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Investigations of Smooth Functions
and Analytic Sets Using Fractal Dimensions.

EMMA D’ANIELLO (*)

Sunto. – Si parte dal seguente problema: data una funzione f : [0 , 1 ] K [0 , 1 ], cosa si
può dire riguardo l’insieme dei punti nel codominio in cui gli insiemi di livello so-
no grandi secondo una opportuna definizione. Ciò porta alla necessità di analizza-
re la struttura degli insiemi di livello per funzioni di classe C n. Analogo problema
viene affrontato per le funzioni di classe C n , a che sono in un certo senso intermedie
fra quelle di classe C n e quelle di classe C n11. I risultati coinvolgono strumenti di
analisi reale, teoria geometrica della misura e teoria descrittiva classica degli
insiemi.

Summary. – We start from the following problem: given a function f : [0 , 1 ] K [0 , 1 ]
what can be said about the set of points in the range where level sets are «big» ac-
cording to an opportune definition. This yields the necessity of an analysis of the
structure of level sets of C n functions. We investigate the analogous problem for
C n , a functions. These are in a certain way intermediate between C n and C n11 func-
tions. The results involve a mixture of Real Analysis, Geometric Measure Theory
and Classical Descriptive Set Theory.

1. – Introduction.

Some nineteenth century mathematicians were aware of the existence of
continuous functions that had no point of differentiability. Constructions of
such functions involved summations of infinite series whose successive terms
contributed increasingly to the nondifferentiability of their sum. Perhaps the
first such construction was given by K. Weierstrass around 1985 [3].

In early 1900’s H. Lebesgue proved The Lebesgue Differentiation Theo-
rem, i.e. every real-valued function of bounded variation defined on the line
must be differentiable almost everywhere. From this we have that a nowhere
differentiable function can not be of bounded variation.

We recall that if a property is valid for all points in a complete metric

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.



EMMA D’ANIELLO638

space except for a set of the first category, we say that the property
holds tipically.

Use of The Baire Category Theorem to prove the existence of continuous
functions without points of differentiability had to wait until 1931, at which
time S. Banach [1] and S. Mazurkiewicz [14], in separate papers published in
the journal Studia Mathematica, provided such proofs. They proved that a
typical f�C( [0 , 1 ] ) (here C( [0 , 1 ] ) is given with the sup norm) is nowhere dif-
ferentiable. Banach also characterized functions of bounded variation in a theo-
rem which has come to be known as The Banach Indicatrix Theorem:

THEOREM 1.1. – A function f : [0 . 1 ] KR is of bounded variation if and
only if s

R
I(y) dyE1Q , where

I(y) 4
.
/
´

n

1Q

if the cardinality of f 21 (]y() is n

if f 21 (]y() is an infinite set .

From these results it follows that a typical function f�C( [0 , 1 ] ) has to
wiggle a lot, it has the property that for many y 8 s the set f 21 (]y() must be
«big».

In what follows we call f 21 (]y() a level set of f.
Motivated by the above results, in 1977 Bruckner and Garg investigated

level sets of a typical f�C( [0 , 1 ] ). They gave a full description of level sets:
they showed that a typical continuous function has the property that all except
possibly countably many of its level sets are perfect. Namely, they
proved:

THEOREM 1.2. – ([4]) For a typical f�C( [0 , 1 ] ) there exists a countable set
Sf % (min f , max f ) such that the level set f 21 (]y() is:

1. a nowhere dense perfect set if y�Sf N ]min f , max f (,
2. a single point if y4 min f or max f , and
3. the union of a nowhere dense perfect set and an isolated point of

f 21 (]y() if y�Sf .

Function f in the above theorem has a local extremum at (p , f (p) ) if p is an
isolated point of f 21 (]p(). Hence, what this theorem implies is that a typical
function f�C( [0 , 1 ] ) must oscillate a lot since all but two of its level sets con-
tain a portion which is homeomorphic to the Cantor set.

