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Bollettino U. M. 1.
(8) 7-B (2004), 453-468

On Multivalued Martingales, Multimeasures
and Multivalued Radon-Nikodym Property.

MOHAMED ZOHRY

Sunto. — Sia X uno spazio di Banach reale, separabile e X, (X) la classe dei sottoinsie-
mi non vuoti, chiusi, limitatt e convesst di X. St dimostra un risultato di rappre-
sentazione per martingale essenzialmente limitate a valori in N (X). Quindi rivol-
giamo la nostra attenzione al legame tra misure multivoche e rappresentaziont di
Riesz a valori multivoci. Infine, diamo la versione multivoca del teorema di
Radon-Nikodym.

Summary. — In this paper we prove a representation result for essentially bounded
multivalued martingales with nonempty closed convex and bounded values in a
real separable Banach space. Then we turn our attention to the interplay between
multimeasures and multivalued Riesz representations. Finally, we give the multi-
valued Radon-Nikodym property.

1. — Introduction.

Let (2, A, u) be a probability measure space and X a real separable Ba-
nach space with norm ||-|| and the dual space X*. For each Y¢cX, cl(Y) denotes
the norm-closure of Y. Let X(X) (resp. K,(X)) denote the family of all
nonempty closed and bounded (resp. nonempty closed bounded and convex)
subsets of X. For Y and Z en X(X), the distance d(x, Y) of xe X and Y, the
Hausdorff distance n(Y, Z) of Y and Z, the norm ||Y] of Y, and the support
function 0*(.|Y) of Y are defined by

d(x,Y) =inf{|lx —y|: ye Y},

WY, Z) = max {supd(y, Z2), supd(z, Y)},

yeY zeZ

¥l =r(Y, {0}) = sup {llyll : y e Y},

o*(x*|Y)=sup{(x* |y): yeY}, a*eX*.
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It is easy to check that for Y and Z in X, (X),
WY, Z)=sup{|6*(x* |Y)—0*(x*|2)|: x*eX*, |x*||<1}.

In the sequel we will frequently use the well known result; see for instance

[4].

THEOREM 1. — There is a one-to-one correspondence between nonempty
closed convex sets and sublinear o(X*, X) lower semi-continuous functions
on X* (with values in | — o, ©]) which maps A into 6*(-|A). =

With Y and Z in X(X), the closure sum of Y and Z is the element of X(X)
defined by Y+ Z:=cl(Y + Z). It is well known that for ¥ and Z in X.(X),
OF(|Y+2)=0%(-|Y)+ 8*(-|Z). It is not difficult to verify that the operation
+ is associative and commutative on X(X). Given a sequence {Y,, }, > of mem-

bers of RX(X), we say that the serie >, Y, converges to Y if lim (Y, S,) =0,
n=1 n

where S, =Y, + Y, +...+Y, = kE1 Y,.

Let By be the Borel o-field on X and By y) the o-field on RX(X) generated
by the sets {Ye X(X): YN O = @} taken for all open subsets O of X. A multi-
valued (set-valued) function I':  — X(X) is said to be measurable if I'is A —
B, measurable, ie., I' (O) ={we®: w)NO#0} e A for every open OC
X. Such a function I' is called a multivalued random variable. It is known that
a multivalued function I" from £ to X(X) is measurable if and only if there
exists a sequence {f,},>; of measurable functions f, from 2 to X such that
INw) = cl({f,: neN}) for almost surely all w € Q. Such a sequence { f, },> is
called a representation by selections of I'. The proofs of these results could be
found in [4] and [15]. By L1(£, @; X) we mean the Banach space of all (equi-
valence classes of) (-measurable functions f from £ to X such that the norm
A1l =Qf|]f(w)||d/,¢ is finite, and L1(L, @; R) is denoted by L'(Q). We shall also

consider L (2, @; X), the Banach space of (equivalence classes of) essential-
ly bounded (-measurable functions f from € to X with the norm ||f].. =
ess sup {[|f(@)|: e R}, and L * (2, @; R) will be denoted by L *(A).

