), where p is the canonical map defined by
p(a)(x) »4x(a), a�G , x�X. Then, by [8, Example 1], M is s (X 8 , X) -dense,
r (M) D0, BX is s (X , M)-sequentially compact but not relatively s (X , M)-
compact.

EXAMPLE 20. – There exist a Banach space X and a closed, s (X 8 , X)-dense
subspace M of X 8 with positive characteristic such that IX is M »-weakly
compact but BX is not s (X , M) -sequentially compact.

Let X be the Banach space of all scalar-valued bounded functions on [0, 1],
with the sup norm. Again let M be the closed linear span of p( [0 , 1 ] ), where p
is defined as in Example 19. Then M is s (X 8 , X)-dense in X 8 with positive
characteristic. Moreover, BX is s (X , M)-compact but not s (X , M) -sequential-
ly compact. A proof of these properties can be found in D. van Dulst [8,
Example 2]. Thus IX �M »2WC(X)0WC(X).

In contrast to Example 20 we should note that there exists a closed,
s (lQ , l1 )-dense subspace, say N , of lQ such that if T�L(l1 ) then T is N »-
weakly compact if and only if T is compact.

Recall that if A is a closed subspace of a Banach space X a quasi-comple-
ment of A in X is a closed subspace B%X such that AOB4 ]0( and A1B is
dense in X.

EXAMPLE 21. – Let N be a s (lQ , l1 )-dense quasi-complement of Jc0 in lQ .
Then T�L(l1 ) is N »-weakly compact if and only if T is compact.

According to H. P. Rosenthal [18], there exists such a N and D. van Dulst
[8, Corollary 1.3] proves that such a N has positive characteristic. Suppose that
T�N »2WC(l1 ). Then TBl1

is relatively s (l1 , N)-compact and also s (l1 , N)-
sequentially compact since by virtue of [8, Corollary 1.2], if Z is a separable
Banach space, then every closed subspace M’Z 8 with positive characteristic
has the Eberlein-Smulian property. Let (xn ) be a sequence in Bl1

. Then (xn )
has a subsequence (yn ) such that (Tyn ) is s (l1 , N)-convergent. By the separa-
bility of c0 and the Alaoglu theorem there exists a subsequence (zn ) of (yn )
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such that (Tzn ) is s (l1 , Jc0 )-Cauchy, so that (Tzn ) is s (l1 , Jc0 1N)-Cauchy.
Since Jc0 1N is dense in lQ we have that (Tzn ) is s (l1 , lQ )-Cauchy. Now, upon
observing that l1 is weakly sequentially complete and the weak sequential con-
vergence in l1 coincides with the norm convergence we conclude that (Tzn ) is
convergent. In consequence, T is compact.

4. – Ultraweakly compact operators and dual spaces.

THEOREM 22. – Let T�L(X , Y) and let M be a closed, s (Y 8 , Y)-dense sub-
space of Y 8 such that M has positive characteristic and M » is contained in
the closure of R(T 9 ). Then the following properties are equivalent:

a) T is M »-weakly compact but for no proper s (Y 9 , Y 8 )-closed subspace
V of M » T is (»V)»-weakly compact.

b) R(T 9 ) 4JR(T)5M ».

PROOF. – Suppose a) holds. Then T is M »-weakly compact and by Theorem
11, R(T 9 ) ’JY5M ». If y 94Jy1v�R(T 9 ) ’N(T 8 )» , y�Y , v�M » , then
0 4y 9 (y 8 ) 4y 8 (y)1v(y 8 ) 4y 8 (y) for all y 8�N(T 8 ) 4R(T)» (as M »’
R(T 9 ) ’N(T 8 )»). Thus y�» (R(T)» ) 4 R(T). Therefore R(T 9 ) ’JR(T)5M ».
Now, as d(JR(T), M » ) Fd(JY , M » ) it follows from Lemmata 1 and 2 that
JR(T)5M » is closed and hence R(T 9 ) ’JR(T)5M ». It is clear that JR(T)
is contained in R(T 9 ) and since M »’ R(T 9 ) by hypothesis, we have the
equality.