The above result of Bruckner and Garg has inspired further research con-
cerning level sets of functions ([10], [6], [7], [9], [8]). Darji and Morayne [10]
investigated the analogue of Bruckner-Garg theorem for smooth functions.
Consider C n ( [0 , 1 ] ), the space of n-times continuously differentiable func-
tions endowed with the usual norm. They showed that a typical f�C 1 ( [0 , 1 ] )



INVESTIGATIONS OF SMOOTH FUNCTIONS ETC. 639

is either strictly monotone or f has uncountably many level sets having exactly
one accumulation point and all other level sets of f are finite. Namely, they
proved:

THEOREM 1.3. – A typical f�C 1 ( [0 , 1 ] ) is either strictly monotone or there
exist a perfect nowhere dense set Pf % (min f , max f ) and a countable dense
set Df %Pf such that the level set f 21 (]y() is:

1. a set with exactly one accumulation point if y�Pf 0Df ,
2. a finite set if y�Df N ( (min f , max f )0Pf ), and
3. a single point if y� ]min f , max f (.

Moreover, they showed that the Lebesgue measure of Pf 0Df is zero. It is
also shown in their paper that for nF2 a typical function in C n ( [0 , 1 ] ) has the
property that all of its level sets are finite.

The results mentioned above motivate the following natural question:

QUESTION. – What can we say in the opposite direction, i.e. what is the
«worst» case behavior of C n functions as far as the level structure is
concerned?

Our results in this direction involve a mixture of Real Analysis, Geometric
Measure Theory and Classical Descriptive Set Theory.

2. – The C n case (0 GnG1Q).

The proofs of the results mentioned in this section are contained in a joint
paper with U. B. Darji [7].

The general problem motivating our results is the following:
Given a function f�C n ( [0 , 1 ] ), f : [0 , 1 ] K [0 , 1 ], what can be said about

the sets of points in the range where level sets of f are «big»? Of course, one
has to decide what «big» means and what it means «to describe» this set.

It is a classical result of Mazurkiewicz and Sierpinski [15] that M’ [0 , 1 ] is
analytic if and only if M is equal to the set ]y : f 21 (]y() is uncountable( for
some continuous function f. We characterize the set of points where level sets
of continuous functions are perfect. Namely, we prove:

THEOREM 2.1. – Let M’ [0 , 1 ]. The following are equivalent:

1. M is the union of a Gd set and a countable set,
2. there exists a continuous function f : [0 , 1 ] K [0 , 1 ] such that

f 21 (]y() is perfect for all y�M and f 21 (]y() is finite otherwise.
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In order to characterize the set of points where level sets of a C n function
(1 GnG1Q) are perfect and the set of points where level sets of a C n func-
tion (1 GnG1Q) are uncountable we first need few definitions and some
terminology.

DEFINITION 2.2. – Let f be a C n function (1 GnEQ). For a positive inte-
ger i , we let f (i) be the i-th derivative of f and f (0) 4 f. We let Z( f , n) denote the
set

]x : f (i) (x) 40 for all 1 G iGn( .

We call Z( f , n) a zero-derivative set. We use V f Vn to denote n-norm, i.e. !
i40

n

V f (i)
V ,

where V QV denotes the sup norm. If f�C Q, then Z( f , Q) is simply

]x : f (i) (x) 40 for all iF1( .

One of the main tools is the characterization of the following class An ,
whose proof is geometric and requires somewhat delicate estimates.

DEFINITION 2.3. – We define An (1 GnGQ) to be the collection of all sets
P’ [0 , 1 ] with the property that there is a C n function f from [0 , 1 ] into
[0 , 1 ] such that P4 f (Z( f , n) ).

REMARK 2.4. – We point out that A1 is the collection of all closed subsets of
[0 , 1 ] with Lebesgue measure zero.

DEFINITION 2.5. – If M’R and sD0, then H s (M) is the s-dimensional
Hausdorff measure of M. We use l(A) to denote the Lebesgue measure of A.

Our characterization of An involves Hausdorff measures and the condition
b defined below.

