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Homogeneous Carnot Groups Related
to Sets of Vector Fields (*)

ANDREA BONFIGLIOLI

Sunto. – In questo articolo ci occupiamo del seguente problema: data una famiglia di
campi vettoriali regolari X1 , R , Xm su RN , ci chiediamo se esiste un gruppo omo-
geneo di Carnot G4 (RN , i , d l ) tale che !

i
Xi

2 sia un sub-Laplaciano su G . A tale

proposito troviamo condizioni necessarie e sufficienti sugli assegnati campi vetto-
riali affinché la risposta alla suddetta domanda sia positiva. Inoltre esibiamo una
costruzione esplicita della legge di gruppo i che verifica i requisiti di cui sopra,
fornendo dimostrazioni dirette. La prova è essenzialmente basata su una opportu-
na versione della formula di Campbell-Hausdorff. Per finire, mostriamo svariati
esempi non banali del nostro metodo costruttivo.

Summary. – In this paper, we are concerned with the following problem: given a set of
smooth vector fields X1 , R , Xm on RN , we ask whether there exists a homogeneous
Carnot group G4 (RN , i , d l ) such that !

i
Xi

2 is a sub-Laplacian on G . We find

necessary and sufficient conditions on the given vector fields in order to give a po-
sitive answer to the question. Moreover, we explicitly construct the group law i as
above, providing direct proofs. Our main tool is a suitable version of the Campbell-
Hausdorff formula. Finally, we exhibit several non-trivial examples of our
construction.

1. – Introduction and main results.

A Carnot group (or stratified group) is a connected and simply connected
Lie group (F ,* ) whose Lie algebra R admits a stratification, i.e., a direct sum
decomposition (in the sense of vector spaces) R4W1 5R5Wr with
[W1 , Wi ] 4Wi11 , [W1 , Wr ] 4 ]0(. A sub-Laplacian on F is any second order
differential operator of the form !

j
Xj

2 , where the Xj’s form a basis of W1 . The

study of second order linear PDE’s sum of squares of vector fields, started
with Hörmander’s paper [28], has significantly improved after the works by
Folland [17] and by Folland&Stein [18] (who systematically developed Har-

(*) Investigation supported by University of Bologna. Funds for selected research
topics.
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monic Analysis on stratified groups) and by Rothschild&Stein [37]. In this last
paper, it was shown that any Hörmander operator can be locally approximated
(in a suitable sense) by a sub-Laplacian on a free stratified group, a relevant
result which increased the motivation in studying Carnot groups and their
sub-Laplacians. Recently, many authors have investigated Carnot groups
from different points of view. A part from the vaste literature on Heisenberg-
type groups, we shall limit ourselves in mentioning only few very recent exam-
ples related to Carnot groups (referring the reader to the therein references
for a more detailed bibliography): [4, 5, 6] (potential theory on Carnot groups),
[20, 34] (geometric measure theory) [3, 22] (symmetry properties in Carnot
groups), [12, 26] (quasiconformal mappings on Carnot groups), [24, 32]
(geodesics on Carnot groups), [19, 21, 33] (boundary behavior of solutions to
subelliptic equations), [1, 7, 8, 11] (parabolic-type equations for sub-Lapla-
cians).

Usually, the Carnot group F and its composition law ˜ are part of the data
of the problem and investigations are led with the aim of studying some specif-
ic properties and aspects of the given structure of F . On the contrary, espe-
cially in the analysis of PDE’s, an opposite situation sometimes occurs: given a
linear second order operator L 4!

j
Xj

2 , where the Xj’s are smooth vector

fields on RN , it may be asked whether there exists a Lie group structure on RN

with respect to which L is a sub-Laplacian. Besides, in case the answer is affir-
mative, it could also be relevant to explicitly find the group law with the cited
property. The aim of this paper is to answer to this question.

