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Some Quasivariational Problems with Memory.

ULISSE STEFANELLI (*)

Sunto. – Si considera una classe di problemi quasivariazionali astratti che possono
descrivere effetti di memoria in vari contesti applicativi. In particolare, viene pro-
vata la loro risolubilità generalizzata sotto opportune ipotesi di monotonia e per
mezzo di un risultato di punto fisso per applicazioni multivoche in spazi ordinati.
Si sviluppa infine un’applicazione alla modellizzazione dei fenomeni di incrudi-
mento in plasticità.

Summary. – This note deals with a class of abstract quasivariational evolution pro-
blems that may include some memory effects. Under a suitable monotonicity
framework, we provide a generalized existence result by means of a fixed point
technique in ordered spaces. Finally, an application to the modeling of generalized
kinematic hardening in plasticity is discussed.

1. – Introduction.

Let H be a separable Hilbert space and denote by K the set of non-empty,
convex, and closed subsets of H . Assume we are given a reference time TD0,
a set valued function K : [0 , T] K K, and a point u0 �K(0). In his fundamental
papers [19, 20] Moreau proved the existence of a global in time absolutely con-
tinuous solution (right continuous and of bounded variation solution, respect-
ively) u : [0 , T] KH of the abstract evolution problem

u 8 (t)1¯IK(t) (u(t) ) �0, u(0) 4u0 ,(1.1)

where the prime denotes derivation with respect to time, ¯IK(t) (u(t) ) is the
normal cone to K(t) at the point u(t), and a suitable absolute continuity as-
sumption (right continuity and bounded variation assumption, respectively) on
K is imposed. The latter problem is generally referred to as sweeping process
and stems in a variety of applications related to non-smooth mechanics, convex
optimization, mathematical economics among others [16]. Moreover, it formal-

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.
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ly includes as a special case the evolution variational inequality

v(t) �K 8 , (v 8 (t), v(t)2w) G (f (t), v(t)2w) (w�K 8 , v(0) 4u0 ,

where (Q , Q) denotes the scalar product in H , K 8� K, and f�L 1 (0 , T ; H),
through the positions u(t) »4v(t)2 (1 * f )(t) and K(t) »4K 82 (1 * f )(t), with

the standard notation (1 * f )(t) »4 s
0

t

f (s) ds for t� [0 , T].

Let us now address a first generalization of problem (1.1) by considering
the case of a function K depending on the solution u as well. In particular, we
assume to be given K : [0 , T]3HK K and a point u0 �K(0 , u0 ) and look for a
solution to the problem

u 8 (t)1¯IK(t , u(t) ) (u(t) ) �0, u(0) 4u0 .(1.2)

The latter quasivariational problem arises in connection with the treatment
of quasistatical evolution problems with friction, micro-mechanical damage
models (see [13] and the references therein), and the evolution of shape mem-
ory alloys [2, 3]. Moreover, it formally includes the case of quasivariational
evolution inequalities

v(t) �K 8 (v(t) ), (v 8 (t), v(t)2w) G ( f (t), v(t)2w) (w�K 8 (v(t) ), v(0) 4u0 ,

where now K 8 : HK K, by means of the positions u(t) »4v(t)2 (1 * f )(t),
K(t , u) »4K 8 (u1 (1 * f )(t) )2 (1 * f ) s(t) for t� (0 , T). Let us mention the
well-posedness analysis for problem (1.2) of the papers [6, 13, 14] which is in-
deed based on a Lipschitz regularity assumption on K with respect to the
Hausdorff topology in K. In particular, the Lipschitz constant l related to the
u dependence of K is asked to be less than 1 . The latter requirement has a
clear mathematical drawback since it entails the possibility of exploiting some
contractivity techniques. On the other hand, this requirement is motivated by
the fact that there exists some counterexample to global strong existence in
the case lD1 (see the forthcoming Subsection 3.1). Using a different ap-
proach, the papers [3, 21] study (1.2) by replacing the Lipschitz regularity as-
sumption with some monotonicity assumption and exploiting an order method.

