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Bollettino U. M. 1.
(8) 7-B (2004), 335-355

Construction of a Natural Norm
for the Convection-Diffusion-Reaction Operator (*).

(GIANCARLO SANGALLI

Sunto. — In questo lavoro st costruisce, mediante interpolazione, una norma naturale
per operatori lineari continui coercivi e non simmetrici. Pin precisamente, si cerca
una norma con stesse le proprieta che ha la norma dell’energia quando si conside-
rano operatori simmetrici: si dimostrano cioé, rispetto a tale norma, stime di con-
tinuita e di inf-sup indipendenti dall’operatore. In particolare, si prende in conside-
razione Uoperatore di diffusione-trasporto-reazione lineare: si ottengono quindi
stime di continuita e inf-sup indipendenti dai coefficienti dell’'operatore, pertanto
significative anche nel regime di trasporto dominante. I risultati qui presentati
possono servire ad una piw approfindita comprensione e analist di tecniche nume-
riche per problemi non simmetrici.

Summary. — In this work, we construct, by means of the function space interpolation
theory, a natural norm for a generic linear coercive and non-symmetric operator.
We look for a norm which is the counterpart of the energy norm for symmetric ope-
rators. The natural norm allows for continuity and inf-sup conditions independent
of the operator. Particularly we consider the convection-diffusion-reaction opera-
tor, for which we obtain continuity and inf-sup conditions that are uniform with
respect to the operator coefficients, and therefore meaningful in the convection-
dominant regime. Our results are preliminary to a deeper understanding and
analysis of the numerical techniques for non-symmetric problems.

1. - Introduction.

In order to clarify the aim of this work, we first recall the well known prop-
erties of coercive and symmetric operators. Denote by £, such an operator,
defined on a Hilbert space V into its dual V*:

Logm: V2V,

(*) Comunicazione presentata a Milano in occasione del XVII Congresso
U.M.L
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and let ag,,: VX V—R be the associated bilinear form

Ay (W, V) 1=y Loy W, VY =y Leym v, W)y, Yw,veV.
Further, assume that the norm of V is the energy norm |[wlly := agm(w, w)2
Then £, behaves as an isometry from V into V*, i.e., it has unitary norm and
its inverse has a unitary norm, too. This obvious fact can be expressed in terms
of continuity and inf-sup conditions:

LoymW, ¥
continuity: || Ly lly_y+ 1= sup sup M =
" wev e [ully [l
<£symw7v>
inf-sup: Lobllvisy == inf sup ——-- =
P el = o T,

In this sense, the energy norm is the natural norm. Consider, for example, the
problem £, u = f, where « denote the solution for the source term f, and a
perturbed problem £y, (u + ou) =f+ of, where Of represent a perturbation
of the source term, then the relative effect on the solution is bounded by the
relative magnitude of the source perturbation:

Joully _ lofl-
(7

Moreover, the plain Galerkin F.E.M. for £y, =f, ie,

@)

Vv

[ Find u, eV, such that

asym(“h? ,Uh) =y <f7 /Uh>V7 V/Uh € Vh

3

gives an optimal discrete solution wu, in the discrete space V,cV:

4) = lly < inf [Ju—w, .
wWhe Vh

Finally, optimal a-posterior: residual-based estimates for (3) can be proved
(see [16]). Given QcR", V= H} (), and the coefficients x>0 and 0=0 we

may consider, as an example of £,,, the reaction-diffusion operator:

b) W LW = — KAw + ow.

It is worth noting that the previous results (2) and (4) are independent of the
coefficients x and ¢ in the example (5).

Consider now a coercive and non-symmetric operator £, still from V into
its dual V*, and let a(-, :): VX V—R be the associated bilinear form (i.e.,
a(w, v) :=y«(Lw, v)y, Yw, ve V). We can split £ into its symmetric part Ly,
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and its skew-symmetric part Lgew
L= Oesym + Lokew> a(w, v) = asym(wy V) + Ogen (W, ),

in the usual way:

1
Vi LymW, V)y 1= Ay (W, V) 1= E(a(w, v) + a(v, w)), Yw,veV,
(6)

1
Vel Lokew W, VY 1= Qg (W, V) 1= E(a(w, v) —alv, w)), Yw,veV.

The example now is the convection-diffusion-reaction operator: given V=
H(Q), k>0, 0=0 and B: 2 —R" we consider