DEFINITION 2.6. – Suppose that I is a closed interval, P is a closed set and
1 GnEQ. We use b n (P , I) to denote the number !

i41

Q

l(Si )1/n , where S1 , S2 , R

are components of I0P.

THEOREM 2.7. – Let P’ [0 , 1 ]. Suppose 1 GnEQ. Then, the following are
equivalent:

1. P� An ,
2. P is a closed set with H 1/n (P) 40 and b n (P , [0 , 1 ] ) EQ .

Moreover, if P’ [0 , 1 ] satisfies Condition 2 then there is a C n homeomor-
phism from [0 , 1 ] onto [0 , 1 ] such that P4 f (Z( f , n) ) and l(Z( f , n) ) 40.
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We point out that if P� An then P is closed as it is the continuous image of
a compact set and, by Sard’s Theorem, H 1/n (P) 40.

Now we consider the C Q case.

THEOREM 2.8. – Let P’ [0 , 1 ]. Then, the following are equivalent:

1. P� AQ .
2. P is a closed set with H 1/n (P) 40 and b n (P , [0 , 1 ] ) EQ for all n.

Moreover, if P’ [0 , 1 ] satisfies Condition 2 then there is a C Q homeomor-
phism from [0 , 1 ] onto [0 , 1 ] such that P4 f (Z( f , Q) ) and l(Z( f , Q) ) 40.

Next two results give characterizations of the set of points where levels
sets of C n functions are perfect and of the set of points where levels sets of C n

functions are uncountable.

THEOREM 2.9. – Let M’ [0 , 1 ] and 1 GnGQ. Then, the following are
equivalent:

1. M is the union of a Gd set and a countable set and there is P� An

such that M’P.
2. There is a C n function f : [0 , 1 ] K [0 , 1 ] such that f 21 (]y() is per-

fect for every y�M and finite otherwise.

THEOREM 2.10. – Let M’ [0 , 1 ] and 1 GnGQ. Then, the following are
equivalent:

1. M is analytic and there is P� An such that M’P,
2. there is a C n function f : [0 , 1 ] K [0 , 1 ] such that f 21 (]y() is un-

countable for every y�M and countable otherwise.

The proofs of the above two theorems use Theorem 2.7, Theorem 2.8 and
useful results of Bruckner-Goffman, Laczkovich-Preiss, and Lebedev. Let us
describe the Bruckner-Goffman-Laczkovich-Preiss-Lebedev results.

DEFINITION 2.11. – Let f : IKR be a continuous function. Let G be the
union of all open (relative to I) subintervals S such that f is monotone on S.
We call p�I0G a turning point of f. We use Tf to denote the union of the set of
all turning points of f and the end-points of I.

DEFINITION 2.12. – Let f : IKR be a continuous function. Then, n-varia-
tion of f is defined to be

Vn ( f ) 4 supm!
i41

k

Nf (xi11 )2 f (xi )N1/nn ,

where x1 Ex2 Ex3 ERExk11 , with xi �Tf for all i.
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REMARK 2.2. – We remark here that V1 ( f ) is equal to V( f ), the usual varia-
tion of f ([12], Theorem 2.3).

Henceforth, we shall denote by CBV continuous functions of bounded varia-
tion and by BV functions of bounded variation. The following result is one of
the essential tools for our proofs. The C 1 case was proved by Bruckner and
Goffman in [5] and the general case was proved independently by Laczkovich
and Preiss in [12] and by Lebedev in [13].

THEOREM 2.14. – Let f : [0 , 1 ] KR be a CBV function with Vn ( f ) EQ.
Then

1. [5] if n41 and l( f (Tf ) ) 40, there is a homeomorphism h : [0 , 1 ] K

[0 , 1 ] such that f i h is C 1 ,
2. ([12], [13]) if nD1, there is a homeomorphism h : [0 , 1 ] K [0 , 1 ]

such that f i h is C n.

The following is the C Q version of the above theorem.