In order to describe the problem we are concerned with, we recall the defi-
nition of Carnot group that we shall be dealing with. Our definition may seem
slightly different from the one given in literature, but it is indeed equivalent,
as we observe below. We suppose that the Lie group (RN , ˜) is endowed with
a family of Lie group automorphisms ]d l(lD0 (called dilations) of the
form

d l (x) 4d l (x (1) , x (2) , R , x (r) ) 4 (lx (1) , l 2 x (2) , R , l r x (r) ),(1.1)

where x (i) �RNi for i41, R , r and N1 1R1Nr 4N . We denote by R the Lie
algebra of (RN ,* ). For i41, R , N1 , let Yi be the vector field in
R that agrees at the origin with ¯/¯x (1)

i . We make the following assumption: the
Lie algebra generated by Y1 , R , YN1

is the whole R . With the above hypothe-
ses, we call F4 (RN ,* , d l ) a homogeneous Carnot group. We also say that F is
of step r and has N1 generators. If X1 , R , XN1

is any basis for

span ]Y1 , R , YN1
(, the second order differential operator L 4 !

j41

N1

Xj
2 will be

called a sub-Laplacian on F . It is not difficult to recognize that any homoge-
neous Carnot group is a Carnot group according to the usual definition. On the
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other hand, up to isomorphism, the opposite implication is also true (for the de-
tails, see e.g. [8]).

The following are the problems we are mainly concerned with: given a set
of smooth vector fields X1 , R , Xm on RN ,

(i) find necessary and sufficient conditions (mutually independent and

simple to check) on the Xj’s which guarantee that !
j41

m

Xj
2 is a sub-Laplacian on a

suitable homogeneous Carnot group F4 (RN ,* , d l );

(ii) when the above conditions are satisfied, construct the Carnot group F .

We now give a short descriptive plan of the paper. In Section 2, we recall
some simple properties which are necessarily satisfied by the vector fields of
the Lie algebra of a homogeneous Carnot group. These properties suggest to
make hypotheses (H0)-(H1)-(H2) on the vector fields X1 , R , Xm in order to
accomplish (i). In Section 3, we prove that these hypotheses are sufficient in
order to solve our first problem: we indeed turn to construct the group F , as
stated in (ii) (see Theorem 3.9). We define the group law on RN by means of the
solution of exponential-type to a certain system of ODE’s, canonically related
to the given vector fields X1 , R , Xm . The proof of the associativity of this law
is a non-trivial task. We remark that our proof is meant to be as direct as pos-
sible and only relies on a suitable version of the Campbell-Hausdorff formula
(see Lemma 3.4). In particular, we explicitly avoid to use the associativity of
the so-called Campbell-Hausdorff operation on a Lie algebra, which seems to
be a profound result (for this topic, see the Appendix). In Section 4, we give
several examples of our construction: in particular, we treat a class of Carnot
groups arising from Control Theory (Example 4.5), a class of operators that we
call of Kolmogorov-type (Example 4.4) and we also exhibit a new example of
sub-Laplacian on a Carnot group (Example 4.3) inspired by a degenerate op-
erator considered in [9]. Finally, in the Appendix we sketch a proof of the
needed version of the Campbell-Hausdorff formula, by reducing to apply a
general result by Djoković [15].

Acknowledgment. The author would like to thank Professor E. Lanconelli
for pointing out the Kolmogorov-type sub-Laplacians and Professor G. Citti
for useful discussions.

2. – The hypotheses on the vector fields.

Let F4 (RN ,* , d l ) be a given homogeneous Carnot group of step r and
with N1 generators, according to the definition in Section 1. Moreover, let R de-
note the Lie algebra of F , i.e., the set of ˜-left-invariant vector fields on F .
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We adopt the following notation: I is the identity map on F and if X4 !
i41

N

ai ¯i

is a vector field on RN , XI4 (a1 , R , aN )T is the column vector of the compo-
nent functions of X . Complete proofs of the results we are going to recall
throughout the present section can be found, e.g., in [8].

If t x denotes the left-translation by x on F , then a vector field X belongs to
R if and only if XI(x) 4 Jt x

(0) XI(0), for every x�F (Jt x
denotes the Jacobian

matrix of t x). The map J : RN KR , h O X defined by XI(x) 4 Jt x
(0) h is an iso-

morphism of vector spaces. As a consequence, any basis for R is the image via J
of a basis of RN . We call Jacobian basis of R the one corresponding to the
canonical basis of RN , i.e., the vector fields in R agreeing at the origin with the
coordinate partial derivatives. It is useful to notice that the vector fields of the
Jacobian basis are the column vectors of the matrix Jt x

(0). Let X1 , R , Xm �R .
If there exists x0 �F such that X1 I(x0 ), R , Xm I(x0 ) are linearly independent
in RN , then X1 I(x), R , Xm I(x) are linearly independent for all x�F . Vice-
versa, if there exist x0 �F and scalars c1 , R , cm such that c1 X1 I(x0 )1R1

cm Xm I(x0 ) 40, then c1 X1 I(x)1R1cm Xm I(x) 40 for all x�F . As a conse-
quence, if X1 , R , Xm belong to R , they are linearly independent iff they are
linearly independent at every point or, equivalently, at one point at least.