The present analysis is concerned with a nonlocal extension of problem
(1.2). In particular, we assume to be given K : [0 , T]3L 2 (0 , T ; H) K K (the
reader is referred at once to [15] for definitions and properties of function
spaces) and a suitable initial state u0 . Thus, we are interested in the following
nonlocal quasivariational problem

u 8 (t)1¯IK(t , u) (u(t) ) �0, u(0) 4u0 .(1.3)

In particular, we address the issue of a quasivariational dependence of a global
functional type, possibly modeling some memory effect.

As for to point out the possible applicative interest of this perspective, we
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shall briefly present a mechanical model that may be casted in terms of (1.3).
Let us refer the reader at once to the monographs [1, 7, 9, 10, 22] for the dis-
cussion on the physical ground-bases and the mathematical modeling of asso-
ciative elastoplasticity and start from the simplest possible one-dimensional
kinematic hardening model. To this aim, let H4R , and assume we are given
the strain rate t : [0 , T] KH . We will denote by s , a : (0 , T) KH the stress
and a kinematic internal hardening parameter, respectively, and we are in-
terested in the corresponding dynamics form the initial configuration (s 0 , a0 ).
Following Han & Reddy [10], one has that the evolution of a body that under-
goes linear kinematic hardening is governed by the constitutive relations in
(0 , T),

(s , a) �K1 , (s 82t)(s2s)1a 8 (a2b) G0, ((s , b) �K1 ,

(s(0), a(0) ) 4 (s 0 , a0 ) ,
(1.4)

where K1 »4 ](s , a) �H3H : W(s2a) G1( with the yield function W : HK

[0 , 1Q] convex, proper, and lower semicontinuous, 0 4W(0) 4min W and
(s 0 , a0 ) �K1 . The general existence theory for evolution variational inequali-
ties provides, for all t�L 2 (0 , T ; H), a unique almost everywhere solution
(s , a) �W 1, 2 (0 , T ; H3H) to (1.4) (in this regard, the reader shall be re-
ferred also to the analysis of the full PDE problem for associative elastoplas-
ticity that is addressed by Johnson [11]). Our aim is now to recast the basic
problem (1.4) in an equivalent form which is independent of the internal par-
ameter a and generalizes to a wide class of hardening situations. To this end,
one readily gets from (1.4) that, for all t� (0 , T), the actual value a(t) depends
in a nonlocal in time fashion on the evolution of s on (0 , t). In particular, let-
ting K2 »4 ]t�H : W(t)G1(, we simply check that (see also [10, Ex. 4.9, p. 90])

a 8�¯IK2
(s2a) in (0 , T), a(0) 4a0 .(1.5)

Namely, for all s�W 1, 2 (0 , T ; H), one has that there exists a unique as�
W 1, 2 (0 , T ; H) fulfilling the above initial condition and inclusion almost every-
where. On the other hand, it is straightforward to compute that

]s�H : (s , a(t) ) �K1 ( fK2 1a(t).

By introducing the notation K3 (t , s) »4K2 1as (t) problem (1.4) reads equiva-
lently as follows

s 8 (t)1¯IK3 (t , s) (s(t) ) �t(t) for t� (0 , T), s(0) 4s 0 .(1.6)

Finally (1.6) may be rewritten into the abstract framework of (1.3) with the
choices u4s21 * t and K(t , u) »4K3 (t , u11 * t)2 (1 * t)(t).

The existence of weak solutions to problem (1.3) has been obtained in [23]
where indeed this author addresses an even more general problem by replac-
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ing the normal cone ¯IK(t , u) (u(t) ) with the (suitably generalized) gradient of a
proper, convex, and lower semicontinuous potential. Indeed, the latter gener-
alization is suitable of being applied to some parabolic PDE problem as well.
The aim of note is to recast the results of [23] in the case of normal cones. In
particular, we focus on the existence of generalized solutions to (1.3) by ex-
ploiting the so-called variational section method. Namely, we shall fix u �
L 2 (0 , T ; H) and suitably solve the variational problem