@) w— Lw:= —rdw + -Vw + ow ;
with the assumption div () =0, the splitting (6) is
LymW = — KAw + ow, Loew =PV,

Oy (W, V) = Kwa-Vv + fng, Ogew (W, V) = fﬂ-va;
Q Q Q
We still assume that the norm on V is the energy norm |jw|y := a(w, w)'* =
Ogym (W, w)"2. The aim of this paper is to prove conditions similar to (1) for the
non-symmetric operator .; more precisely we construct a natural norm ||| - |||
such that the continuity

Lw,
8) sup supu < G,
wev vev [l [l
and the inf-sup condition
9) _Ew,v) 5

>
weV yev |||w]|| |||v]l

hold true with constants G, and €, independent of .£. Therefore, for the
example (7), ¢, and C; will be independent of the coefficients x, f and p.

It is clear that now, contrary to the symmetric case, the choice ||| - ||| := ||l
does not give (8)-(9). In the paper, we will use the function space interpolation
theory to obtain a suitable ||| - |||. As for the symmetric case, the norm ||| |||,

for which (8)-(9) hold true, depends on £ and gives the natural topology for L.

This is the proper framework to understand the behavior of (7) for small
values of the diffusivity x, when the higher order term — k4 acts as a singular
perturbation on the lower order term -V + o Id. Conditions (8)-(9) gives also
the proper framework for using some recent numerical methodologies devoted
to (7). Particularly, we mention the least-squares formulations in the context
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of finite element methods [4] or in the context of wavelet methods [8], and the
adaptive wavelet methods [7] (see also [1, 3, 6]).

More generally, (8)-(9) are the starting point for the classical analysis of
numerical methods for this class of operators. When the continuity and inf-sup
conditions are known for an operator £, then ideal numerical methods should
preserve them at the discrete level. This is straightforward for symmetric and
coercive operators, while in other contexts, e.g., for mixed formulations (see
[5]), this requires ad hoc numerical methods. On the contrary the error analy-
sis of numerical methods for (7) typically do not follow the classical argument
mentioned above and it is not completely satisfactory (see [12]). Then we hope
this paper could give some insights for a deeper theoretical understanding of
numerical methods for (7) (we refer to [12, § 4], [13] for a further discussion on
the topic).

This paper presents some of the results of [14]. Different estimates for the
operator (7) have been obtained by other authors: see for example the analysis
by Bertoluzza, Canuto and Tabacco in [2, § 2.1], or the paper by Darfler [9].
The peculiarity of our paper is that both conditions (8)-(9) are obtained for (7).

The outline of the paper is as follows: in § 2 we present our methodology
for obtaining (8)-(9) in the case of a generic non-symmetric and coercive oper-
ator .C; then we apply the theory first, in § 3, to the very simple one-dimension-
al (n = 1) convection-diffusion-reaction model problem, and then, in § 4, to the
multi dimensional (% > 1) case, and discuss the results.

2. — The abstract framework.

In this section, we present our idea for obtaining uniform continuity and
inf-sup conditions (8)-(9).

Let V be a Hilbert space, and let V* be its dual. In the present section we
consider a generic coercive isomorphism £: V—V* and the associated bilin-
ear form

(10) a(w, v) i=yp«(Lw, v)y, Yw,veV;

The problem of solving Lu =f for the unknown u e V admits the variational
formulation:

11) find uw eV such that a(u, v) =y(f, v)y, YveV.
We also assume that |||y, the norm of V, is the energy norm for £, i.e.
(12) a(w, w) = |w|f, VYweV.

We split £ = Ly, + Loew, and introduce the bilinear forms agy, (-, -) and
Ogeew(*, ©) on VXV according to (6). L, is the symmetric part of £ (ie.,
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Ogym (W, V) = Oy (v, W), Yw, ve V), and we have

13) Qg (W, W) = 2 YweV,
Oy (w, ) < [elly [lelly, Vo, veV,
while Ly is the skew-symmetric part of £ (i.e., Ggew (W, V) = — Ugeew (V, W),
Yw,veV).
Finally, we define

ol == lfellf,  VweV,

(14)
%/*, Ywe V,

iz, = [lollf + | LCoxen
where

CLskew(@u, 7)) .
llly

we also set Ay=A; =V from the algebraic standpoint; nothe that A, and A,
are the same space with the same topology, but the two norms ||-||4, and ||,
are different (even though equivalent, up to constants depending on L).
The following lemma states two basic estimates; we explicitly compute the
constants appearing into the estimates to put in light their independence of £.