For a multivalued random variable I" from Q to X(X), let

SHA) = {fe L' (2, X): flo) e (w) as.}

which is closed subset of L1 (£, @; X) and is nonempty if and only if d(0, I.))
is in L1(@). If SE(@) # 0, its elements are called selections of I', then there
exists a representation by selections of I' contained in SA(Q). If S}HQA) is
nonempty and bounded in L1(Q2, @; X), we say that I' is integrably bounded.
Let £1(2, @; X) denote the space of all integrably bounded multivalued ran-
dom variables from 2 to X(X). Moreover, we denote by X (X) the family of all
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compact convex subsets of X. We consider the following subspaces of
LHR, A; X) as follows:

LR, A X)={Te £, A; X): (w) e X (X) ae.},
£§C(Q, A4;X)={le LR, A X): [(w)e Ree (X) a.e.}.

The Radstrom theorem as cited by Hiai-Umegaki [13, Theorem 3.6] states the
following.

THEOREM 2. — There exists a real (separable) Banach space Y such that
LL(2, Q; X) can be embedded as a convex cone in L' (2, @, Y) in such a way
that

(i) the embedding is isometric,

(i) addition in L'(Q, ;YY) induces addition + in £L.(2,aA; X),

(iii) multiplication by nonnegative real L functions in L'(R2, A; YY)
induces the corresponding operation in £.(2,d;X). =

The integral of I' is defined by [I'du = {[fdu: fe S}@)}, where [fdu is
Q Q Q
the usual Bochner integral. This multivalued integral was introduced by Au-
mann [1]. For A € @, let [ I'du be the integral of I' restricted on A. Given a sub-
i

o-field B of A and a B-measurable multivalued function I" from Q to X(X), be-
sides SA(A) and [I'du taken on (2, A, u), we define on the measure space
Q

(2, B, u) the sets
SH®B) ={feL (2, B; X): flw)e(w) as.}, and
®)

[ rau= { [ s fes}(fg)}.

For fe LY(2, A; X), the conditional expectation of f relative to B is given (see
Chatterji [5], [6] and [7]) as a function E*(f) e L'(2, B; X) such that

[E2(f)du= [fiu for all Be$.
B B

If ' is a multivalued random variable from 2 to X(X) with S}(AQ) # @, then it is
seen (cf. [13, Theorem 5.1.]) that there exists a unique (in the a.s. sense) B-
measurable multivalued function, noted E ®(I), from Q to X(X) satisfying

Shary(B) =cl({E*(f): feSE@)?}), the closure in L'(Q, Q; X).

We call E*(I') the (multivalued) B-conditional expectation of I relative to B
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or simply the conditional expectation of I. This conditional expectation
E#(I) has the properties analogous to those of the usual conditional expecta-
tion (see [13, § 5.]). For example, we have

)
[*] cl(fE‘(B(F)dM)zcl(dey), VBe B,
B B

and if I'(w) € K, (X) a.s., then
[] cl( [E*0) d//t) =cl( frdﬂ), VBe 3.
B B

Note that E*(I'(w) = cl ([ I'du) for all o e 2 when B = {0, 2}.
Q

It is known (cf. [13, Theorem 5.4.]) that when X* is separable and " is a
multivalued random variable from Q to X.(X), then E ®(I') is uniquely deter-
mined as the $B-measurable multifunction taking values in X, (X) satisfying
the condition [*] or [**]. In [19] the author shows that the assumption X * is
separable may be removed for multivalued random variable I' essentially
bounded, that is |I(.)| e L *(A) by using convex analysis arguments, namely
the concept of convex normal integrand and a duality theorem of integrand
functionals for separable Banach spaces, to characterize the multivalued inte-
gral. This result establishes the following.

THEOREM 3 [19]. — Let I" be an essentially bounded Q-measurable multi-
valued random variable from 2 to RX,(X) and B a sub-o-field of A. Then
E*(I) is the unique (in the a.s. sense) B-measurable multivalued random
variable from £ to X,(X) such that

cl(JEfB(r)dﬂ)zcl(erﬂ) VBeR. m

Throughout this work, we will be dealing with an increasing sequence
{@, }n>1 of sub-o-fields of @ such that a( glan) = . For E in A, we will de-

note by yz the characteristic function of E.

2. — Multivalued martingales.