u 8 (t)1¯IK(t , u) (u(t) ) �0, u(0) 4u0 ,

that falls into the class of (1.1). Then, we have implicitly defined the so-called
variational selection mapping S(u) 4u . The key assumption of our analysis
will clearly concern the functional dependence of K on u and shall be regarded
as of monotonicity type. By introducing an order structure on the solution set,
we claim that our key assumption of K entails the validity of an abstract com-
parison tool among weak solutions. In particular, the latter comparison princi-
ple asserts that, whenever we refer to ordered data u1 and u2 , the correspond-
ing solution sets S(u1 ) and S(u2 ) show some ordering property as well (see be-
low). Finally, we shall present a suitable fixed point device for multivalued ap-
plications in ordered sets that entails, in particular, the existence of a fixed
point for the variational selection S. Before moving on, we shall remark that
the above introduced method has some analogies with the theory of the solv-
ability of equations in the viscosity sense [8]. Namely, it is remarkable that
our fixed point lemma is indeed very close to the well-known Perron method
for the construction of viscosity solutions. Indeed, as one shall see, our exis-
tence result will rely both on the above mentioned comparison result and on
the existence of a pair of ordered sub and supersolutions, exactly as in the vis-
cosity theory.

We shall provide a self-contained exposition by discussing some prelimi-
nary material on orders in Hilbert spaces and fixed points of non-decreasing
set-valued applications (Section 2). Then, a (suitably revisited) version of the
well-known counterexample [14] to global strong existence is presented and a
notion of weak solution is discussed (Section 3). Finally, we state the existence
result and sketch the main lines of its proof (Section 4). The above introduced
plasticity model will serve us throughout the forthcoming analysis as a primer
application of the abstract theory.

2. – Preliminaries.

Let us start by fixing some notation. In particular, we will use the symbol
(Q , Q) for the scalar product in H and N QN for the related norm.

For all K� K we denote by IK : HK [0 , 1Q] the indicator function de-



SOME QUASIVARIATIONAL PROBLEMS WITH MEMORY 323

fined by IK (u) 40 if u�K and IK (u) 41Q otherwise. It may be clearly
checked that the latter function is proper, convex, and lower semicontinuous
and one may define its subdifferential ¯IK : HK2H as

w�¯IK (u) iff u�K and (w , v2u) G0 (v�K .

Of course, for all u�K , the set ¯IK (u) is nothing but the non-empty and closed
normal cone to K at the point u . Moreover, ¯IK turns out to be a maximal
monotone graph. The reader is referred to [5] for definitions and details.

For later reference, let us recall that the Hausdorff distance dH between
two non-empty sets F , G%H is defined by

dH (F , G) »4maxmsup
f�F

inf
g�G

Nf2gN , sup
g�G

inf
f�F

Nf2gNn .

2.1. Orders in Hilbert spaces.

This introductory discussion mainly follows the presentation in Baiocchi &
Capelo [4]. Let us assume we are given a non-empty set C%H such that

C4 ]u�H : (u , v) F0 (v�C( .

Hence, C turns out to be a closed strict cone with vertex at the origin and one
easily checks that the relation

uGv iff v2u�C ,

defines an order in H . Moreover, for all u , v�H , we will introduce the
notations

u 1 »4p C (u), u 2 »4p C (2u) ,

uSv»4u1 (v2u)1 , uRv»4u2 (u2v)1 ,

where p C stands for the projection on C . Of course, p C is well defined and one
checks that u4u 12u 2 and (u 1 , u 2 ) 40 for all u�H . Hence, in particular,
uSv4v1 (u2v)1 and uRv4v2 (v2u)1 as well. Let us stress that the
symbols R and S are chosen just for the sake of notational simplicity. The da-
tum (H , C) of the latter construction is said to be a Hilbert pseudo-lattice (see
[4, Sec. 19.5, p. 399] for details).

