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On Some Numerical Properties of Fano Varieties.

CINZIA CASAGRANDE(*)

Sunto. – Questa nota è il testo di una conferenza tenuta al XVII Convegno dell’Unione
Matematica Italiana, tenutosi a Milano, 8-13 settembre 2003. Parlo di alcune con-
getture e teoremi sulle relazioni tra l’indice, lo pseudo-indice e il numero di Picard
di una varietà di Fano. I risultati in questione fanno parte di un lavoro in collabo-
razione con Bonavero, Debarre e Druel.

Summary. – This is the text of a talk given at the XVII Convegno dell’Unione Matemat-
ica Italiana held at Milano, September 8-13, 2003. I would like to thank Angelo
Lopez and Ciro Ciliberto for the kind invitation to the conference. I survey some
numerical conjectures and theorems concerning relations between the index, the
pseudo-index and the Picard number of a Fano variety. The results I refer to are
contained in the paper [3], wrote in collaboration with Bonavero, Debarre and
Druel.

1. – Introduction.

Let X be a smooth, complex projective variety of dimension n . Recall that
the Picard group Pic X is the group of isomorphism classes of line bundles on
X , and the anticanonical bundle 2KX � Pic X is the determinant of the tan-
gent bundle of X . X is called a Fano variety if 2KX is ample, or equivalently if
c1 (X) is represented by a positive form. When X is Fano, Pic XCH 2 (X , Z) is a
free abelian group of rank r , the Picard number of X .

Examples of Fano varieties are:

1) the projective space Pn ;

2) the complete intersections X4Y1 OROYr , Yi a generic hypersur-
face of degree di in PN , with d1 1R1dr GN;

3) homogeneous varieties, namely varieties acted on transitively by a
connected linear algebraic group (for instance, grassmannians and flag
varieties);

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.
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4) any degree d Galois cyclic cover XKPn , ramified over a smooth hy-
persurface Y%Pn of degree dh , with h(d21) Gn;

5) the moduli spaces M(r , L , C) of stable vector bundles of rank r on a
fixed curve C (smooth, of genus at least 2), with determinant a fixed line bun-
dle L� Pic C such that (deg L , r) 41;

6) all (finite) products of Fano varieties.

Fano varieties have a very rich geometry and have been classically inten-
sively studied, see the book [IP99] for a complete survey on the subject.

Up to dimension 3, Fano varieties are classified: in dimension 1 there is
only P1 . In dimension 2, there are 10 deformation types: P1 3P1 and the blow-
ups of P2 in d generic points, d� ]0, R , 8(. For n43 there are 105 deforma-
tion types (the classification is due to Iskovskikh, 1977-78, in the case r41; to
Mori and Mukai, 1981 (1), in the case rF2; see [IP99], Ch. 4 and §7.1).

It is well-known that for nF3, not all Fano varieties are rational. For in-
stance, the generic cubic hypersurface in P4 is not rational (Clemens-Griffiths,
1972; see [IP99], Ch. 8 and [Kol96], V.5). Anyway, Fano varieties are close to
the projective space in the sense that they contain «lots» of rational curves
(by a rational curve we mean the image of a non-constant morphism P1 KX).
This is formalized saying that every Fano variety is rationally connected
(Campana and Kollár-Miyaoka-Mori, 1992; see [IP99], Corollary 6.2.11 and
[Kol96], V.2), namely any two points in X can be joined by a rational curve.

This result implies that in any dimension n there is a finite number of de-
formation types of Fano varieties, with an explicit bound in n (Nadel, Cam-
pana, Kollár-Miyaoka-Mori, 1990-1992; see [IP99], §6.2 and [Kol96], V.2.2.4 for
a history of the result).

2. – Toric Fano varieties.

A toric variety is a normal, complex algebraic variety, acted on by the
group (C*)n , and having a dense orbit. (Toric varieties do not need to be Fano,
they don’t even need to be projective.)