We now recall the definition of the exponential map on R . If X�R then, for
every fixed x�F , the system of ODE’s g

.
(t) 4 (XI)(g(t) ), g(0) 4x , has a

unique C Q solution defined on the whole R . If g is such a solution, we set
exp [X](x) »4g(1). The exponential map is defined as

Exp : RKF , Exp (X) »4exp [X](0).

Exp is an analytic diffeomorphism. We denote by Log the inverse map of Exp.
There is a remarkable link between the group law and the exponential
map.

REMARK 2.1. – For every x , y�F , we have x * y4exp [ Log (y) ](x).
This remark shows that the composition law on F is completely determined

by the algebra R . Whence, if two homogeneous Carnot groups (RN , 1̃ ),
(RN , 2̃ ) have the same Lie algebra, then 1̃ and 2̃ coincide. This proves
that, given smooth vector fields X1 , R , Xm on RN , there exists at most one ho-
mogeneous Carnot group structure on RN with Lie algebra Lie ]X1 , R , Xm (.
Here, we have denoted by Lie ]X1 , R , Xm ( the least Lie sub-algebra of
C Q (RN , RN ) containing X1 , R , Xm . We have

Lie ]X1 , R , Xm ( 4span ]XJ NJ� ]1, R , m(k , k�N( ,

where we have set XJ »4 [Xj1
, R [Xjk21

, Xjk
] R] if J4 ( j1 , R , jk ). We say that

XJ is a commutator of length k of X1 , R , Xm . If J4 j1 , we also say that XJ »4

Xj1
is a commutator of length 1 of X1 , R , Xm .
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Let ]d l(l denote the group of dilations on F as in (1.1). A real function a(x)
defined on F is called d l-homogeneous of degree b�R if, for every x�F and
lD0, it holds a(d l (x) ) 4lb a(x). A linear differential operator X is called d l-
homogeneous of degree b�R if, for every W�C Q (F) and lD0, it holds
X(W i d l ) 4lb (XW) i d l . With reference to the form (1.1) of the dilation d l , we
define a homogeneous weight of a multi-index g� (NN ]0()N , NgNF »4

!
i41

r

!
j41

Ni

ig (i)
j .

REMARK 2.2. – The only smooth d l-homogeneous functions of degree b are
the polynomial functions of the form !

NgNF4b
cg x g , cg�R . Consequently, a

smooth vector field d l-homogeneous of degree kGr (k�N) has the following
form

!
i4k

r

!
j41

Ni

aj
(i) (x (1) , R , x (i2k) ) Q (¯/¯x (i)

j ),(2.1)

where a (i)
j is a d l-homogeneous polynomial of degree i2k . In particular, a

smooth vector field d l-homogeneous of degree kDr is the null operator.
As an application of Remark 2.2, we have

Jt x
(0) 4

.
`
`
`
´

IN1

J2
(1)

QQ
Q

Jr
(1) (x)

0

IN2

Q Q
Q

. . .

. . .

Q Q
Q

Q Q
Q

Jr
(r21) (x)

0

QQ
Q

0

INr

ˆ
`
`
`
˜

where In is the n3n identity matrix, whereas J (k)
i (x) is a Ni 3Nk matrix

whose entries are d l-homogeneous polynomials of degree i2k . In particular,
if we let Jt x

(0) 4 (Z (1) (x)RZ (r) (x)), where Z (k) (x) is a N3Nk matrix, then
the column vectors of Z (k) (x) are d l-homogeneous vector fields of degree k .
From all the above remarks, it straightforwardly follows that the vector fields
of the Jacobian basis ]Z (k)

i NkGr , iGNk ( satisfy the following conditions:

(A0) Z (1)
1 , R , Z (1)

N1
are linearly independent and d l-homogeneous of de-

gree 1;

(A1) the dimension of span ]Z (k)
1 I(x), R , Z (k)

Nk
I(x)( is independent of x

and equals Nk ;

(A2) the dimension of span ]Z (k)
i I(x)NkGr , iGNk ( is independent of x

and equals N .