Letting F%H , we recall that f�F is a maximal element of F iff, for all f 8�
F , fG f 8 implies f4 f 8 . Then, f is the maximum (minimum) of F iff f 8G f ( fG

f 8 , respectively) for all f 8�F . Moreover, u�H is an upper bound of F iff fGu
for all f�F and u�H is the supremum or least upper bound iff u is the mini-
mum of the set of upper bounds of F . Moreover, we say that F is a chain if it is
totally ordered and that F is an interval iff there exist u*, u *�H such that
Ff ]u�H : u*GuGu *(. In the latter case we use the notation F4

[u*, u *]. The set F is said to be s-inductive iff every chain of F is bounded
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above and it is said to be completely s-inductive iff every chain of F has a
supremum. The well-known Zorn lemma reads as follows.

LEMMA 2.1. – Let F be s-inductive. Then F has a maximal element.

Whenever (H , C) is a Hilbert pseudo-lattice, it is straightforward to check
that the same holds for (L 2 (0 , T ; H), C 8 ) with C 8 »4 ]u�L 2 (0 , T ; H) : u�C
a.e. in (0 , T)(. Namely, the space L 2 (0 , T ; H) may be endowed with the order
G8 defined, for all u , v�L 2 (0 , T ; H), as

uG8 v iff vGv a.e in (0 , T) .

For the sake of notational simplicity we will use the same symbol G for the
two orders in H and in L 2 (0 , T ; H) throughout the remainder of the
paper.

Let us stress from the very beginning that the concrete choices for (H , C)
that we mainly have in mind are H4R and C4 [0 , 1Q), H4Rm , m�N ,
with C4]u4(u1 , R , um ) �Rm : uiF0, i41, R , m(, H4L 2 (V) with V%Rn

open and C4 ]u�L 2 (V) : uF0 a.e. in V(, or H4 (L 2 (V) )m and C4 ]u4

(u1 , R , um ) � (L 2 (V) )m : ui F0 a.e. in V , i41, R , m(.
We shall now introduce on the parts of H (L 2 (0, T ; H)) the relation A as

FAG iff ( f�F , g�G ¨ fRg�F , fSg�G) ,

for all F , G non-empty subsets of H (L 2 (0 , T ; H), respectively). In particular,
relation A turns out to be an order on the non-empty closed intervals.

Assume now we are given K1 , K2 � K such that K1 A K2 . It is a standard
matter to exploit the definition of subdifferential and deduce that, for all v1 �
¯IK1

(u1 ) and v2 �¯IK2
(u2 ), one has

(v1 , u1 2w1 ) F0 (w1 �K1 and (v2 , u2 2w2 ) F0 (w2 �K2 .

Now, we may choose w1 »4u1 Ru2 , w2 »4u1 Su2 , take the sum in the corre-
sponding inequalities, and deduce that

(v1 2v2 , (u1 2u2 )1) F0 .(2.1)

More precisely the following lemma [23, Lemma 4.1] holds true.

LEMMA 2.2. – Let K1 , K2 � K. The following are equivalent:

i) K1 AK2 ,

ii) (v12v2 , (u12u2 )1)F0 for all ui , vi such that vi�¯IKi
(ui) for i41, 2.

2.2. Fixed point lemma.

Let us now come to our fixed point device, namely Lemma 2.4. The latter is
nothing but an extension to the case of set-valued mappings between Hilbert
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pseudo-lattices of a former fixed point lemma for non-decreasing single-
valued functions on ordered sets. Of course the current literature on fixed
point results for multivalued applications is quite rich. Nevertheless, let us
stress that we could not find a reference for the forthcoming Lemma 2.4.
Hence, we aim to provide here a direct proof together with some comments.
We shall start from the following result.

LEMMA 2.3. – Let (H , C) be a Hilbert pseudo-lattice and I»4 [u*, u *] %H .
Assume that S : IKI is non-decreasing. Then, the set ]u�I : u4S(u)( is
non-empty and has a minimum and a maximum.

An order set version of the latter result was announced by Kolodner [12]
and a proof is to be found, for instance, in [4, Thm. 9.26, p. 223]. Let us now in-
troduce some notations. Namely, letting F , G denote non-empty subsets of H
(L 2 (0 , T ; H), respectively) we define the relation ] as

F ] G iff (f�F )g�G such that fGg .(2.2)

Of course FAG implies that F]G while the opposite implication does not
hold. For the sake of notational simplicity, in the following we write, for in-
stance, f]F instead of ] f (]F , etc. We are in the position of proving the fol-
lowing lemma.

