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Function Approximation of Seidel Aberrations
by a Neural Network.

ROSSELLA CANCELLIERE - MARIO GAI

Sunto. – In questo articolo viene studiata la possibilità di usare una rete neurale feed-
forward per identificare eventuali discrepanze tra un’immagine astronomica reale
ed un suo modello predefinito. Questo compito viene affrontato grazie alla capacità
delle reti neurali di risolvere un problema di approssimazione non lineare di fun-
zioni attraverso la costruzione di un’ipersuperficie approssimante un insieme da-
to di punti sparsi. La codifica delle immagini viene effettuata associando ciascuna
di esse ad alcuni momenti statistici opportunamente scelti, calcolati relativamente
agli assi ]x , y(, ottenendo in tal modo un metodo computazionalmente economico
che permette un approccio realmente efficace alla diagnostica delle aberrazioni di
Seidel.

Summary. – This paper deals with the possibility of using a feedforward neural net-
work to test the discrepancies between a real astronomical image and a predefined
template. This task can be accomplished thanks to the capability of neural net-
works to solve a nonlinear approximation problem, i.e. to construct an hypersur-
face that approximates a given set of scattered data couples. Images are encoded
associating each of them with some conveniently chosen statistical moments, eval-
uated along the ]x , y( axes; in this way a parsimonious method is obtained that
allows a really effective approach to Seidel aberration diagnostics.

1. – Introduction.

It is well-known that an intimate connection between approximation theory
and neural networks exists: given a compact set D%RP , a multilayer percep-
tron with one hidden layer can uniformly approximate any continuous function
in C(D) to any required accuracy. This result was established by Cybenko [3],
Hornik et al. [9] e Funahashi [5], and an excellent survey of this topic is avail-
able in [4].

The first largely successful neural network model, the multilayer percep-
tron, was presented in 1986 by D. Rumelhart et al. [12] as an extension of the
perceptron model [11].

Recently some attempts to use neural networks in astronomy have been
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performed, mainly in the field of adaptive optics: the reader can find details
in the papers by Lloyd-Hart et al. [10] and Wizinowich et al. [13].

A possible application concerns the location of the position of a stellar im-
age; this is possible with accuracy well below its characteristic size, when the
signal to noise ratio (SNR) is sufficiently high. The location uncertainty is s4

a QL/SNR , where a is a factor keeping into account geometric factors and the
centring algorithm and L is the root mean square width of the image ([7]). The
best estimate of image position is obtained by a least square approach, evalu-
ating the discrepancy between the data and the template describing the refer-
ence image. The location algorithm is therefore very sensitive to any variation
of the actual image with respect to the selected template.

It is of paramount importance to check the compatibility between the real
image and the reference profile; also important is the capability of extracting
from the data some parameters suitable for a new definition of the template, in
order to improve its similarity to the data. Self-calibration of the data, by de-
duction of the parameters for optimisation of the image template, is a key ele-
ment in the control of the systematic effects in the position measurement.

Because of these reasons our target is the implementation of a tool for
analysis of realistic images and deduction of a set of aberration parameters
able to describe their discrepancy with respect to the ideal, non-aberrated
image.

In Section 2 we resume the main features of sigmoidal neural networks and
backpropagation algorithm, with a brief reminder of the specific definitions.
In Section 3 we discuss the image characterisation problem addressed in the
present work; in Section 4 we describe the generation of the data set, its pro-
cessing and the current results.

2. – Sigmoidal neural networks.

In this section we just remind some of the basic definitions and character-
istics; a comprehensive review on neural network properties and applications
can be found in [8].

Neural networks learn from examples, that is, given the training set of N
multi-dimensional data pairs ](xi , F(xi ) ) /xi �RP , F(xi ) �RQ (, i41, R , N ,
after the training if xi is the input to the network, the output is close to, or co-
incident with, the desired answer F(xi ) and the network has generalization
properties too, that is it gives as output F(xi ) even if the input is only «close
to» xi , for instance a noisy or distorted or incomplete version of xi .

This can be expressed as a classical approximation problem: given a set of
points xi , i41, R N , distinct and generally scattered, in a domain D%RP ,
and a linear space F(D), spanned by continuous real basis functions oj ,
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Fig. 1. – A multilayer perceptron with one hidden layer.

j41, R , H , the multivariate approximation problem at scattered data pairs
(xi , F(xi ) ) consists in finding a function o(x) �RQ , whose components are a
linear superposition of the basis functions oj , minimising the error functional
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The multilayer perceptron, with sigmoidal units in the hidden layers, is one
of the most known and used neural network model: it computes distances in
the input space (i.e. among patterns xi �RP) using a metric based on inner
products and it is usually trained by the backpropagation algorithm.