Continuously studied since its introduction more than sixty years ago, mar-
tingale theory is one of the central components of Probability theory. Today
martingale theory has become recognized as an important tool in a diversity of
topics in mathematical analysis namely optimal control, statistics and mathe-
matical economy. At this stage, martingale theory is having an increasingly
important impact particularly in statistics and Banach space theory. Multivalu-
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ed random variables and multivalued martingales have been studied by many
authors. We refer to the interesting work of Caponetti [3], Chatterji [8], Coste
[9], Ezzaki [12], Hiai-Umegaki [13, 14], Luu [17] and Neveu [18]. Furthermore,
the theory of multivalued martingales is the natural tool in the study of certain
problems in the theory of information systems (see [11]) and in mathematical
economics.

Let {I',}.>1 be a sequence of X.(X)-valued random variables adapted to
{@,}.>1 such that

SH(@,) =cl({feL™(2,a,;X): flo)el,(w) as.})=0.

We say that {I',, A,}.>1 is a multivalued martingale, if for every n =1, it
verifies

EY(r,)=E"(T,)=T, for all n and meN such that m=n.

If, in addition, S }“(an) is bounded in L'(2, @,; X) (for sufficiently large n),
the multivalued martingale is said to be integrably bounded.

The next result is crucial in our study of multivalued martingales. The first
proof was given in [16] for multivalued random variables which selections are
Pettis-integrables. We state it here with a new proof for integrably bounded
multivalued functions.

PROPOSITION 1. — Let I' be a multivalued random variable from  to
R (X). If SEA) is nonempty, then

VAe @, Ve*eX*: 6*(.%‘*

frdﬂ) = [o%(* |Tw)) du.
A A

PrROOF. — Let Ae @ and x*eX*.
First case. = If 0* (™ | f]“du) = + oo, then for each M > 0, there exists fin
A
S}H@) such that (x*| [fdu) > M. Thus
A

Jor@* | Moy duz [(a*|f(w))du= <90 ffd/t> >M,
A A A
hence fé*(ac* | (w)) du = + .
A
Second case. — If 6*(x* | [ I'du) is finite, then for each & >0, fixed in the
i
rest of the proof, there exists f in S}(A) such that

Afl"dy) < <oc*

e

ffdu>+6=f(x* F(@)) du + ¢ .
A A
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Let's define Ad(w)={rxel(w): 0*(* |[(w)) <(x*|x)+e}, which is
nonempty, since [(w) is bounded and let ¢: 2 X X—R be defined by
plw, x) =0*(x* |I(w)) — (x* |x). It is easy to see that ¢p(w, x) is (-measu-
rable in w for each x and continuous in x for each w. Then ¢ is A @ By-measu-
rable (cf. Himmelberg [15, Theorem 6.1.]), and hence S}(A) is nonempty. Then
there exists fe S}(A) such that

0*(x* | IMw)) < (x* |flw))+e as.,

then taking integral over A, we obtain

[or@* | M) du< [(@* |flw) du+e= <ac*
A A

Affdu> +e,

it follows that

fé*(m*|F(w))dyS6*(x*
A

frdﬂ)+8,
A

thus, combining with a previous inequality and letting ¢ go to zero, we obtain
the result. =

As a consequence, we immediately obtain the following result.

COROLLARY 1. — If {I',, A, }n=1 s an integrably bounded multivalued
martingale valued tn X .(X), then (0*(x* |I',(-)), Ay)y=1 s an LY (@Q)-mar-
tingale for x*eX* n

If {r,,AQ,},>: is a martingale taking its values in R(X), a sequence
{fi}ns1In LR, Q; X) such that {f,, @,},>; is a martingale and for each
n=1, f, is a selection of I',, is said to be a martingale selection of
{ly, Ay }u=1- When the sequence {I',},>; is X.(X)-valued and integrably
bounded, a result of [17] shows that the set of martingale selections of
{l, Qy},>1 is nonempty. In the next result, we obtain [13, Theorem 6.5.]
imposing additional hypotheses on the random variables I", but without any
separability of the dual space X*. First, let us recall that a set M of measu-
rable functions f : Q — X is A-decomposable if for any f;, e M and A € 4, the
function yx 4fi + x o\afe lies in M.

The next result, see [13, Theorem 3.1], is fundamental for much of what will
follow.