”"Gskeww”V* = sup
ve

LEMMA 1. — Under the hypotheses above, we have

(15) a(w, v) <22 |wlly, lly, .,  VYw,veV,
oW, V) _ e
(16) sup—— =5 Hw”Ai, YweV,
oev s,

fort=0o0r1=1

Proor. — Let v and w be two generic elements of V.
By using the Cauchy-Schwartz inequality we easily get

(W, V) = Qgyp, (W, V) + Ogren (W, V)
< [awly folly + | Lacen 26lly= [0l
< 22|, [[vllay;
similarly, since Qgew(W, ¥) = —Ogew(v, w), we also get a(w,v) <

22|l [[]ls,, then (15) follows.
Recalling (12) and (13), we have

a(w, v)
amn o]y < sup ———
vev |olly

’
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and
Oy (W, V)
(18) sup -2 Y < sup a(w, v)
vev ol vev  olly
Then, we get:
||£skeww”V* = sup w
vev ol
(19) < sup —a(w, v) M
A B A
< 2 sup M ,
vev el

and, collecting (17) and (19), we get

aw, v
©0) el < 52sup 20
0 Tl

which is (16) for ¢ =1. We are left to show that

@1) s, < 5*2sup 202
veV  |lolla,

’

for that purpose, we make use of a duality argument. Reasoning as for (20) we
obtain

©2) i, < 52sup 2
T,

for any weV. Given a generic weV, we associate to it w eV such that
a(v, w) = Ogym (v, w), Y € V; thanks to (22) we have

a(v, W)

Gy (V, W)
175]la, < 5"*sup =52gup —— "~

= 5",
vev ol vev olla

whence

”w”Exo = Osym (w’ w) = CL(?/U, 77))

alw, v) | _
< sup 22 il
S Tl
<5%sup %0
Tl

which completes the proof. =
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From Lemma 1 we can obtain a family of intermediate estimates by means
of the function spaces interpolation. We follow the notation and the definitions
of [15]; for the reader’s convenience, we recall the fundamental definition of
wnterpolated norm, according to the so-called K-method: given 0 <6 <1 and
1<p< + o we define

+

. _ _ dt
@23 wllay, 4, = f . _inf oo [La, + 10 flooy [[a,)7 -
0 OZUO ‘B,ﬂ)ll: w b

Generally (4, Ay)g,, is the space of functions weA;+A; such that
||w||(AO, Ay, < + . In our particular case, A, and A, are the same space from

the algebraic standpoint (4,=A; = V), and ||- H( Ao, Ay, SIMPLy is @ new norm on
V.

LEMMA 2. - Given 0, pand p' suchthat 0 <0 <1,1<p< +oo,and1/p+
1/p’ =1, under the hypotheses above, we have

(24) alw, v) < 2" |wllay, 4, , IWlag, 4, ,» YW, veV,

(25) sup a(w, v)

257wl a,,,  VwEV.
veV ”’U”(AO, Ar-9,p’

Proor. — Typically interpolation theorems are stated in terms of linear op-
erators instead of bilinear forms. Then it is more convenient to rephrase (15)

as
(26) [ €awllay <22 |oollay,  llLo0llay <2l
and (16) as

@ leella, < 5" ([ Lawllag,  loolla, < 5[ Lo0]ag,

for all weV.
From (26) and thanks to Theorem [15, §1.3.3] and [15, §1.11.2], we get (24).
Proceeding similarly for £7!, from (27) we obtain

||£71¢||<A0,A1)f,0,,,, S 51/2||¢||(A0,A1)0YP7

for any ¢ e V*, that gives (25). =

Thanks to (13), £y is an isomorphism from V into V* = £, (V); hence-
forth, we also assume that £y, is injective. Then we introduce the two Hilbert
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spaces C, and C;:
Cy = Ly (V),  with [glle, := [l L5 ol
Cr = LV, with [¢lle, := .5k plly=llp