Toric Fano varieties are very special among Fano varieties; here are some
of their properties:

1) there is a finite number of them in each dimension (Batyrev, 1982, see
[Bat99] and references therein);

2) they are classified up to dimension 4 (for n43 the classification is
due to Batyrev, 1981, and Watanabe-Watanabe, 1982, see [Oda88], §2.3 p. 90;

(1) Mori and Mukai noticed in 2002 that there is a family missing from their original
list.
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for n44 the classification is due to Batyrev [Bat99], see also [Sat00], example
4.7 for a missing case in Batyrev’s list);

3) they are rational;

4) they are rigid, namely they do not have non-trivial infinitesimal de-
formations. This is because for any smooth toric projective variety X , the Bott
vanishing holds (see [Oda88], §3.3), namely H p (V q

X 7L) 40 for any pD0, qF

0 and L� Pic X ample. If X is Fano, this gives H 1 (X , TX ) 40 (TX the tangent
bundle of X).

Some examples of toric Fano varieties are: Pn ; the blow-up of P2 in 1, 2 or 3
points; the blow-up of Pn along a linear subspace; any (finite) product of toric
Fano varieties.

To any toric Fano variety one can associate an n-dimensional convex poly-
tope (a so-called Fano polytope), in such a way that the variety is determined
by its polytope. Hence, when studying toric Fano varieties, one can use – to-
gether with the standard geometric tecniques – also their combinatorial fea-
tures. This makes toric Fano varieties easier and more explicit to study; their
are a good testing ground for conjectures about general Fano varieties. For
more on toric Fano varieties, see the surveys [Deb03, Wiś02] and references
therein.

3. – Index and pseudo-index of a Fano variety.

An important invariant of Fano varieties is the index, defined as

r»4 max ]m�ZNthere exists H� Pic X such that 2KX 4mH(.

It is well known that (Kobayashi-Ochiai, 1970, see [IP99], Corollary
3.1.15):

1) r� ]1, R , n11(;

2) r4n11 if and only if X4Pn ;

3) r4n if and only if X%Pn11 is a smooth quadric.

There are other classified cases:

4) r4n21: this case has been classified by Iskovskikh in dimension 3
and by Fujita for general n (see [IP99], §3.2); for nF7 there are only 4 defor-
mation types in any dimension, all with r41.

5) r4n22: the classification is due Wiśniewski in the case rF2 (see
[IP99], Theorems 7.2.1 and 7.2.2) and mainly to Mukai in the case r41 (see
[IP99], §5.2). Again, for nF11 there are only 5 deformation types in any di-
mension, all with r41.
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Observe that in dimension 4, the only non classified case is r41.
The criterion that emerges from these results is that: Fano varieties with

bigger index are simpler. In 1988 Mukai formulated the following:

CONJECTURE M ([Muk88]). – Let X be a Fano variety of dimension n , Pi-
card number r and index r . Then

r(r21) Gn ,

and equality holds if and only if X4 (Pr21 )r .

In 1990 Wiśniewski [Wiś90], proving a case of Conjecture M (property (c)
below), introduced a new invariant of X , closely related to the index. This is
the pseudo-index, defined as:

i»4 min ]2KX QCNC rational curve in X(.

Observe that iF1 by Kleiman’s criterion of ampleness. Moreover r divides i ,
because 2KX 4rH , so for any curve C in X you have

2KX QC4r (H QC).

It can be rE i: for instance, P1 3P2 has index 1 and pseudo-index 2.
Basic properties of i are:

(a) iGn11 (Mori, 1979, see [Kol96], Theorem V.1.1.6);

(b) i4n11 if and only if X4Pn [CMSB02];

(c) if iD
1

2
n11, then r41 [Wiś90].

This last property, as Wiśniewski implicitly noticed in [Wiś90], leads to for-
mulate the following stronger conjecture:

CONJECTURE GM ([BCDD03]). – Let X be a Fano variety of dimension n ,
Picard number r and pseudo-index i . Then

r(i21) Gn ,

and equality holds if and only if X4 (Pi21 )r .