Assume that b) is true. Then by Theorem 11, T�M »2WC(X , Y). Let V be
a s (Y 9 , Y 8 )-closed subspace in Y 9such that V%M » and T� (»V)»2

WC(X , Y). Then V4 (»V)» (as V is s (Y 9 , Y 8 )-closed ), »V is s (Y 8 , Y) -dense
with positive characteristic, V%M »’ R(T 9 ) and T is V-weakly compact and so
by the result just proved, R(T 9 ) 4JR(T)5V and since R(T 9 ) 4JR(T)5M »

by hypothesis with V%M » , we deduce that V4M ». r

As an application of Theorem 22 we are now going to characterise Banach
spaces which are isomorphic to a dual spaces in terms of ultraweak compact-
ness of operators.

THEOREM 23. – A Banach space Z is isomorphic to a dual space if and
only if there are X , Y Banach spaces and a range-closed T�L(X , Y) such
that R(T) 4Z and T is M »-weakly compact for some subspace M of Y 8 with
M »’R(T 9 ).

PROOF. – If Z is a dual space, then by Theorems 5 and 6, there exists a mini-
mal subspace N of Z 8 such that IZ is N »-weakly compact.

Conversely, let T�M »2WC(X , Y) such that R(T) is closed and M » is
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contained in R(T 9 ). As R(T) is closed so is R(T 9 ) and by the first part of above
Theorem we have that R(T 9 ) 4JR(T)5M » and consequently i 9 R(T)94

R(T 9 ) 4JiR(T)5M » , where i denotes the inclusion of R(T) into Y. There-
fore, R(T)94JR(T)5 (i 9 )21 (M » ) 4JR(T)5 (i 8 M)». But, as M »’R(T 9 ) 4

R(i 9 ) we obtain that »R(i 9 ) 4» (N(i 8 )» ) 4N(i 8 ) ’M and hence N(i 8 )1M is
closed and so by [11, Lemma IV. 2.9], i 8 (M) is closed. Again Theorem 5 as-
sures that i 8 M is a minimal subspace of R(T)8. r

This Theorem is a generalisation of Theorem 6 and also of [19, Theorem 4.5].
Our next objective is to obtain a generalisation of Theorem 5 a) ` c) to ul-

traweakly compact operators. For this we shall need some auxiliar lemmata.

LEMMA 24. – Let T�L(X , Y) and N a subspace of Y 8. Then
d(JR(T), N » ) 4 sup ]hD0 : sup ]Ny 8 (y)N : y 8�MOBY 8 ( FhVyV for all y�
R(T)(.

PROOF. – The proof will not be included here since is long and it is very sim-
ilar to that of [6, Theorem 9], with only minor changes. r

LEMMA 25. – Let T�M »2WC(X , Y), E a subspace of Y such that R(T 9 ) ’
JE5M ». Then the subset G(E) »4 ]e�E : Je1v�T 9 BX 9 for some v�M »(

is s (Y , M)-compact in Y.

PROOF. – Let (ea ) be a net in G(E). Then there exists a net (va ) in M » such
that (Jea1va ) is a net in T 9 BX 9 which is s (Y 9 , Y 8 )-compact and also
s (Y 9 , M)-compact. Hence, a subnet (Jeb1vb ) of (Jea1va ) converges to some
u�T 9 BX 9 in the s (Y 9 , M)-topology. If u4Je1v , e�E , v�M » we have that
e4s(Y, M)2lim eb with e�G(E), showing that G(E) is s(Y, M)-compact in Y. r

LEMMA 26. – Let T�M »2WC(X , Y) with M »’ R(T 9 ). Then sup ]hD0 :
sup ]Ny 8 (y)N : y 8�MOBY 8 ( FhVyV for all y�R(T)( G ]sup ]VyV /VTV : y�
TBX

s (Y , M) ((21 G1.