We now turn to problem (i) stated in Section 1. To this purpose, throughout
the end of this section, X1 , R , Xm (mF2) will be a given set of smooth vector
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fields on RN . We first fix some notation. Given k�N , we denote by W (k) the set
spanned by the commutators of length k of X1 , R , Xm and, for x�RN , we
set

W (k) I(x) »4span ]XI(x)NX�W (k) ( 4span ]XJ I(x)NJ� ]1, R , m(k (.

Finally, for x�RN , we set

Lie ]X1 , R , Xm ( I(x) »4span ]XI(x)NX�Lie ]X1 , R , Xm ((.

The properties (A0)-(A1)-(A2) suggest the following assumptions on the
Xj’s.

The hypotheses on the vector fields.

With the previous notation, we assume that the smooth vector fields
X1 , R , Xm on RN satisfy the following hypotheses: there exists a family of di-
lations on RN of the form

d l (x) 4d l (x (1) , x (2) , R , x (r) ) 4 (lx (1) , l 2 x (2) , R , l r x (r) )(2.2)

where rF1 is a given integer, x (i) �RNi (i41, R , r) and N1 1R1Nr 4N ,
such that

(H0) X1 , R , Xm are linearly independent and d l-homogeneous of de-
gree 1;

(H1) dim (W (k) ) 4dim (W (k) I(0)), for every k41, R , r;

(H2) dim (Lie ]X1 , R , Xm ( I(0)) 4N .

For what has been recalled above, hypotheses (H0)-(H1)-(H2) are necess-

ary to ensure that !
i41

m

Xi
2 is a sub-Laplacian on a suitable homogeneous Carnot

group. The aim of Section 3 is to show that these hypotheses are also sufficient
to this purpose. We explicitly remark that (H0)-(H1)-(H2) are independent.
Indeed:

l the vector fields ¯x1
, ¯x2

on R3 , together with the Euclidean dilations,
satisfy (H0) and (H1) but not (H2);

l the vector fields ¯x1
, ¯x2

, ¯x1
1x2 ¯x3

on R3 , together with the group of
dilations (lx1 , lx2 , l 2 x3 ), satisfy (H0) and (H2) but not (H1);

l the vector fields ¯x1
1x1 ¯x2

, ¯x2
on R2 satisfy (H1) and (H2) but do not

satisfy (H0) for any dilation (la x1 , lb x2 ) on R2 .

To end this section, we prove a simple result which relates the dimension of
W (k) to the structure (2.2) of the dilation d l . The proof of this proposition also
contains some useful remarks.
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PROPOSITION 2.3. – If X1 , R , Xm satisfy hypotheses (H0)-(H1)-(H2), then
for every k41, R , r we have dim (W (k) ) 4Nk , where N1 , R , Nr are as in
(2.2).

PROOF. – To prove the assertion, we first observe that, by the hypothesis
(H0) and by Remark 2.2, the commutators of the Xj’s with length greater than
r vanish identically. We then set, for k41, R , r , Hk »4dim (W (k) ) and we fix
a basis ]Z (k)

1 , R , Z (k)
Hk

( for W (k) . By the definitions, Z (k)
1 I(0), R , Z (k)

Hk
I(0)

clearly span W (k) I(0). As a consequence, by (H1), we infer that
Z (k)

1 I(0), R , Z (k)
Hk

I(0) form a basis of W (k) I(0). We then prove that

Z (1)
1 , R , Z (1)

H1
; R ; Z (r)

1 , R , Z (r)
Hr

is a basis of Lie ]X1 , R , Xm ( .(2.3)

It suffices to prove the linear independence. Suppose !
kGr, jGHk

l (k)
j Z (k)

j 40, with

l (k)
j �R . We then have Z (1) »4 !

jGH1

l (1)
j Z (1)

j 42 !
k42

r

!
jGHk

l (k)
j Z (k)

j 4: Z (2) . Since

Z (1) is d l-homogeneous of degree 1 , whereas Z (2) is a sum of d l-homogeneous
operators of degree F2, this is possible only if Z (1) 40 and Z (2) 40. From
Z (1) 40, we derive that all the l (1)

j ’s are zero. From Z (2) 40 and by repeating a
similar argument finitely many times, it follows that all the l (k)

j ’s vanish. From
hypothesis (H2) and from (2.3), we infer that the column vectors of the
matrix