In the next lemma we analyze the structure of H-H(AO, A, -

(28)

Ve

LEMMA 3. — Given 60, p and p' suchthat 0 <6 <1,1<p< + oo, and 1/p+
1/p’' =1, under the hypotheses above, we have

@9 1/10wlEs, 4, , < ol + | a0l 1, <2y, a0 V0V

PrOOF. - Since [[w]ly < [[wls, with i = 0, 1, then [[uwlly < [l 4,, 4., , follows by
a straightforward application of the interpolation theorem (e.g., [15, §1.3.3]).
We also have

H‘fskewwHCo S Hw”Ao’ ”"eskeww”Cl S ”w”Al’

which  gives  |Luetdlco e, < Chilaan,,  whence [auff+
[ w”(zco, ., S 2 ||w||%A0, Ao,
In order to complete the proof, we directly deal with the definition of inter-
polated norm (23). For any ¢ > 0 consider the two splitting
w=wy(t) +w(t), with w;(t)eV,i=1,2,

(30) _ _ _
w=w,(t) +w,(t), with w;(t)eV,i=1, 2;

then define wy(t) e V and w, (t) € V such that Lw;(t) = Loy ; (t) + Loenw; (1),
ie.,
(31) A(w; (1), V) = Gy (W; (1), V) + gy Wi (1), v), VYveV,i=0,1,

whence w = w,(t) + w, (t), Vi > 0.
Thanks to (16) and to the properties of agp, (-, ) and Ggey(:, ") we
have

t),
62 Jao(t)ls, < 5"2sup L0
vev olly,

< 51/2( asym(@g(t), ?)) - askew(vy @O(t)) )

sup
veV ol

sup

< 51/2< asym(@(](t)y /U) su askew(/v) 7//{\)0(t)) )
veV ||,U||V veV ||£skewv||V*

< 52 (||, ) [l + [0 (8 [Iv).-
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In a similar way, we have

t),
3 (@l <5"2sup LD
vev ol

sup
veV ||7)||AO

< 51/2( Aoy (W1 (D), V) + Ggeers Wy (B), V) )

<52 sy Oy (201 (2), V) su Ugeny (W1 (1), V)
IR T A T A T

< 52|, ()|l + || Logerw 01 () ly7+) -

From (23), by the triangle inequality and using (32)-(33), we have

+ o0 1/p
_ _ dt
”w”mo,Al)g,pS[ f(t gl +t* 0||w1(t)||A1)p7]

0

+ o

s51/2[ [ @l + ¢l + ¢l ol +
0
1/p
- dt
tl -0 ||£skeww1 (t)HV* )p 7 ]

e 1/p
~ _ dt
< 51/2|: f (t _el‘wo(t)||v+ t1‘9||w1(t)||v)p 7]
0

B 1/p

B . dt
[ f (t 70||£Skeww0(t)||co +1! 70”£Skewwl (t)”Cl Y 7] !
0

finally, taking the infimum over all wyeV, wy =w —wyeV, wyeV and w, =
w—wyeV, and using [15, 1.3.3.(f)], we finally get

H’WH(AO,AI)M <52 (lwlly + (| Loew 2l o)

completing the proof of (29). m

When p=p’=2 and 6 =1-60=1/2, Lemma 2 gives the continuity and
inf-sup conditions for £, as stated in the introduction, where |||-||| =
”'”(Am A, o> In particular, under the hypotheses of Lemma 3, we have the fol-
lowing obvious corollary.
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COROLLARY 1. — Under the assumption of Lemma 3 and setting

1/2
(34) ||| : ||| = (HH%‘F ”‘Eskew'”(zCo, 01)1/2,2) ,

we have the continuity and inf-sup conditions (8)-(9) for £, with constants C,
and G itndependent of L.

Actually Lemma 2 establishes a family of continuity and inf-sup conditions
for £ (for different values of 6 and p) with different norms on the trial space
(ie., [[*llay, 41, ) and on the test space (ie., ||[|4,, 4,,_, ,); on the other hand
from the numerical standpoint (8)-(9) are mainly interesting, as discussed in
[12, §4].

3. — The convection-diffusion-reaction operator.