PROOF. – As in the first part of Theorem 22 we obtain that R(T 9 ) 4

JR(T)5M » and so the above Lemma assures that G(R(T)) is s (Y , M)-
compact and hence s (Y , M) -closed. Consequently, TBX

s (Y , M) ’G(R(T)) ’
R(T). Let R»4 sup ]VyV /VTV : y� TBX

s (Y , M) (. For eD0 there is y� TBX
s (Y , M)

such that (R2e)VTVGVyV. Since TBX
s (Y , M) ’ R(T) we may assume that

y�R(T). Let y 8�BM , lD0. Then since y� TBX
s (Y , M) there is z�TBX such

that Ny 8 (z2y)NEl. Therefore Ny 8 (y)NGNy 8 (z)N1Ny 8 (z2y)NGVTV1l
and thus sup ]Ny 8 (y)N : y 8�BM ( GVyV /(R2e) and from this we obtain
the first inequality and the second is obvious from the definition. The
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case R4Q clearly gives sup ]hD0 : sup ]Ny 8 (y)N : y 8�MOBY 8 ( FhVyV

for all y�R(T)( 40. r

THEOREM 27. – Let T�M »2WC(X , Y) with M »’ R(T 9 ). Then TBX
s (Y , M)

is bounded in the norm topology on Y.

PROOF. – 0 Ed(JY , M » ) Gd(JR(T), M » ) 4 sup ]hD0 : sup ]Ny 8 (y)N :
y 8�MOBY 8 ( FhVyV for all y�R(T)( by Lemmata 2 and 24. Then applying
Lemma 26, sup ]VyV /VTV : y� TBX

s (Y , M) ( must be finite and the result is
proved. r

THEOREM 28. – Let N be a closed subspace of Y 8 with positive characteris-
tic. Then N »’ R(T 9 ) and T satisfies a) of Theorem 22 if and only if the fol-
lowing conditions hold for N:

i) N is s (Y 8 , Y)-dense.
ii) N »’ R(T 9 ).
iii) No proper closed subspace of N , say M , such that d(JR(T), M » ) D0

satisfies the conditions i) and ii) above.

PROOF. – Suppose that N » is contained in the closure of R(T 9 ), T�N »2

WC(X , Y) but for no proper s (Y 9 , Y 8 )-closed subspace V of N » T�V2

WC(X , Y). Then by the first part of Theorem 22, R(T 9 ) 4JR(T)5N ». Let M
be a closed subspace of Y 8 verifying conditions i) and ii) and M%N. Then N »%
M »’ R(T 9 ) and R(T 9 ) 4JR(T)5N »’JR(T)5M »’ R(T 9 ), that is, T satis-
fies the property b) and equivalently the property a) in Theorem 22. Conse-
quently M4N , so that iii) is true for N.

Conversely, if N is a closed subspace of Y 8 with positive characteristic sat-
isfying conditions i)-iii), then JR(T)5N »’ R(T 9 ). By Theorem 22 it is
enough to prove the other inclusion. Suppose that there is y 9�
R(T 9 )0JR(T)5N » and let U be the subspace spanned by y 9. Let M»4NO

»U. Then M is a proper subspace of N. Since U is finite dimensional,
JR(T)5N » is closed (as d(JR(T), N » ) Fd(JY , N » ) D0) and (NO»U)»4

N »1 (»U)»4N »1U [4, Theorem III. 3.9], it follows that
JR(T)5N »5U4JR(T)5(NO»U)» »4JR(T)5M » is closed, so that by
Lemma 1, d(JR(T), M » ) D0 and it is clear that M »4N »1U’ R(T 9 ).
Therefore by iii), M can not be s (Y 8 , Y)-dense. Let y�Y0]0( such that Jy�
JYOM ». Then Jy4v1ly 9 , v�N » , l�K0]0( (as JYON »4 ]0(). Conse-
quently, y 9�JY5N » , showing that R(T 9 ) ’JY5N ». Now, since N »’
R(T 9 ) as in the first part of Theorem 22 we obtain that R(T 9 ) ’JR(T)5N »