A»4 (Z (1)
1 I(0) Q Q QZ (1)

H1
I(0) Q Q QZ (r)

1 I(0) Q Q QZ (r)
Hr

I(0))

span RN . We shall show that they are also linearly independent. We fix k�
]1, R , r( and j� ]1, R , Hk (. From (2.1), we have

Z (k)
j 4 !

s4k

r

!
r41

Ns

as , r
(k , j) (¯/¯x (s)

r ),(2.4)

where as , r
(k , j) is a d l-homogeneous polynomial of degree s2k . In particular,

as , r
(k , j) (0 ) 40 for every s4k11, R , r . As a consequence, the matrix A has the

block-diagonal form

uA (1)

QQ
Q

0

. . .

Q Q
Q

. . .

0

QQ
Q

A (r)

v where A (k) 4 (ak , i
(k , j) (0 ) )1GiGNk, 1GjGHk

.

Collecting all the information on A , we infer that its columns form a basis for
RN . In particular, we have

!
k41

r

Hk 4N4 !
k41

r

Nk .(2.5)

We finally fix k� ]1, R , r( and j� ]1, R , Nk (. With the notation in (2.2), we
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set j (k)
j »4 (0(1) , R , e (k)

j , R , 0(r) ), where e (k)
j is the j-th coordinate unit vector

of RNk . Since j (k)
j is a linear combination of the columns of A , this readily im-

plies that the Hk columns of the sub-matrix A (k) span RNk . As a consequence
Hk FNk , which yields, together with (2.5), Hk 4Nk . r

Following the notation in the proof of Proposition 2.3, for every x�RN we
have

(Z (1)
1 I(x) . . .Z (1)

N1
I(x) . . .Z (r)

1 I(x) . . .Z (r)
Nr

I(x) ) 4
.
`
´

A (1)

x

QQ
Q

x

0
A (2)

QQ
Q

x

. . .

. . .

Q Q
Q

. . .

0
0

QQ
Q

A (r)

ˆ
`
˜

,

where A (1) , R , A (r) are square constant non-singular matrices. As a conse-
quence, if the vector fields X1 , R , Xm satisfy hypotheses (H0)-(H1)-(H2),
then they also satisfy

(H1)* dim (W (k) I(x) ) 4dim (W (k) ), ( kGr , ( x�RN .

(H2)* dim ( Lie ]X1 , R , Xm ( I(x) ) 4N , ( x�RN .

Condition (H2)* is the well-known Hörmander’s hypoellipticity condition for
the vector fields X1 , R , Xm . We explicitly remark that these last two proper-
ties hold true at every x�RN as a consequence of their being supposed to hold
at the origin only.

3. – Construction of the group.

To begin with, we recall some basic results on the solution of «exponential-
type» of an autonomous system of ODE’s. We shall make use of notation simi-
lar to that used for the exponential map on a Lie group. However, we explicitly
remark that it is not required any group structure here.

Let X4 !
j41

N

(XI)j ¯j be a given smooth vector field on RN . Let x�RN be

fixed. Let g(t) be the solution with maximal domain D(X , x) ’R to the au-
tonomous ordinary Cauchy problem

( C ) g
.
(t) 4XI(g(t) ), g(0) 4x .(3.1)

We shall also use the notation g(t) 4g(t ; x) 4g X (t ; x). Whenever 1 �
D(X , x), we set

exp [X](x) »4g X (1 ; x).(3.2)



HOMOGENEOUS CARNOT GROUPS RELATED ETC. 87

For any fixed compact subset K of RN , there exists e K D0 such that g(t ; x) is
well-defined for every (t ; x) � (2e K , e K )3K . From the uniqueness of the
solution to (C), we infer

x�K , NsN1NtNEe K ¨ g X (s ; g X (t ; x) ) 4g X (s1 t ; x),(3.3)

x�K , NltNEe K ¨ g X (lt ; x) 4g lX (t ; x).(3.4)

From (3.4) we derive that, if K is any compact subset of RN and if l�R is small
enough, then exp [lX](x) is well-posed for every x�K . Indeed, we have
exp [lX](x) 4g lX (1 ; x) 4g X (l ; x) which is well-defined for any (l ; x) �
(2e K , e K )3K . Moreover, if exp [2X]( exp [X](x) ) is well-posed, it holds

exp [2X]( exp [X](x) ) 4x .(3.5)