LEMMA 1. — Let M be a nonempty closed subset of L'(2; X). Then there
exists a multivalued random variable I': Q —X such that M = S}Q) if and
only if M is A-decomposable. ™
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THEOREM 4. — Let {I',, Q,},.>1 be a martingale of essentially bounded
multifunctions taking its values in X,(X) such that:
1) AM>0:|,|.<M for all n=1.
2) VAe Ulc‘ln: (E)m . S\ du = 0 uniformly in n.
n= u —0 4

If X has the Radon-Nikodym Property, then there exists an (A-measurable
essentially bounded multifunction I’ valued in X (X), which is the unique A-
measurable (in the a.s. sense) X.(X)-valued multifunction verifying

E"(IN=r, foraln=1.
Proor. — Let INS(I",) denote the family of martingale selections of
{I',},>1 and consider the subset of L'(2, @; X)
H={feL™(2,Q; X): E"(f)eSt (A,) for all n=1}.

Arguing as in [13, Theorem 6.5.], we show that JC is a closed, convex, bounded
and @-decomposable subset of L!(£2, @; X). Then combining Lemma 1 and
Corollary 1.6 of [13], we get an (-measurable integrably bounded multifunc-
tion I' from Q to X.(X) such that

H=SHA) ={feL (2, q; X): flw) e(w) as.}.
From Luu [17], we know that
SH@ =l ({ fir {fi» Qutuz1€ MSUT,)}), k=1

If fe S}(@), then {E"(f), A,},=1 is a martingale selection of {I',, A,},>1,
which implies that

Sinn(@,) = l({E"(f): feSHM}) cSF,(A,).

On the other hand, given a martingale selection {f,, 4, },>1 of {I'y, Q} =1,
since X has the Radon-Nikodym Property, there exists fe L(2, @; X) such
that E"(f) =f, for all n=1. Thus fe =S} and S} (A,) S (A,
Therefore we conclude that E"(I") =T, for all n =1 a.s.

For each fe J(, there exists a sequence {f,},>: in IMS(I",) such that
lim |f= £l =0 and since {f,, A,},>; is a martingale,

lim [ f(@) = fu(@)]| =0 as.

Then, for any w e 2, let n, (depending on w) be an integer such that

I < (@)]+1 as,
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thus,
A<+ 1<l +1 as.

This shows that fe L * (2, @; X) with ||f|. <M + 1. Therefore we conclude
that I' is essentially bounded. Consider a X, (X)-valued and (@-measurable
multifunetion 4 such that

E"(A)y=r, foral n=1.
For feSi(Q), E"(f)eS}, (A,) for all n= 1. Since we have
flw)=E"(f)»)]=0 as.,
let ny be an integer such that || f(o)|| <1+ |[E"(f)(w)|. Hence
If@) <1+ [T @) <1+ [0, as.,

lim |
n

then ||f|l. <1+ M, which implies that 4 is essentially bounded.
Now for all Ae Ul(iln, choose an integer m; =1 such that Ae@,,
then "=

d (AfAd,u) - cl(AfE"l(A) d,u) - cl(Amedpc) —d (Afl"du).

In light of Proposition 1 and the fact that for any A e @, there exists a se-
quence {A; };>; in //L)Jlan such that lilzn lxa — %4,k =0, one obtain the identity

cl(fAdy)zcl(deﬂ) for all Aed.
A A

We complete the proof using Theorem 3. =

3. — Multimeasures and Riesz Representations.

A multifunction M from a field & of subsets of Q to NX(X) is called additive
if M(EUF)=M(E) + M(F) whenever E and F are disjoint members of &. If,
in addition,

m( U B)- 5 ME)
n=1 n=1

in the Hausdorff topology of HX(X) for all sequences {£, }, >, of pairwise dis-
joint members of F such that U1E” e J, then M is termed a multimeasure. If

this occurs, then the serie 2 M(E,) is unconditionally convergent. We recall
n=1

that a selection of an additive multifunction M from & to X(X) is an additive
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function m from Fto X such that m(E) e M(E) for all E € & An additive multi-
function M is said to be rich if

ME) =cl({m(E): me S(M)}) for all Ee T,

where S(M) is the family of all selections of M. We mention that a multimea-
sure with values in X(X) is rich when X is a separable Banach space or when X
has the Radon-Nikodym Property; see [10].