and the proof is complete. r

It follows from Theorem 28 that Theorem 22 is a generalisation of Theorem 5
a) ` b). Thus it is seen from Theorems 11, 27 and 28 that we have Theorem 5.
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To conclude, we shall obtain a result of factorisation for ultraweakly com-
pact operators. For this end, we begin by presenting the factorisation con-
struction of J. Davies, T. Figiel, W. Johnson and A. Pelczynski [5]. Given a Ba-
nach space Y , W a bounded convex symmetric non-empty subset of Y , we con-
struct a Banach space Z and an operator j : ZKY as follows. For n�N , define
Un »42n W122n BY which is an absorbing bounded convex symmetric set. Let
V . Vn be the Minkowski functional of Un or equivalently, the unique norm such
that ]y�Y : VyVn E1( ’Un ’ ]y�Y : VyVn G1(. We define, for y�Y , NNNyNNN»4

g !
n41

Q

VyVn
2h1/2

, Z»4 ]y�Y : NNNyNNNEQ( and let j denote the identity embedding

of Z into Y.
The factorisation construction may be used to factor any bounded operator

between Banach spaces. Let T�L(X , Y), W»4TBX , then we have:

THEOREM 29. – Given Banach spaces X and Y , an operator T�L(X , Y),
the factorisation construction produces a Banach space Z and an operator
j : ZKY with the following properties:

a) TBX ’ jBZ .
b) (Z , NNN . NNN) is a Banach space and j is continuous.
c) j 9 is injective and ( j 9 )21 JY’JZ.
d) T4 j( j 21 T) with j 21 T�L(X , Z) and j�L(Z , Y).

PROOF. – See [5, Lemma 1]. r

From this result we deduce that j satisfies the properties:
e) TBX ’ jBZ.

f) j 9 BZ 9’ 2n JTBX
s (Y , Y 8 )s (Y 9 , Y 8 )

122n BY 9.
Indeed, note that c) implies that jBZ is closed [16, Corollary I.D.4] and so

by a) it follows e).
From the definition of V . Vn we have that jBZ ’2n TBX 122n BY . Ap-

plying J we obtain JjBZ 4 j 9 JBZ ’2n JTBX 122n JBY ’ 2n JTBX
s (Y , Y 8 )s (Y 9 , Y 8 )

1

22n JBY
s (Y 9 , Y 8 )

. Then, since j 9 is s (Z 9 , Z 8 )2s (Y 9 , Y 8 ) continuous,
JBF

s (F 9 , F 8 )
4BF 9 which is s (F 9 , F 8 )-compact for any Banach space F , we have

the property f).

THEOREM 30. – Let T�M »2WC(X , Y) with M »’R(T 9 ) . Let Z and j be
produced by the factorisation construction. Then j 8 M is a minimal subspace
of Z 8.

PROOF. – We first verify that j 8 M is closed. Since M »’R(T 9 ) it follows
from d) that M »’R(T 9 ) ’R( j 9 ) ’N(j 8 )» and so, M »1N( j 8 )» is closed or
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equivalently M1N( j 8 ) is closed [4, Theorem III.3.9] which implies that j 8 M
is a closed subspace of Z 8 by virtue of [11, Lemma IV.2.9].

Since T is M »-weakly compact we have by Lemma 10 that JTBX
s (Y , M) 1

M » is s (Y 9 , M)-closed and so combining property f) with the fact that the
s (Y 9 , Y 8 )-closure of a set is contained in the s (Y 9 , M)-closure of the set,
we obtain that j 9 BZ 9’JY5M ». In consequence, M »’R( j 9 ) ’JY5M » and
thus [5, Lemma 4] assures that Z 94JZ5 ( j 9 )21 (M » ) 4JZ5 ( j 8 M)»

which according to Theorem 5 is equivalent to say that j 8 M is a minimal sub-
space of Z 8. r

It is easy to see that in general the converse of this Theorem is false. In-
deed, let T�L(l1 , c0 ) be a surjective operator. Then it is clear that T factors
through l1 which is a dual space but T is not ultraweakly compact.

We also note that if T factors through a quasi-reflexive space if and only if
there is a closed,s (Y 8 , Y)-dense subspace of Y 8, say M , such that M » is finite
dimensional and T is M »-weakly compact [1].
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