Alvarez, Teresa: 
Ultraweakly compact operators and dual spaces
 Bollettino dell'Unione Matematica Italiana Serie 8 7-B (2004), fasc. n.3, p. 697-711, Unione Matematica Italiana (English)
pdf (273 Kb), djvu (211 Kb).  | MR2101660  | Zbl 1179.47020  
Sunto
In questo articolo si introduce e si caratterizza la classe di tutti gli operatori ultradebolmente compatti, definiti negli spazi di Banach per mezzo dei loro operatori coniugati. Si analizza la relazione esistente fra un operatore ultradebolmente compatti e il suo coniugato. Si presentano esempi di operatori appartenenti a questa classe. Inoltre, si studia la connessione fra la compattezza ultradebole di $T\in L(X, Y)$ e i sottospazi minimali di $Y'$ e si presenta un risultato relativo alla fattorizzazione degli operatori ultradebolmente compatti.
Referenze Bibliografiche
[1] 
T. ÁLVAREZ-
V. M. ONIEVA, 
On operators factorizable through quasi-reflexive Banach spaces, 
Arch. Math. Vol., 
48 (
1987), 85-87. | 
MR 878013 | 
Zbl 0635.47017[2] 
J. M. F. CASTILLO-
M. GONZÁLEZ, 
Three-space Problems in Banach Space Theory (
Springer Lecture Notes in Math. 1667, 
1997). | 
MR 1482801 | 
Zbl 0914.46015[3] 
J. R. CLARK, 
Coreflexive and somewhat reflexive Banach spaces, 
Proc. Amer. Math. Soc., 
36 (
1972), 421-427. | 
MR 308748 | 
Zbl 0264.46009[5] 
J. DAVIS-
T. FIGIEL-
W. JOHNSON-
A. PELCZYNSKI, 
Factoring weakly compact operators, 
J. Funct. Anal., 
17 (
1976), 311-327. | 
MR 355536 | 
Zbl 0306.46020[7] 
N. DUNFORD-
J. T. SCHWARTZ, 
Linear Operators Part I (
Interscience, New York, 
1958). | 
Zbl 0084.10402[8] 
D. VAN DULST, 
Ultra weak topologies on Banach spaces, 
Proc. of the seminar on random series, convex sets and geometry of Banach spaces, 
Various Publ. Series, 
24 (
1975), 57-66. | 
MR 390724 | 
Zbl 0319.46010[9] 
D. VANDULST, 
Reflexive and superreflexiveBanach spaces (
Mathematisch Centrum, Amsterdam, 
1978). | 
MR 513590 | 
Zbl 0412.46006[10] 
G. GODOFREY, 
Espaces de Banach: Existence et unicité de certains préduax, 
Ann. Inst. Fourier, Grenoble, no. 3 (
1978). | 
MR 511815 | 
Zbl 0368.46015[12] 
M. GONZÁLEZ-
V. M. ONIEVA, 
Semi-Fredholm operators and semigroups associated with some classical operator ideals, 
Proc. Royal Irish Acad., Ser. A, 
88A (
1988), 35-38. | 
MR 974281 | 
Zbl 0633.47029[13] 
R. C. JAMES, 
Some self-dual properties of normed linear spaces, 
Ann. of Math. Studies, 
69 (
1972), 159-175. | 
MR 454600 | 
Zbl 0233.46025[14] 
N. I. KALTON-
A. PELCZYNSKI, 
Kernels of surjections from $L_1$-spaces with an applications to Sidon sets, 
Math. Ann. 309, no. 1 (
1997), 135-158. | 
MR 1467651 | 
Zbl 0901.46008[15] 
J. LINDENSTRAUSS-
L. TZAFRIRI, 
Classical Banach spaces I, sequence spaces (
Springer-Verlag, New York, 
1997). | 
MR 500056 | 
Zbl 0362.46013[16] R. D. NEIDINGER, Properties of Tauberian Operators on Banach Spaces (Doctoral dissertation, University of Texas at Austin, 1984).
[18] 
H. P. ROSENTHAL, 
On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L^p(\mu)$ to $L^r(\mu)$, 
J. Funct. Anal., 
4 (
1969), 176-214. | 
MR 250036 | 
Zbl 0185.20303[19] 
K. W. YANG, 
The generalized Fredholm operators, 
Trans. Amer. Math. Soc., 
216 (
1976), 313-326. | 
MR 423114 | 
Zbl 0297.47027