THEOREM 2.15. – ([12], [13]) Suppose that f : [0 , 1 ] KR is a CBV function
with Vn ( f ) EQ , for every n. Then, there is a homeomorphism h : [0 , 1 ] K

[0 , 1 ] such that f i h is C Q.

3. – The C n , a case (1 GnE1Q , 0 EaG1).

The results in the previous section lead to another natural question.

QUESTION. – And when n is not an integer what can we say? What can be
said about the sets of points in the range where level sets of f are «big»? Is it
possible «to parametrize» Hausdorff dimension of analytic sets using C n , a

functions?
This section is devoted to answering this question. The proofs of the re-

sults are contained in [9].

DEFINITION 3.1. – If 0 EaG1, we denote by C 0, a (I) the space of Hölder
functions on a closed interval I , i.e. such that

[ f ]0, a4 sup
x , y�I
xcy

Nf (x)2 f (y)N

Nx2yNa
EQ .

More generally, we denote by C n , a(I) the space of C n functions with Hölder
n-th derivatives. Clearly, C 0, 1 (I) is the space of Lipschitz functions on I.
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DEFINITION 3.2. – We define An , a (1 GnEQ , 0 EaG1) to be the collec-
tion of all sets P’ [0 , 1 ] such that there is a C n , a function f from [0 , 1 ] into
[0 , 1 ] such that P4 f (Z( f , n) ).

We provide a characterization of An , a in terms of Hausdorff measures and
the condition b defined below.

DEFINITION 3.3. – Suppose that I is a closed interval and P is a closed set.

We use b n , a (P , I) to denote the number !
i41

Q

l(Si )1/(n1a) , where S1 , S2 , R are
components of I0P.

THEOREM 3.4. – Let P’ [0 , 1 ]. Suppose 1 GnEQ and 0 EaG1. Then, the
following are equivalent:

1. P� An , a ,
2. P is a closed set with b n , a (P , [0 , 1 ] ) EQ and H 1/(n1a) (P) 40.

Moreover, if P’ [0 , 1 ] satisfies Condition 2 then there is a C n , a homeo-
morphism from [0 , 1 ] onto [0 , 1 ] such that P4 f (Z( f , n) ) and l(Z( f , n) ) 40.

We point out that if P� An , a then it clearly is closed and, by Sard’s Theo-
rem, l(P) 40. By a result of Besicovitch and Taylor ([2]: Lemma 2),
H 1/(n1a) (P) 40.

EXAMPLE 3.5. – Denote by dimH the Hausdorff dimension. Let Cg be the
«Cantor sets» obtained by removing the middle g-th percentage every time. It

is easy to compute that dimH (Cg ) 42
log 2

log [ (12g) /2 ]
. Clearly, if gD12

1

2n1a21

then H 1/(n1a) (Cg ) 40 and b n , a (Cg , [0 , 1 ] ) EQ , hence Cg� An , a.

REMARK 3.6. – From Theorem 2.7 and Theorem 2.8, it follows that 1
n

An

coincides with AQ . From Theorem 2.7 and Theorem 3.4, it follows that An11

coincides with An , 1. On the other hand, it is clear that 1
n

An , a4 AQ.

Next follow the characterizations of the set of points where level sets of a
C n , a function are perfect and the set of points where level sets of a C n , a func-
tion are uncountable.

THEOREM 3.7. – Let M’ [0 , 1 ]. The following are equivalent:

1. M is the union of a Gd set and a countable set and there is P� An , a

such that M’P,
2. there is a C n , a function f : [0 , 1 ] K [0 , 1 ] such that f 21 (]y() is per-

fect for every y�M and finite otherwise.
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THEOREM 3.8. – Let M’ [0 , 1 ]. The following are equivalent:

1. M is analytic and there is P� An , a such that M’P,
2. there is a C n , a function f : [0 , 1 ] K [0 , 1 ] such that f 21 (]y() is un-

countable for every y�M and countable otherwise.