LEMMA 2.4. – Let (H , C) be a Hilbert pseudo-lattice and I»4 [u*, u *] %H .
Assume that S : (I , G) K (2I , ]) is non-decreasing and has non-empty and
weakly compact values. Then, there exists u�I such that u�S(u).

PROOF. – Let U»4 ]v�I : v ] S(v)(. We will prove that: (i) U is non-emp-
ty, (ii) U with the induced order is completely s-inductive, (iii) U has a maximal
element u , (iv) u is a fixed point for S (namely u�S(u)).

Proof of (i): since S(u*) %I , we readily check that u*�U .
Proof of (ii): let L4 ]l a(a�A be a chain in U , where (A , E) is a totally or-

dered set of indices. From the assumptions on S we readily deduce that
u* ]L]u * and that the sequence (l a , u *2u*) is non-decreasing with a and
bounded. Hence, it has a finite limit. Then, for all b , a�A with aEb , we have
that

Nl b2l aN2 G (l b2l a , u *2u*).

Namely L is a Cauchy sequence and monotonically converges to l4 sup
a�A

l a as

a increases. Of course, any subsequence ]l n (n�N of L is converging to the
same limit.

Since l n Gl and l n �U , we have that l n ]S(l n )]S(l). Namely, there
exists sn �S(l) such that l n Gsn . Being S(l) weakly compact, one can extract a
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(not relabeled) subsequence such that sn weakly converges to s�S(l). Then,
we prove that, for all c�C ,

(s2l , c) 4 lim
nK1Q

(sn 2l n , c) F0 .

Finally lGs�S(l) which amounts to say that l�U .
Proof of (iii): one applies Lemma 2.1.
Proof of (iv): the maximal element u belongs to U , thus there exists v�

S(u) such that uGv . Hence S(u)]S(v) and, in particular v]S(v). Finally, v�
U and, since u is maximal, one has that ufv�S(u).

A few comments on the latter lemma are in order. First of all, one observes
that, since any non-decreasing function S : IKI may be regarded as a non-de-
creasing multivalued application S : (I , G) K (2I , ]) with non-empty and
weakly compact values, Lemma 2.3 actually extends the existence result of the
former Lemma 2.4. On the other hand, nothing can be said in general on the
existence of a minimum or a maximum for the set of fixed points of the applica-
tion S in the framework of Lemma 2.4. Indeed, let us consider I»4 [0 , 1 ] en-
dowed with the usual order and the map S1 (0) »4 ]1( and S1 (u) »4 ]u , 1( for
all u� (0 , 1 ]. We readily check that ]u�I : u�S1 (u)( f (0 , 1 ]. The construc-
tion of a counterexample for the maximum case is just slightly more involved
and it not reported, for the sake of simplicity. Moreover, it is clear that the
weak compactness of the values of the mapping S is not necessary in order to
have fixed points. Nevertheless, we cannot remove this assumption from the
statement of Lemma 2.4 as it is shown by the counterexample I»4 [0 , 1 ] and
S2 (u) »4 (u11) /2 for all u� [0 , 1 ), S2 (1) »4 [0 , 1 ).

3. – Formulation.

3.1. Counterexample.

We start by describing a suitably modified version of the well-known coun-
terexample [14] to the global strong solvability of (1.2). Assume that
K : [0 , T]3H is uniformly Lipschitz continuous with respect to the Hausdorff
metric. Namely, we ask for

dH (K(t , u), K(s , v)) GmNt2sN1lNu2vN ,

for some positive constants m , l , and any t , s� [0 , T], u , v�H . We shall pro-
vide an example of K with lD1 for which no global absolutely continuous sol-
ution exists. To this aim let H4R and define K 8 (w) »4 [c(w), 1Q) for w�R
and c(w) »4 (2w21/2)1 . It is straightforward to check that the problem

w 81¯IK 8 (w) (w) �1, w(0) 40,
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has the unique strong solution w(t) 4 t on (0 , 1 /2) (note that c(1 /2) 41/2). On
the other hand, there is no absolutely continuous solution to the latter problem
for tD1/2 . Indeed, the variational inequality entails w 8F1 and the region
]1/2 EwE1( is not accessible for w since 1 /2 EwE1 implies wEc(w) and
w�K 8 (w). Starting from the latter example, one easily checks that the choice
K(t , u) »4K 8 (u1 t)2 t is uniformly Lipschitz continuous of constant l42
and problem (1.2) admits no absolutely continuous solutions on (0 , 1 ).