This section is devoted to the study of the multivalued extensions of
Radon-Nikodym Theorem, the Riesz Representation Theorem and the inter-
play between them. Before making this precise, we start with a look at the fol-
lowing result, which is a consequence of [13, Theorem 4.1].

LEMMA 2. — Let I" be an A-measurable multifunction taking its values in
R (X). Assume that I' is integrably bounded. Then

cl(f[<p1+q02]l“dpt) =cl<f(plfdﬂ) Jrcl(fgazl“dy)
for all ¢, e LY(Q2,A; RY). =

REMARK 1. — The assumption of ¢; (i =1, 2) being nonnegative in the
last result cannot be removed as the following simple example shows. Let
A=[1,2], a=—-1 and b=2, then 0 ¢ (a +b)A=A=1[1,2]¢ad + bA but
0=(-1)x2+2x1)eaA + bA.

At first glance, one can define a concept of a multivalued operator from
LY(R,a; R) to R(X) as a map T satisfying T(af + g) = aT(f) + T(g) for all
aeR and f, ge L1(2, Q; R). But, Lemma 2 and Remark 1 illustrate that the
map > cl ([ fTdu) is additive only when fis taken in the space L' (2, @; R™).
Thus, since we are mostly interested in a generalization of representable ope-
rators, by a multivalued operator, we will mean a mapping T from
LY(2,; R") (however, see the observation in the remark below) to RX(X)
satisfying the following conditions:

1) T(f+g)=T(f) + T(g) for all f, g in L*(2,a; R").
2) T(af) = aT(f) for all fe LY (2,A; R") and aeR".

A continuous multivalued operator taking values in X(X) endowed with the
Hausdorff topology is Riesz representable (or simply representable) if there
exists an integrably bounded multifunction I" with ||F (.)|| e L *(AQ) such that
T(f) = cl(ffIdu) for all fe L1 (2, @; R").

REMARK 2. — 1) As one might worry about, our definition, restricted to
operators acting on L!(Q, d; R"), covers the case of representable vector
valued operators. In fact for such an operator 7T defined on the space
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LY(Q, a; R), for any fin L1(2, @; R), T(f) can be written as T(f) = T(f*) —
T(f~). Hence, if T, restricted to L(£2,@; RT) is representable, then
T(f*)=cl(ff* Idu) and T(f )=cl([f I'du) where I' is an essentially
bounded multifunction. Since in this situation I” is vector valued we ob-
tain

1(f) = [f* Tdu~ [f Tdu= [frdu.

2) The condition ||[I(-)|| e L * (@) in the definition of a representable opera-
tor is essential since it asserts the non-vacuity of Si(c) for all f in
LY(2,@; R") which allows us to define [fI'du.

3) It is a basic fact that a continuous multivalued operator T gives rise to a
multimeasure M, by letting M(E) = T(y g).

ProposITION 2. — Let T be a continuous multivalued operator from
LYR,a; R") to R(X). For E e A, define M(E) by

ME) =T(xg).

Then T 1is representable if and only if there exists an integrably bounded
multifunction I' such that

M(E) = cl( frdﬂ)
E

for all Ec@. In this case, |[[()|leL*(Q) and T(f)=-cl([fTdu) for all
feLY(Q,a; RY)

Proor. — If T is representable, then there exists an integrably bounded
multifunction I" such that 7(f) = cl (ff[“dy) for all fe LY(2, A; R"). Thus, if
Ee @, then M(E) =T(yg) = cl( f I'du). This proves the necessity.