The architecture of a sigmoidal neural network is schematically shown in
Fig. 1, in which we find the most common three-layers case. The network is
described by the following equations:
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Here a is the input to each unit, o is its output and wij is the weight associ-
ated to the connection between units i and j ; each unit is defined by two index-
es, a superscript specifying its layer (i.e. input, hidden or output layer) and a
subscript labelling each unit in a layer.

The training procedure must identify the best set of weights ]wij ( solving
the approximation problem o(xi ) BF(xi ) and this is usually reached by the it-
erative process corresponding to the standard backpropagation algorithm.

At each step, each weight is modified accordingly to the gradient descent
rule (a more detailed description can be found in [12]), completed with the mo-
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mentum term, wij 4wij 1Dwij , Dwij 42h
¯E

¯wij

where E is the error functional
defined above.

This procedure is iterated many times over the complete set of examples
]xi , F(xi)( (the training set), and under appropriate conditions it converges to a
suitable set of weights defining the desired approximating function. Convergence
is usually defined in terms of the error functional, evaluated over the whole
training set; when a pre-selected threshold ET is reached, the neural network
can be tested using a different set of data ]xi8 , F(xi8)(, the so called test set.

3. – Telescope images.

The ideal image produced by a telescope corresponds to that of a circular
aperture, derived in basic textbooks on optics; a star can be considered as a
point-like source at infinity, producing a flat wavefront for an observer outside
the atmosphere. We adopt the notation from [1]. The ideal monochromatic im-
age produced by an unobstructed circular pupil of diameter D , fed by such a
planar wavefront, at wavelength l , is radial and described by the squared Airy
function:

I(r) 4k[2 J1 (r) /r]2 .(1)

Here J1 is the Bessel function of the first kind, order one, k a normalisation
constant, and r4D/2 the aperture radius. The Airy diameter, between the
first two minima, is 2.44l /D in angular units; the linear scale is defined by the
magnification.

Real images can be described by an extension of the formalism which intro-
duces perturbations to the planar wavefront, as in the Seidel aberration set,
which includes five terms:

As : Spherical aberration;
Ac : Coma;
Aa : Astigmatism;
Ad : Defocus (field curvature);
At : Distortion (tilt).

The five Seidel aberrations define the contributions to the local phase over
the aperture (i.e. the deviation from planarity of the wavefront) by means of
the lower order circular functions; the phase aberration F is

F(r , u) 4
2p

l
[As r 4 1Ac r 3 cos u1Aa r 2 cos2 u1Ad r 2 1At r cos u] ,(2)

where r , u are the radial pupil coordinates (normalised radius, azimuth).
The generic diffraction image on the focal plane associated to a set of aber-

ration values is described by the square modulus of the Fourier Transform of
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Fig. 2. – A section of the ideal image (solid line), and of two aberrated images generated
with one wavelength of coma (dashed line) and one wavelength of defocus (dotted line).

the pupil function e iF :

I(r , f) 4
k

p 2 Ns
0

1

drs
0

2p

du re iF(r , u) e 2iprr cos (u2f)N
2

(3)

where r and f are the image coordinates. If F40 (non-aberrated case,
]An ( 40), eq. (1) is retrieved. In fig. 2, we show the ideal image (solid line),
and two aberrated images corresponding to one wavelength of respectively co-
ma (dashed line) and defocus (dotted line); the deformation induced on the im-
age is asymmetric in the former case, corresponding to a displacement of the
image center of gravity, whereas it is symmetric in the latter case, which
leaves unaltered the apparent image position.

By replacement of eq. (2) in eq. (3), it is possible to put in evidence the non-
linear relation between the aberration set and the image.

Hereafter, we adopt the regime of small aberrations, corresponding to
the classical Rayleigh criterion of one quarter of wavelength (]An ( �
[20.25, 0.25]), for the test set. We select for training a slightly larger interval
(]An ( � [20.3, 0.3]), to avoid potential boundary problems. In case of larger
aberrations, the image quality degrades rapidly. Our interest is focused on the
classification capability of the neural network in the case of small image per-
turbations, i.e. small aberrations.

3.1. Image encoding.

Typical astronomical images are sampled over a small number of pixels, to
maximise the field of view, i.e. observe simultaneously a large area. The mini-
mum sampling requirements, related to the Nyquist-Shannon criterion, are of
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Fig. 3. – Airy image sampled over a low-resolution pixel array. Small displacements of
the image vs. the detector provide large variations of the detected signal.

order of two pixels over the full width at half maximum, or about four-five pix-
els within the Airy diameter. The signal detected in each pixel is then affected
by strong variations depending on the initial phase (or relative position) of the
parent intensity distribution (the continuous image) with respect to the pixel
array, as shown in Fig. 3. The pixel intensity distribution of the measured im-
ages, thus, is not convenient for evaluating the discrepancy of the underlying
image (3) with respect to the nominal Airy image (1).