We now apply the results of the previous section to the convection-diffu-
sion-reaction operator. In Lemma 1-3 we have explicitly computed the con-
stants involved into the estimates, in order to emphasize that the estimates do
not depend on £; henceforth, for the sake of simplicity, we will use generic
constants denoted by €, ©;, &, which are independent on the operator coeffi-
cients k,  and ¢ and on the domain €.

3.1. — The one-dimensional case.

We start with the analysis of the very simple one-dimensional operator,
with constant coefficients x> 0 and ¢ = 0, and unitary velocity. Then, for this
subsection only, we will consider a special case of (7), which is
(35) w Lw:=—xw"+w' +ow,

where the argument w is a function on the interval Q =[0, 1].

We consider first, and with particular emphasis, the ordinary differential
equation with homogeneous Dirichlet boundary conditions. The variational
formulation (11) reads

1
find eV such that a(u, v) = ffv, YveV,
0

where

V=H{(0, 1) with [-[}= |- |7 + ol [,

30 a(w,v)=1<f1w’v’+flw’v+gflwv.
0 0 0
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1 1
Then Lypw= —Kw"+ 0w, LyewW =W", Qg (W, v) = kfw'v' +ofwv and
1 0 0
Qe (W, ) = [w'v. Finally Cy=LE#(0, 1) and C; = H (0, 1) from the alge-
0

braic standpoint, where L¢ is the subspace of L?Z of zero mean value functions,
and its natural norm is |-z :=||-|[.z, while H ! is the dual of H, endowed
with the dual norm |:||z-1= sup (, v)/|v|; (we recall that |w]|; :=

1 1/2 veHL0, 1)
= ( Jw’ )2) is a norm on H{). It is easy to see that L¢ is a dense subspace of
0

H ' From Corollary 1 we immediately have the following result.

THEOREM 1. — For the case (35)-(36), uniform continuity and inf-sup con-
ditions (8)-(9) hold true with respect to the norm

1/2
@37 we [llwll] = (efwln+ o [fe,, oy, . + lollfz) ™

Now we focus our attention on ||| - ||| in (37), in order to better understand
its structure. Roughly speaking, the term [’ |\, c,),, , is related to the skew-
symmetric part of £, which is the first order derivative. Then we expect
w|jw’ ”(Co, o, U0 act as a 1/2-order norm uniformly on the operator coeffi-
cients k and p. That is in fact stated in the next theorem: we show that
[0 llico, 1y » StAYs between the H'?-seminorm and Hgj*-norm, where H'? :=
(L%, H'), . 5 and Hgf? := (L?, Hy )y, » ave the two usual Hilbert spaces of or-
der 1/2, endowed with the usual norms given by interpolation (see [11]), and
|w| 12 is the seminorm |lw — ITowl||;12, I1,- denoting the mean value of its
argument.

THEOREM 2. — For the case (35)-(36), we have

(38) Clwlge<w |, e < G [wllggz, YweV.

ProoF. — When ¢ =0, (38) follows from (52); we assume henceforth ¢ > 0.
We consider first the left inequality in (38), i.e.

(39) Clw| g < lw' |, YweV.

Cog, 22

It is easy to see that |jz' |2 =|]2|ly: and ||z’ ||;-1=|zll,2, for any ze H' N L¢;
then, thanks to Theorem [15, §1.3.3], [15, §1.11.2] and [15, §1.17.1], the first or-
der derivative is a topological isomorphism from H? N L§ into (H ', L?),. 5,
which means

(40) |w] gz = [l — Mowllge=lw [z, 12

e, 2°

We introduce now the new space C,: from the algebraic standpoint we set



346 GIANCARLO SANGALLI

Co :=L?, and we define ||-||lr, := (d|-|}2 + o[ -1)"2. Our next step is to show
that

(41) ||¢||(H71,L2)1/2y2 S @||¢||(60, C])]/zyg’ V¢€L2'
For that purpose we split a generic ¢ € L? into
(42) @ = Dhigh T P 1ow>

where ¢ yig, ¢ 10w € L2 are, roughly speaking, the high frequency part and the
low frequency part of ¢, respectively, in such a way that

(43) K" ignllz2 + 02 l¢p 1o 7+ < €Clllle,

(44) K| wignller 1+ 0 T2 10w Iz < Cligle, -

For that purpose, we introduce an auxiliary problem: let v € H{ the solution
of

(45) Lymp=¢ in (0, 1)
and let ¢ gy = —ky" and ¢, = oy

Multiplying both members of the differential equation (45) by —", inte-
grating over (0, 1) and integrating by parts we get