Observe that the inequality is meaningful only if iD1.
Observe also that, by properties (a) and (b), Conjecture GM holds if

r41.
If r42, property (c) gives the inequality iG

1

2
n11. If moreover i4

1

2
n1

1, then X4 (Pn/2 )2 (this is due to Wiśniewski [Wiś90] if r4 i and to Occhetta
[Occ03] in general). Hence Conjecture GM holds for r42 too.

Conjecture GM remains open in full generality, but it has been proved in a
number of cases:
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THEOREM 1 ([BCDD03]). – Let X be a Fano variety of dimension n , Picard
number r and pseudo-index i . Conjecture GM holds in the following
cases:

1) nG4;

2) X is toric and nG7;

3) X is toric and iF
1

3
n11;

4) X is a homogeneous variety.

Recently, Andreatta, Occhetta and Chierici have proved some more
cases:

THEOREM 2 ([ACO03]). – Let X be a Fano variety of dimension n , Picard
number r and pseudo-index i . Conjecture GM holds in the following
cases:

1) n45;

2) iF
1

3
n11 and X has a fiber type extremal contraction;

3) iF
1

3
n11 and X has no small extremal contractions.

4. – Families of rational curves.

The basic tool in the proof of Theorem 1 is Mori theory, and more generally
the study of families of rational curves on X . We describe here a part of our ap-
proach to the problem. The reference for this subject is the book
[Kol96].

Let X be a smooth, complex projective variety of dimension n . There is a
variety RatCurvesn (X) parametrizing birational morphisms P1 KX , modulo
automorphisms of P1 . This is contructed as follows: consider the Hilbert
scheme Hombir (P1 , X) of birational morphisms from P1 to X and consider its
normalization. Then RatCurvesn (X) is the quotient of this normalization under
the action of Aut (P1 ).

An irreducible component V of RatCurvesn (X) is called a family of ratio-
nal curves; curves parametrized by V are all deformation of a same rational
curve in X , so they are algebraically and numerically equivalent. Hence, they
all have the same anticanonical degree, which we denote by deg2KX

V .
The family V is called unsplit if and only if V is proper (compact) as a vari-

ety; this is equivalent to asking that curves parametrized by V do not deform
to reducible curves in X .

Being unsplit is a very strong property. If X is Fano, a family V such that
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deg2KX
VE2 i is necessarily unsplit: indeed, if a rational curve C deform to a

reducible curve C1 NC2 , then 2KX QCF2KX QC1 2KX QC2 F2 i .
Conversely, an unsplit family can not have «too high» anticanonical

degree:

THEOREM 3 ([BCDD03]). – Let X be a smooth, complex projective variety
of dimension n . Let V1 , R , Vk be unsplit families of rational curves in X
such that the classes of V1 , R , Vk are algebraically independent. For any x�
X define

L(V1 , R , Vk )x »4 ]y�XNthere exist curves C1 , R , Ck in X such that x�C1

and y�Ck , Cj is in Vj and Cj OCj11 c¯ for all j( .

If L(V1 , R , Vk )xc¯ , then deg2KX
V11R1deg2KX

VkGdim L(V1 , R , Vk )x1k.

Theorem 3 gives the following general approach to Conjecture GM:

COROLLARY 4. – Let X be a Fano variety of Picard number r. Assume that
there exist unsplit families V1 , R , Vr of rational curves in X such that

(i) the classes of V1 , R , Vr are algebraically independent;

(ii) there exists curves C1 , R , Cr in X such that Ci is in Vi and Ci O
Ci11 c¯ for all j.

Then Conjecture GM holds for X.

PROOF. – By (ii), there exists x1 �X such that L(V1 , R , Vr )x1
c¯. If i is the

pseudo-index of X, we have deg2KX
Vj F i for all j, so Theorem 3 yields

riG deg2KX
V1 1R1deg2KX

VrG dim L(V1 , R , Vr )x1
1rGn1r ,

namely r(i21) Gn. Assume now that r(i21) 4n. Then n1r4ri, hence all
inequalities above are equalities. In particular we have deg2KX

Vj 4 i for all j
and dim L(V1 , R , Vr )x1

4n, so L(V1 , R , Vr )x1
4X (L(V1 , R , Vr )x1

is a closed
subset, see [BCDD03], §5). This means that for every point y�X there is a
curve belonging to Vr and passing through y, namely that Vr is a covering
family.