It may be possible to add a magnifying device, providing good sampling for
the images in a small region: in this case, the resolution is adequate to min-
imise the effects of the finite pixel size ([6]). However, assuming a sampling of
20 pixels per Airy diameter, and reading up to the third Airy ring, the image
size is 60360 43600 pixels. Direct usage of such images as input data to the
neural network is impractical, because of the large computational load in-
volved, and identification of a more compact encoding, possibly removing the
need for additional custom hardware, appears as appealing.

The encoding scheme we adopt for the images allows extraction of the de-
sired information for classification: each input image is described by the
centre of gravity and the first central moments, up to the fourth order:

m x4
ssdx dy xQI(x, y)

ssdx dy I(x, y)

s x
24

ssdx dy (x2m x)2 Q I(x, y)

ssdx dy I(x, y)
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The central moments are much less sensitive than the image itself to the ef-
fects related to the finite pixel size; therefore, they can be deduced also from
the low resolution images mentioned above, without the need for high resolu-
tion detectors. Moreover, the central moments have an immediate physical
meaning:

l the first order moment provides the centre of gravity of the image
l the second order central moment is the mean square width
l the third order central moment (skewness) is an index of the image

asymmetry
l the fourth order central moment (kurtosis) is an index of how much

peaked is the distribution; for a Gaussian, its value is 3.

It is important to verify the sensitivity of these quantities to aberrations;
for instance the x square width is shown in fig. 4, where the values obtained
for independent variation of each aberration, are plotted side by side for ease
of comparison over the selected range [20.3l, 0.3l]. It appears to be sensitive
mostly to defocus, much less to spherical aberration and coma, and insensitive
to astigmatism and distortion. We introduced this encoding tecnique in [2],
where it is possible to find more details on this argument. Here we select as
suitable input variables for our neural network ten moments i.e. s 2

x , s 2
y ,

M(0 , 3 ), M(0 , 4 ), M(1 , 1 ), M(2 , 1 ), M(1 , 2 ), M(3 , 1 ), M(1 , 3 ) and M(2 , 2 );
because aberrations differently influence different sections of each image, we
measured the moments, according to eq. (4), in two different subareas of the
global image, each treated as a point, therefore the input vector to the neural
network has 20 components.

The Seidel aberrations are the targets of our network, therefore the output
vector of the neural network is five-dimensional.

Fig. 4. – Variation of the x variance vs. each aberration.
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4. – Data processing and results.

In this section we describe the generation of the training and test sets and
the results related to the neural network performances.

The training set consists of T42500 instances; we placed 100 samples on
each axis (variation of a single aberration at a time) while the remaining 2000
points are randomly distributed, i.e. each variable is independently chosen.

From a given set of five aberration values, the image is built accordingly to
eq. (3) and (2); then the moments corresponding to eq. (4) are computed and
the values inserted in the data file.

The test set consists of T42500 instances generated in a similar way. A to-
tal of 2500 test instances has been generated.

We optimized a sigmoidal neural network with an hidden layer made by
100 units on the training set and verified it on the test set; the training re-
quired 8000 iterations. Because the desired behaviour of the neural network is
the computation, over the test set, of output values coincident with the pre-de-
fined target values, the plot of output vs. target for each aberration should be
ideally the bisector of the first quadrant; these plots are shown in fig. 5.

We also computed the best fit lines together with the fit errors; the results
are shown in tab. 1.

The outputs computed by the neural network are quite consistent with the
desired test targets; coma and distortion are the best recognized aberrations,

Fig. 5. – Aberration recognition.
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TABLE 1. – Results of best fit between the network output and the test set targets, for
each output variable.

Spherical a40.0126
b40.977

s a40. 0006
s b40. 003

Coma a40. 00069
b40. 9999

s a40. 00002
s b40. 0001

Astigmatism a420. 0008
b40. 986

s a40. 0003
s b40. 002

Defocus a40.0030
b41. 002

s a40. 0003
s b40. 002

Distorsion a420.00029
b40.9980

s a40. 00002
s b40. 0001

whereas spherical aberration, astigmatism and defocus are affected by larger
systematic errors and larger dispersion.

5. – Conclusions.

In this paper we use a neural network to recognize aberrations in astro-
nomical images. We test the performances of the network encoding the prob-
lem through a compact set of image descriptors, selected among the statistical
moments up to the fourth order.

The relation between network outputs and targets is quite close to the ide-
al linear case; standard improvement methods as increasing the statistical
sample for training and the number of internal nodes, may further improve
the performance.

We plan in our future work the optimization of input moment selection and
detailed investigations of noise propagation properties.
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