3.2. Problem formulation.

The latter counterexample motivates the introduction of a suitable concept
of weak solution. To this aim let us recall that

(H) (H , C) is a sep. Hilbert pseudo-lattice, u0 �H , and K : [0 , T]3

L 2 (0 , T ; H) K K.

For any u�L 2 (0 , T ; H), let us define

A(u) »4 ]v�L 2 (0 , T ; H) : v(t) �K(t , u) for a.e. t� (0 , T)(

and state the following.

PROBLEM Q. – To find u�A(u) such that

1

2
Nv(0)2u0N

2 1s
0

T

(v 8 , v2u) F0 (v�W 1, 2 (0 , T ; H)OA(u) .(3.1)

Relation (3.1) is easily deduced from (1.3) and the definition of subdifferential
by integration on (0 , T) whenever a regular test function v�W 1, 2 (0 , T ; H) is
considered. The latter weak formulation was already discussed in [17, 18]
where indeed the authors focus on a somehow related local in time quasivaria-
tional problem.

Of course we will need to assume that there exists at least one function u
belonging to A(u) (otherwise the latter Problem Q has trivially no solutions)
and that, at least for such u , the set W 1, 2 (0 , T ; H)OA(u) is non-empty (oth-
erwise relation (3.1) is automatically fulfilled and u reduces to the solution of a
suitable viability problem). Let us ask for

(A) for any u�L 2 (0 , T ; H) the set W 1, 2 (0 , T ; H)OA(u) is non-empty.

Namely, we impose some regularity to the multi-mapping t O K(t , u). On the
other hand we do not explicitly require to have some u�A(u) since this will be
obtained as a by-product of our overall assumptions (see below).
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3.3. Monotonicity assumption.

Let us now come to the key assumption of this analysis. We will ask
for

(M) for any u1 , u2 �L 2 (0 , T ; H) one has that u1 Gu2 ¨ A(u1 ) AA(u2 ).

Let us stress that, in the framework of assumptions (H) and (A), for all u�
L 2 (0 , T ; H) the set A(u) is non-empty, convex, and closed. Moreover, the lat-
ter monotonicity assumption (M) may be equivalently rewritten as

u1 Gu2 ¨ K(t , u1 ) AK(t , u2 ) for a.e. t� (0 , T),

for all u1 , u2 �L 2 (0 , T ; H). We shall check that this is exactly the situation of
the kinematic hardening model (1.4). Indeed, referring to Section 1 for nota-
tions, assume we are given (s i , ai ) �W 1, 2 (0 , T ; H3H), i41, 2 , two sol-
utions to (1.4) such that s 1 Gs 2 . Then we readily check that

(s 1 , a1 ), (s 2 , a2 ) �K1 , s 1 Gs 2 ¨ (s 1 , a1 Ra2 ), (s 2 , a1 Sa2 ) �K1 .

Hence, we write (1.4) for i41, 2 , choose (s1 , b1 ) »4 (s 1 , a1 Ra2 ) and
(s2 , b2 ) »4 (s 2 , a1 Sa2 ) and deduce that a1 Ga2 as well. Eventually, the defini-
tion of K3 implies that

s 1 Gs 2 ¨ K3 (t , s 1 ) AK3 (t , s 2 ) for a.e. t� (0 , T).(3.2)

In particular, the monotonicity condition (M) can be easily inferred.

4. – Result.

According to Section 1, in order to solve the above quasivariational Prob-
lem Q we shall be concerned with its variational section. Namely, we are in-
terested in the following problem.