1
[+ lly 2= = [ou”;
0

then, thanks to the Cauchy-Schwartz inequality, we have
(46) 1 nign [l = Nl [l < [l 2.
Integrating (45) we have
—Ky 4K (0)+ oW = D,
where Y(x) = of Y(t) dt and analogously @(x) = of ¢(t) dt; after multiplying by

Y — I1,% both members, integrating over (0, 1) and integrating by parts we
obtain

1
dyl + ol — 11, Wi = [ o(w—11,w),
0

whence now

A7) 1610wl = ol # = 1T V|2 < || — 1T P2 = -
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Collecting (46)-(47) we obtain (43). From (45) it is also easy to obtain the esti-
mate (dly ' |72+ ollylF2)" < ||gllv+ = l|gllc,, which gives (44) straightforwardly.

Consider now the linear operator ¢+ (¢ ign, @ 10) from L? into L* X LZ,
With @ high, @ 10w as defined above: by interpolation from the two continuity esti-
mates (43)-(44) we get

(48) llp high”(LZ,H*l)l,z,2 + 1160 10 ez . L S Cliglle, Coue, 2
whence, by using the triangle inequality and since |-[lz2 51, ,=
||'||(H’1,L2)1/2y2; we obtain (41). Finally (40) and (41) gives (39).

Now we consider the right equivalence in (38), which is

(49) ||?/{) ' H(Co, Ciipe, 2 S @”w”HOIO/Z’ YweV.

Given we H{ it is easy to see that

o lle, = leelly = lelle

and

ko lle, =l "+ < [l

whence (thanks to Theorem [15, §1.11.2])
(50) Hw’ ”(Cm Cipe, 2 S ||w||(cl*v Cnp,2 — HWH(C‘O, Cpipe, 2*

Moreover, passing to the duals in (41), still using Theorem [15, §1.11.2], we
also have

(1) ||w||<éo, D2 S ool e 1, L= ||w||<H1, L s = ||w||(H010/2>.

Inequalities (50)-(51) give (49). =

REMARK 1. — It is worth noting that Theorem 1-2 allow for o = 0 as well; in
that case we have [w' iy, ¢, = 10" -1, 31y .» SinCE the coefficient x easily
cancel when interpolating. Let H} be the subspace of H' of functions w such
that w(0) = w(1), endowed with the |||y :=I|lly1, and HY® := (L?, Hj)p, o
endowed with the norm given by interpolation. Given ze Hjy N LE, one has
2" e = 2llgy and |z |l -+ = [Izl.2, whence (by using Theorem [15, §1.8.3], [15,
§1.11.2] and [15, $§1.17.1]) '@, 13, =lw2 mpyn, and  therefore
HW'H<H-1,L§)1,2,2"—“”W—HowH(LZ,H;hM, for any we Hg; this means that we
have the following characterization:

(52) Q=0='|W|H;/2 ::||w—HOwH(LzyH;)U“:Hw’H(CO,Cl)l/ZYZ, YweV.
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We may also deal with different kind of boundary conditions; consider the
example

(563)

Lu=f in (0, 1)
w(0)=u'(1) =0,

where £ is still formally given by (35). The variational formulation (11) now
requires

V={veH'(0,1) such that v(0) =0}
1 1 1
a(w,v)=1<fw’v’+fw'v+@fwv;
0 0 0

the key point is that the bilinear form a(:, -) is coercive on V; accordingly, we
define |||y as

1
[wlf? = a(w, w) = xk|w |} + ollwlf = + Ew(l)z,

and we have now

1 1
1
asym(w,v):wa’v’Jerm)Jr Ew(l)v(l),
0 0

1
cLskew(u); V) = fw,'l)_ é’l/()(].)’l)(].)
0

Then we can still make use of the theory of §2 and obtain uniform inf-sup and
continuity conditions from Corollary 1.