We now point out below several important consequences of Remark 3.6 and
of Theorems 2.9, 2.10. 3.7 and 3.8.

1. There exist a C Q function and a perfect set P such that f 21 (]y() is
perfect for all y�P. This is another way of seeing that C Q functions are far
from real analytic functions.

2. There are C Q functions from [0 , 1 ] into [0 , 1 ] such that ]y : f 21 (]y(

is uncountable( is analytic and not Borel.
3. These theorems can be viewed as «parametrization» of the Hausdorff

dimension of analytic sets by smooth functions and Hölder functions.
4. C n11 functions and C n , 1 functions have the same «worst» possible be-

haviour as far as the level sets structure is concerned.

Consequence (4) listed above is expressed in the next two results:

THEOREM 3.9. – Let M’ [0 , 1 ] and 1 GnEQ. Then, the following are
equivalent:

1. there is a C n , 1 function f : [0 , 1 ] K [0 , 1 ] such that f 21 (]y() is per-
fect for every y�M and finite otherwise,

2. M is the union of a Gd set and a countable set and there is P� An , 1

such that M’P,
3. there is a C n11 function f : [0 , 1 ] K [0 , 1 ] such that f 21 (]y() is per-

fect for every y�M and finite otherwise.

THEOREM 3.10. – Let M’ [0 , 1 ]. The following are equivalent:

1. there is a C n , 1 function f : [0 , 1 ] K [0 , 1 ] such that f 21 (]y() is un-
countable for every y�M and countable otherwise,

2. M is an analytic set and there is P� An , 1 such that M’P,
3. there is a C n11 function f : [0 , 1 ] K [0 , 1 ] such that f 21 (]y() is un-

countable for every y�M and countable otherwise.

4. – The Lipschitz case.

The following question naturally arises:

QUESTION. – And when n40 what happens, i.e. have C 0, 1 functions and C 1

functions the same «worst» possible behaviour as far as the level sets struc-
ture is concerned?
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This section is devoted to answering this question. The answer turns out to
be negative. The proofs of the results are contained in [9] and [8].

In this section we characterize the set of points where level sets of a given
Lipschitz function are perfect [9] and the set of points where level sets of a
given Lipschitz function are uncountable [8].

A fundamental tool in order to obtain the main results is the following
theorem proved by A. M. Bruckner and C. Goffman.

THEOREM 4.1. – ([5]: Lemma 1) If f is a continuous function of bounded
variation on [0 , 1 ], there exists a homeomorphism h of [0 , 1 ] onto itself such
that f i h is a Lipschitz function.

PROPOSITION 4.2. – Let M’ [0 , 1 ] be the union of a Gd set and a countable
set with l(M) 40. Then there exists a Lipschitz function f : [0 , 1 ] K [0 , 1 ]
such that f 21 (]y() is perfect for every y�M and finite otherwise.

PROPOSITION 4.3. – Let M’ [0 , 1 ] be an analytic set with l(M) 40. Then
there exists a Lipschitz function f : [0 , 1 ] K [0 , 1 ] such that f 21 (]y() is un-
countable for every y�M and countable otherwise.

We point out that the difficult part in the proofs of Proposition 4.2 and
Proposition 4.3 is to construct a CBV function with the required property for
what concerns level sets as, once we have it, applying the above recalled result
of Bruckner and Goffman, we can «transform» it into a Lipschitz function.

The following theorems are the goal of this section.

THEOREM 4.4. – Let M’ [0 , 1 ]. Then the following are equivalent:

1. there is a Lipschitz function f from [0 , 1 ] into [0 , 1 ] such that
f 21 (]y() is perfect for every y�M and finite otherwise,

2. M is the union of a Gd and a countable set and l(M) 40.

THEOREM 4.5. – Let M’ [0 , 1 ]. Then the following are equivalent:

1. there is a Lipschitz function f from [0 , 1 ] into [0 , 1 ] such that
f 21 (]y() is uncountable for every y�M and countable otherwise,

2. M is analytic and l(M) 40.
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