PROBLEM V. – Given u �L 2 (0 , T ; H), to find u�A(u) such that

1

2
Nv(0)2u0N

2 1s
0

T

(v 8 , v2u) F0 (v�W 1, 2 (0 , T ; H)OA(u).(4.1)

Indeed, we first prove that Problem V admits at least a solution for all data
u �L 2 (0 , T ; H). Hence, we will define the variational selection mapping
S : L 2 (0 , T ; H) K2L 2 (0 , T ; H) carrying the datum u into the solutions of Prob-
lem V. We will call u �L 2 (0 , T ; H) a subsolution of Problem Q if u Gu for all
u� S(u). Analogously u �L 2 (0 , T ; H) is called supersolution of Problem Q if
uG u for all u� S(u). Our main result reads as follows.
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THEOREM 4.1. – Assume (H), (A), (M), and that there exists a subsolution
u* and a supersolution u * to Problem Q such that u*Gu *. Then, the set of
solutions u to Problem Q such that u*GuGu * is non-empty.

As far as uniqueness is concerned, let us stress that nothing can be said in
general for Problem Q. Indeed, even Problem V fails to have a unique solution
as it is shown in [18, Ex. 1.2]. Namely, the variational selection S(u) is in gener-
al a set.

4.1. Sketch of the proof.

Let us briefly outline the proof of Theorem 4.1 (the reader shall refer to
[23] for the details).

As a first step we shall fix u �L 2 (0 , T ; H) and solve Problem V. To this
aim, one addresses the regularized problem of finding ue�W 1, 2 (0 , T ; H) ful-
filling, for almost every t� (0 , T),

ue8 (t)1¯I e
K(t , u) (ue (t) ) 40, ue (0) 4u0 .(4.2)

Here ¯I e
K(t , u) represent the well-known Yosida approximation of ¯IK(t , u) (see [5]

for definitions and properties). We easily check that the latter problem is
uniquely solvable. Hence, it is straightforward to verify that the solutions ue

are bounded in L Q (0 , T ; H), uniformly with respect to e . Let us denote by
S(u) the set of weakstar limits in L Q (0 , T ; H) of subsequences of ue as e goes
to 0 . Moving from (4.2) and choosing any v�W 1, 2 (0 , T ; H)OA(u) we readily
check that,

1

2
Nv(0)2u0N

2 1s
0

T

((v 8 , v2ue )1I e
K(t , u) (v)) 4

1

2
N(ue2v)(t)N2 1s

0

T

I e
K(t , u) (ue ).

Next, we exploit the properties of the Yosida approximation, pass to the lim inf
as eK0 in both sides of the latter relation, and deduce that u solves Problem
V. Namely, we have proved that

¯cS(u) % S(u) (u �L 2 (0 , T ; H).

We shall turn our attention to the map S instead of S and show that some
monotonicity property in [u*, u *] may be proved. To this aim, we will make
use of the following technical lemma, which goes in the same direction of Lem-
ma 2.2 and whose proof is reported in [23].

LEMMA 4.2. – Assume (H) and (M). Moreover let u1 , u2 , u1 , u2 , v1 , v2 �
L 2 (0 , T ; H) with u1 G u2 and vi (t) 4¯I e

K(t , ui ) (ui (t) ) for almost every t� (0 , T)
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and i41, 2 . Then

(v1 2v2 , (u1 2u2 )1) F0 a.e. in (0 , T).

Let us fix u1 , u2 � [u*, u *] such that u1 G u2 and denote by u1e and u2e the
solutions to (4.2) with data u1 and u2 , respectively. By taking the difference in
the respective equations (4.2), testing on (u1e2u2e )1 , and integrating on
(0 , t) for t� (0 , T), we get that

1

2
N(u1e2u2e )1 (t)N2 1s

0

t

(v1e2v2e , (u1e2u2e )1) 40 ,

where vie (t) »4¯I e
K(t , ui ) (uie (t) ) for almost every t� (0 , T) and i41, 2 . Finally,

it is a standard matter to apply Lemma 4.2 and deduce that

u1 G u2 ¨ u1eGu2e for all eD0.(4.3)