When the bilinear form a(:, -) is not coercive, then we can not use the re-
sults of §2. This is the case of

[ —ku"+u' =f in (0,1)

54
6D u'(0)=u(l)=0,

i.e., when o = 0 and we prescribe Neumann boundary condition at the inflow
x=0; then V= {veH'(0, 1) such that »(1) =0} and

1
a(w, w) = x|w| i+ ofwllf: - §w<1>2,

which is not positive in general, when k and ¢ are small enough. However,
when f=1 the solution of (54) is u(x) = k(exp (1/x) — exp (x/k)) + x — 1; for
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k—0 we have |Ju||,: = xexp (1/k), whence we see that (54) is in fact not uni-
formly well posed with respect to k.
3.2. = The multi-dimensional case.

In this section, we analyze the multi-dimensional convection-diffusion-re-
action operator (7) with Dirichlet homogeneous boundary conditions, and the
associated bilinear form

a(w, v) =K‘fV?/l)'V’U+fﬁ'V’M)?}+fQ?/U’Z),
Q Q Q

which is defined on H}(Q2) X H{ () (see, e.g., [11]). Under the assump-
tion

(55) o-— % div(B) =0

the bilinear form a(-, -) is coercive, whence we set

V=H;(2)

(56) 1
holf = ato, w) = ol + (o = 5 div(d)) -

The decomposition (6) gives

Ugym (W, V) = Kwa-VQ} + f(g — %div([)’)) wo,
Q

Q

(57 .
Ogew (W, V) Zéfﬁ-va + E!div(ﬁ) wWo;

For the sake of simplicity, we shall consider henceforth the case
(58) div(p) =0.

In order to apply Corollary 1 to this case, we need Ly, = -V to be injective
on V: this is assured, for example, by the assumption

(59) there exists a smooth ¢ : 2—R such that Vgp-f=C>0;

we refer to [10] for further details. Definition (28) says that, from the algebra-
ic standpoint, C, is the space of the streamline derivatives -Vw of functions
we H{, while C; is H ~'. Corollary 1 gives then the following result
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THEOREM 3. — For the case (56), (58)-(59), the uniform continuity and inf-
sup conditions (8)-(9) hold true with respect to the norm

/2
(60) we [l = (el + 18- Vool ., + ellslE )™

Roughly speaking, we expect |- Val|c,, ¢,y , t0 be of order 1/2 in the direc-
tion of 3, and of order 0 in the directions orthogonal to § (this can be more eas-
ily seen for the case o =0), but a rigorous analysis of the structure of ||3-
Vw||(co, i, 18 more difficult now than for the simpler one-dimensional case
considered in §3.1. The next result shows that [-Vul|c,, c,),, , has some uni-
form bounds independent of x and ¢ (though the anisotropy is not investigat-
ed). Then we end by a comparison between Hﬂ‘V@UHwO, Cp, and 1B
Vw”(cm Corp, 2

PROPOSITION 1. — For the case (56), (58)-(59), we have:

61 ClBl% leollee < 18- Vewlcr, e, < CIBIEE ol sy, 0 Vo0V,

where the constant C, of the Poincaré-like inequality depends on BBl = and L.

PRrOOF. — Let 5 be the solution of 8-Vy =||8||,= with #=0 on the inflow
boundary 92~ := {x€9Q|f(x)-n(x) <0}, n denoting the outward normal
unit vector defined on 99; the existence of # is guaranteed by (59). Given w e
H{, integrating by parts, using the Cauchy-Schwartz inequality and (58) we
have

181, « ol = [ -5 w®
Q

62
(2 = —2fnwﬁ-Vw
Q
<2 |nw]y|B- Vol
We have
(63) lleollz2 < llmllr, = ol .2,

and, using the classical Poincaré inequality, it is easy to get
(64) |nw |y < Cll = + [Vylls =) (2] 1.

Moreover, thanks to (59), we have ép =l = +[Vylle=p < + © (e.g., see [10,
Theorem 3.2]), where C, depends on 7, ie. on B/|f|.~ and Q. Then

(65) oy < €, llwlly;
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substituting back in (62),

IBll = el < €l 18- Vo

Vv

= CC, 18- Vaulle, 18- Vaolle,
and thanks to Theorem [15, §1.10.1] we obtain
ClIBIEZ leelle < 18- Valley, 1y, YweV,

which is the left inequality of (61).
We have, thanks to Theorem [15, §1.3.3]

Hﬁ'ku%&), Cip, 1 S Hﬁ'kuco Hﬁ'kuCl

(66)