E

For the converse, let M(E)=T(yg) =cl( f I'du) for some integrably
E
bounded multifunction I and all £ € Q. Since for £F e @ one has

IME) | = 1T )l = MT (), {0)) Skl gl = ku(E),  (keR)

it follows that the variation |M| (which is defined in an obvious way) of M
satisfies |M|(E) < ku(E) for all E' e d. Since for E € A and each selection f of
I', the measure m defined on A by

m(E) = [ fdu
E
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is a selection of M, one has
f”f||du= |m|(E) < |M|(E) < ku(E),
E

it follows immediately that || f()|| <k a.s. Hence |[I'(:)|| <k a.s., and I is essen-
tially bounded.
To finish the proof, note that the identity M(E) = cl(J I'du) for every Ee A
E

says that T(f) = el (f fTdu) whenever fis a characteristic function. Then an al-
gebraic manipulation shows that this is also true when f is a simple function.
Finally approximate an arbitrary element of L(2, d; R*) by a simple func-
tion and use routine properties of Hausdorff distance to complete the
proof. =

In order to apply in the last section the multivalued version of the Radon-
Nikodym Property we establish the following result.

THEOREM 5. — Let {I',, A, },>1 be a multivalued martingale with values
m NX,(X) such that

AM>0:|Tll.<M forall n=1.

Then, for each @eL'(Q), the sequence {cl(f @I, du)},=1 converges in the
Hausdorff distance topology.

Proor. — We divide the proof in two steps. Let B = L)Jl(iln and S(22, B, R)

be the subspace of B-measurable simple functions from 2 to R.

First step. — For fe (2, B, R), the result is a direct consequence of the
definition of a multivalued martingale. Moreover, we obtain much more: For
fe S(R2, B, R) there exists an integer n, depending on f such that

cl(ffl’nodu) =cl<fﬂ“ndu) for all 1= n,,

which shows that liern el( f T, du) = cl( f ST, du).

Let T be the map from S(2, B, R) to the complete metric space X, (X) de-
fined by

T(¢) = lim cl (f(pfn dﬂ).

Then if f; and f; are elements of S(22, B, R), let n; and n, be integers and p =
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max (n;, n,) such that

T(f1)=cl(fflfnldy> and T(f2)=cl(ff21“n2dy).
Then for any x* e X*, applying Proposition 1 we have,
[0% (@™ |T(f1)) —o* (@™ |[T(f2) | =

0% (e el ([T, du)) = 0% (e* el ( [T, du))| =
| [0 @* |fi) (@) du = [0*(@* |fo(w) Ty()) du| <

[10%@* i) I y(@) = 6% @* |fo) T (@) |du.
On the other hand,
[0%(x* |fi(w) I'y(w)) = 6% (x* |fa(w) ['y(w)) | =
|0* (x* fi(w) |Ty(w)) — 0*(x* folw) | Tp(w)) | <
|17, () [[[le* fi (@) — 2 * fo(@) |[x+,
then integrating, we obtain
WTCR), T <yl LAy = £l < Ml fi = £l

Second step. — Thus, since (X.(X), k) is a complete metric space, T can be
uniquely extended to a continuous map (with the same bound), 7, from the
|| |l;-completion of (2, B, R), which is L(L, @, R), to X.(X). Hence, for each
fin L'(@), there is a sequence of elements { f, }, > in S(Q, B, R) with f, —f as
n— o and T(f) = lign T(f,,). So, for n =1, we can find k, = 1 such that for all
k=k,

1(f,) = ( [firwdu) =d( [£,Idu).

Now the result follows by a routine argument. =

4. — Multivalued Radon-Nikodym Property.

A nonempty closed convex subset C of X is said to be a Radon-Nikodym
subset, if given a finite mesure space (£, X, v) and a v-continuous vector mea-
sure m : X — X of bounded variation such that m(A) cv(A)C for A e ¥ with
v(A) >0, there exists fe L'(E, X; X) such that m(A) =Affdv for all Ae>.

With the help of martingales, we see the Radon-Nikodym property of a subset
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transform itself into an internal geometric property of the subset. According
to a result of Chatterji [7] from 1968, a subset C has the Radon-Nikodym prop-
erty if and only if for every finite measure space (¥, 2, v) every bounded uni-
formly integrable martingale in L'(Z, v; X) taking values in C converges in
LY(E, v; X)-norm. For more details, we refer to the monograph of Bourgin

[2].

THEOREM 6. — Let C be a nonempty convex closed and bounded subset of X
and M be a multimeasure from A to X,(X) such that M(E) cu(E)C for all E e
A. If C is a Radon-Nikodym subset, then there exists an A-measurable mul-
tifunction I' with values in X,(X) such that:

() M(E)=cl(JI'du) VE € Q.
E
(ii) I s essentially bounded.