Now choose a curve Cr8 in Vr passing through x1 , and xr�Cr8 . By construc-
tion L(Vr , V1 , R , Vr21 )xr

c¯, so applying again Theorem 3, we see that
L(Vr , V1 , R , Vr21 )xr

4X and that Vr21 is a covering family. Proceeding
in this way, for each j4r , R , 2 we find xj such that
L(Vj , R , Vr , V1 , R , Vj21 )xj

4X, so Vj21 is a covering family.
Thus V1 , R , Vr are covering families of degree i, and Theorem 1 of [Occ03]

yields X` (Pi21 )r.
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5. – Other properties of the pseudo-index.

The pseudo-index has some remarkable properties also in relation to
morphisms.

PROPOSITION 5 ([BCDD03]). – Let X be a Fano variety of pseudo-index i X ,
Y a smooth variety and f : XKY a surjective morphism with connected
fibers.

If dim YE i X , then Y4Pr and X4F3Pr , F a smooth variety.

Again, we observe the principle that the bigger i X is, the stronger condi-
tions we find on X .

Recently Bonavero has studied the behaviour of the pseudo-index under a
smooth blow-up XKY . Assume X and Y are Fano and denote by rX and i X (re-
spectively, rY and i Y) the index and the pseudo-index of X (respectively, of Y).
We have rX GrY , and one would expect a similar behaviour for the pseudo-in-
dex. Quite surprisingly, it depends on the dimension of the center of the
blow-up:

THEOREM 6 ([Bon03]). – Let X and Y be Fano varieties of dimension n ,
such that XKY is the blow-up along a smooth subvariety Z%Y .

If dim ZE
1

2
(n1 i Y 21) or dim ZDn222 i Y , then i X G i Y .

These bounds are optimal: in [Bon03] you can find examples with i X D i Y

and dim Z4
1

2
(n1 i Y 21) or dim Z4n222 i Y .

6. – Related open questions.

6.1. – There are no known bounds (even conjecturally, to my knowledge)
for the Picard number r of an n-dimensional Fano variety X .

1) Conjecture GM would give rGn if iD1.

2) What happens when i41?

In the toric case, it is known that rG2nk2n1o(n 3/2 ) [VK85, Deb03], but
conjecturally the bound should be linear:

rG
.
/
´

2n

2n21

if n is even,

if n is odd.

This bound holds for toric Fano varieties of dimension nG5 [Bat99,
Cas03b].
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6.2. – Rational curves C in X having minimal anticanonical degree, namely
such that 2KX QC4 i , should be the analogue of lines in projective space. It is
reasonable to expect that these curves have special properties:

CONJECTURE. – Let X be a Fano variety of pseudo-index i and C%X a ra-
tional curve. If 2KX QC4 i , then C is extremal.

This conjecture has been proved for toric Fano varieties [Cas03a].

6.3. – We conclude with a conjecture about characterization of Fano
varieties.

CONJECTURE ([Kol96], Conjecture III.1.2.5.4). – Let X be a smooth projec-
tive variety. If 2KX QCD0 for any curve in X , then X is Fano.

The conjecture is trivially true if X is a toric variety (see [Oda88], Theorem
2.18), and has been proved for Fano varieties of dimension nG3 (Matsuki,
1987, see [Kol96], Remark III.1.2.5.5).
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[Wiś02] JAROSLAW A. WIŚNIEWSKI, Toric Mori theory and Fano manifolds. In Ge-
ometry of Toric Varieties, volume 6 of Séminaires et Congrés, pages 249-
272. Société Mathématique de France, 2002.

Dipartimento di Matematica, Università di Roma Tre
Largo San Leonardo Murialdo 1, 00146 Roma - Italy

casagranHmat.uniroma3.it

Pervenuta in Redazione
il 3 dicembre 2003