< k2 w| g |18 Vel + 0 V2wl 2|8 - Veolly-,
and
. I8Vl < 218Vl < e Bl ol

1B-Vaw

ve<o 2BVl <o T Bll = || s
from (66)-(67), we get
18- elfiey, ey, < 211l = 0] a0 o0l 2,
and Theorem [15, §1.10.1] yields
18- Vllc,, ¢y 1 < ellplz ||w||<L2,H&>1/2,1, YweV,

and concludes the proof of (61). =

In the previous proposition, we have shown uniform bounds (with respect
to the operator coefficients) for [|8-Vavlic,, c,,, ,; as a general result of the in-
terpolation theory (see, e.g., [15, 1.3.3.d]), we have

(68) 18- Vlcy, cnp» < ClB-Vlico, cpyrp,»  YWEV,

and similarly

(69) HWH(AO,AQW,g s @H’WH(AO,AQW,U YweV;

the converse inequality of (68), that is ||5‘Vw||<co, Cohpr S e|p -Vw||(co, Coup. 22
does not hold true; on the other hand the converse of (69) holds true, and it is,
roughly speaking, almost uniform, in the sense that the constant in it only de-
pends on a logarithm of the coefficients, as stated in the next proposition.
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ProprosITION 2. — Consider the case (56), (58) and (59); let
(70) a = max {k"2o'?, K diam (2)}/|Al. .
When a <1 we have
(T1) [0llcag, 4., < CL=10g"? (@) ltllay, ap)yp s YEV,
while for a>1 we have

(72) ||w||(A0,A1>1/2, < Cllowl| g, A YWEV,

PrOOF. — We only consider here the case a < 1, since when a > 1 we can set
o :=1 instead of (70) and follow the proof. First, recall that from the definition
(14) we have

(73) lkolla, < lholls,, VeV,
and, since (67) and the Poincaré inequality, we also have
(74) alwla, < Clwly, YweV,
By the definition (23) and by the triangle inequality we get

+
dt
Fella s, = [ ¢ hon® I+ £ s ) -

0

a2

dt
< [a Pl @l + 0oy 0ll) <
0

1
dt
v [ ool + £ a0l S
a2
+ o

dt
v [ ol + @) S
1

=I1+11+1I,

for any wy () and w; (t) with w = wy(t) + w;(t), w;(t) e V,i=1,2and 0 <t < +
. Taking wy(t) = w and w;(t) =0 for t =1 we have

111 < ol [ £ ~*2at
1

< 2,
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In a very similar way, we deal with the first term, taking w;(tf) =w and
wy(t) =0 for 0 <t < a? thanks to (74) we obtain:

a2

I<polly, [+ 12at
0

< 2afwl,
< Clhwla,-

Thanks to the Cauchy-Schwartz inequality we have

1 1 1/2
dt dt
(75) f(t”szo(wHAo+t“2Hw1<t>HAl>7s[ f 7] :

a

1 1/2
dt
[ a2 l, + 2o @), 7] <[-2log(e)]"*-

a

1 1/2
dt
[ J& 2 ool + 2 o 0, ¢ 7]

that holds true for any choice of w,(¢) and w;(t) on a® <t < 1; taking the infi-
mum on w,, w; we obtain

I < [—2log ()2 |l a,,

A, 2
Finally, we have from (73)
il < llowlleag, 4y,

and (71) follows from the previous estimates on I, I7 and II]. =

From Proposition 1-2 we easily derive the next almost uniform bounds
(still, up to a log(a)? factor, which is, roughly speaking, a weak loss of
uniformity).

COROLLARY 2. — For the case (56), (58)-(59), given « from (70), we
have:

(76) e,min {1, |log(a) | 2}|Bl}= gz < |||l , VYweV,
(T 18-Vaullcy, coe o < CIBILE R0z, 10y Y0V

where C, depends on BBl - and L.
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Though (76)-(77) are not sharp estimates as we got in §3.1 for the one di-
mensional case, they put in evidence the relationship between the norm ||| - |||
defined in (60), and the skew-symmetric part Ly, =SV of (7). Recall that
max { k%, 02} w|.: < Clwlly < C|||w]|||, while (76) states the bound on the
L*norm which is mainly due to [B- V|, Then (76) becomes relevant
when x and o are small.

Ciip,2°
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