ProOF. — Since X is a separable Banach space,
ME) =cl({m(E): me SM)}) for all Ee@.

If m is a selection of M, then for all £ e A, m(E) e u(¥) C and hence m is u-
continuous. Thus, since C is a Radon-Nikodym subset, there exists f,, in
LY@, u; X) such that m(E) = [f,, du for all Ee A.

B

If 9C denote the subset of L!(A, u; X) defined by
H={fn: meSWM)},

then it is easy to check that JC is a nonempty, convexe, (l-decomposable, closed
and bounded subset of L(2, A; X). Therefore, there exists an integrably
bounded multifunetion I": @ — HX(X) such that

H=8HA) ={feL (2,q; X): flw)e(w) as.}.
Consequently, since for £ e d,

ME) = d({m(E): me SA)}) = ({ [fu: fe S}(a)}) ,
E

it follows that M(E) = cl( f Idu) for all £ € A. On the other hand for all w € Q,
we have B

I7(@) || = sup| flw)]| < sup| f]l. <[lCl|  as.,
feat Fea
which shows that I' is essentially bounded. =

We can now state the multivalued Radon-Nikodym Property.
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THEOREM 7. — Let C be a nonempty convex closed and bounded subset of X.
Then the following conditions are equivalent:

(i) C is a Radon-Nikodym subset.

(i) For any multivalued continuous operator T from L'(2, @; RY) to
N (X) such that

T(@)cC[qdu  for all g L2, RY),

there exists an A-measurable multifunction I taking its values in K (X) n
such way that I' is essentially bounded and T(p)=cl([@ldu) for all
peL'(Q,a; R").

(i) For any X.(X)-valued martingale {I,, A,},>1 such that
I',(w)cC foraln=1 a.s.

there exists a unique (a.s.) X.(X)-valued and A-measurable multifunction I’
such that I' is essentially bounded and E™(I') =T, for all n=1.

PROOF. — (i) = (ii). Consider an operator T from L(2,@; R") to X.(X)
such that T(¢) cC [ @du for all g e L1(2, @; R"). If M is the multimeasure
associated to 7', then M(A) =T(y4) cu(A)C for all Ae d. By Theorem 6,
there exists an @-measurable multifunction I" with values in X.(X) satisfying
()| e L= (A) and M(E) = cl (Efl’dﬂ) for all £ € d. Finally Proposition 2 shows
that

T(¢) =Cl(f(pfd,u) for all peLY(Q,A; R*).

(ii) = (ii). Let {I',,, A, },>1 be a multivalued martingale taking values in
R(X) such that I',(w) ¢ C for all n =1 a.s. Then |, ||.. <||C|| for all » = 1. By
Theorem 5, the mapping 7T from L'(2, d; R") to K, (X) defined by

T(¢) = lim cl (f(p['nd/t>
is a continuous multivalued operator such that

T((p)nggod/,L for all g e L1(RQ, dA; RY).

Hence, there exists an essentially bounded multifunction I" from Q to X, (X)
such that T(¢) = el (f @I'du) for all pe L1(2, Q; R™).
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Now for every fixed integer k and any Ae {d,, since for n=k we

have
cl( fl"ndu)zcl( f]"kdu),
A A

it follows that

Cl(Adeﬂ) = 7(;4) = lim Cl(Aand,u) - Cl(Akad,u),

taking into account that ||I(-)|| and ||I",(-)|| are elements of L * (@), Theorem 3
says that E*(I') = I'), for all k = 1. Finally arguing as in the proof of Theorem
4, we obtain that I" is the unique in the a.s. sense verifying £"(I") = I, for all
n=1.

(iii) = (). Let {f,, 4, }.>1 be a martingale with values in C, then consider
the multivalued martingale {I",,, A, },> defined by I",,(-) = { f,,(-)} for all n =
1. Then there exists an (-measurable multifunction I with values in X,(X)
such that E"(I') =T, for all n = 1. Since for all n=1

Cl({En(f) fe Sll“(a)}) = Sl}’"([’)(an) :SILH(an) = {fw} )

it follows that E"(f) =, for all n=>1 and lim lf=f.h=0. m
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