Unfortunately, moving from the latter position we cannot infer that u1 G u2

implies that u1 Gu2 for all ui �S(ui ), i41, 2 , since the extracted subse-
quences converging to u1 and u2 need not have the same indices. However, in
the framework of Theorem 4.1, it is straightforward to check that, for all u �
[u*, u *] 4: I , one has that S(u) %I as well. Namely, relation (4.3) ensures
that, for all v�S(u), there exists w�S(u*) such that u*GwGv . This is easily
obtained by successively extracting subsequences. An analogous argument en-
tails that vGu * as well. On the other hand, owing for instance to the metriz-
ability of the weak topology of L 2 (0 , T ; H) on bounded sets, we readily check
that S(u) is weakly compact. We may now check that S : (I , G) K (2I , ]) is
non-decreasing. As above, we exploit (4.3) and deduce that, if u1 G u2 , for all
u1 �S(u1 ) there exists u2 �S(u2 ) such that u1 Gu2 . We are now in the position
of applying Lemma 2.4 and deduce that the set ]u�I : u�S(u)( is non-empty,
whence Theorem 4.1 is completely proved.

By carefully analyzing the latter proof one readily checks that the exis-
tence of sub and supersolutions to Problem Q assumed in the statement of
Theorem 4.1 may be substantially weakened. Indeed, one needs just the exis-
tence of points u*, u * in L 2 (0 , T ; H) such that S( [u*, u *] ) % [u*, u *]. This is
especially interesting with respect to applications where it is in general useful
to exploit the approximation properties of the points in the image of S . Accord-
ing to these considerations we stress that we actually proved the following
stronger existence result.

THEOREM 4.3. – Assume (H), (A), (M), and that there exists u*, u *�
L 2 (0 , T ; H) such that S( [u*, u *] ) % [u*, u *]. Then, the set of solutions u to
Problem Q such that u*GuGu * is non-empty.
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4.2. Generalized kinematic hardening.

Theorem 4.1 leaves open the question whether a subsolution u* and a su-
persolution u * to Problem Q such that u*Gu * actually exist. Indeed this does
not follow from our general assumptions and we must explicitly require it. In-
stead of discussing some abstract conditions for the existence of such sub and
supersolutions, we prefer to present the example of a concrete construction in
our kinematic hardening situation. Referring again to Section 1 for the nota-
tions, let us consider the quantity s * »4s 0 21 * t2 , and solve for s such that
(see (1.6))

s 8 (t)1¯IK3 (t , s*) (s(t) ) �t(t) for a.e. t� (0 , T), s(0) 4s 0 .(4.4)

Is is straightforward to check that the definitions of K2 and K3 imply that
s *(t) �K3 (t , s *) for almost every t� (0 , T). Hence, we also have that (sS
s *)(t) �K3 (t , s *) for almost every t� (0 , T) and (4.4) entails that

(s 82t)(s2sSs *) G0 a. e . in (0 , T).

Next, one multiplies relation s *8 1t240 by (s2s *)2 and takes the sum with
the above inequality obtaining

2(s2s *)8 (s2s *)21t1 (s2s *)2G0 a.e. in (0 , T).

Since s(0) 4s *(0) 4s 0 , we readily check that sFs * almost everywhere in
(0 , T). Hence, by defining u* »4s *21 * t , one has that u4s21 * tFs *2

1 * t4u*. Namely, u* is a subsolution in the above sense. An analogous argu-
ment with the choices s* »4s 0 11 * t1 and u * »4s*21 * t brings to the con-
struction of a suitable supersolution.

Although we developed here the theory for the case of linear kinematic
hardening, it is clear that the constitutive relation (1.6) is suitable of describ-
ing quite more general hardening situations. In particular, it is noteworthy to
point out that all the physics of the phenomenon is translated into the mono-
tonicity condition (M). Namely, as soon as (M) is fulfilled, we are entitled to
address by the same techniques some generalized hardening effects such as
suitable classes of nonlinear kinematic or combined isotropic-kinematic
hardening.
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