Indeed, combining (3.3) and (3.4), exp [2X]( exp [X](x) ) 4g X (21;
g X (1 ; x) ) 4x . Furthermore, by (3.4), we also obtain

exp [tX](x) 4g(t), where g solves (C ) ,(3.6)

for every t�R and x�RN such that both sides are defined. By the smoothness
of X , g(t) is infinitely differentiable on a neighborhood of 0 and its Taylor ex-
pansion is

g(t ; x) 4 !
k40

n 1

k!
X k I(x) Q t k 1 Ox (t n11 ), as tK0.(3.7)

Here X 0 »4I and X k is the k-th power of the operator X . To prove (3.7), we
first observe that (since g solves problem (C) in (3.1))

d

dt
( f (g(t) ) ) 4 (Xf )(g(t) ), (f�C Q (RN , RN ).(3.8)

By induction on k , we prove that (d/dt)k g4 (X k I)(g). When k41, this follows
from (3.8) with f4I . Then we have (d/dt)k11 g4 ( d/dt)( (X k I)(g) ) 4

(X(X k I) )(g) 4 (X k11 I)(g). The second equality follows from (3.8) with f4

X k I . Now, (3.7) readily holds.
Let Z1 , R , ZN be given smooth vector fields on RN . If j�RN , we consider

the vector field j QZ»4 !
j41

N

j j Zj . If x0 �RN is fixed and if NjN is small enough,

C(j) »4exp [j QZ](x0 ) is well-posed. Moreover, C is a smooth function defined
on a neighborhood of the origin. We claim that (¯/¯j k ) C(0) 4Zk I(x0 ). To
prove this we recall that, by definition, C(j) 4g(1 ; j) where g

.
(t) 4
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!
j41

N

j j Zj I(g(t) ) and g(0) 4x0 . As a consequence, we have

C(j) 4g(0)1s
0

1

g
.
(t) dt4x0 1 !

j41

N

j js
0

1

Zj I(g(t ; j) ) dt .

This gives

(¯/¯j k )Nj40 C(j) 4us
0

1

Zk I(g(t ; j) ) dt1 !
j41

N

j j Q (¯/¯j k )s
0

1

Zj I(g(t ; j) ) dtvN
j40

4s
0

1

Zk I(g(t ; 0 ) ) dt4Zk I(x0 ).

In particular, if Z1 I(x0 ), R , ZN I(x0 ) are linearly independent, then C is a dif-
feomorphism from a neighborhood of j40 onto a neighborhood of C(0) 4x0 .
Its inverse function defines the so-called logarithmic coordinates around x0 .

Throughout the end of this section, X1 , R , Xm will be a given set of smooth
vector fields satisfying hypotheses (H0)-(H1)-(H2) in Section 2, whereas
]d l(l will be a fixed family of dilations in RN as in (2.2). We let S»4

Lie ]X1 , R , Xm (. We explicitly remark that, even if the notation S is usually
referred to the Lie algebra of a Lie group, no underlying Lie group structure
is yet assumed here. Finally, for every k41, R , r , Z (k)

1 , R , Z (k)
Nk

will be a
fixed basis for W (k) (for the definition of W (k) , see Section 2). With the notation

introduced above, we set j QZ4 !
k41

r

!
j41

Nk

j (k)
j Z (k)

j . The next result will be crucial
in the sequel.

PROPOSITION 3.1. – Following the above notation, the map

Exp : RN KRN , j O Exp (j) »4exp [j QZ](0)

is everywhere defined on RN and is a global diffeomorphism of RN onto itself.
Moreover, the component functions of Exp are polynomials. The inverse
function of Exp, which we shall denote by Log, has polynomial component
functions too.

We explicitly note that we used a notation slightly different from the usual
one for the exponential map related to a Lie group: indeed Exp is here defined
on RN instead of on an algebra of vector fields.

PROOF. – By definition, we have Exp (j) 4g(1), where g solves the Cauchy
problem

( P )1 g
.
(t) 4 !

k41

r

!
j41

Nk

j (k)
j Z (k)

j I(g(t) ), g(0) 40.
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We now fix k� ]1, R , r( and j� ]1, R , Nk (. Following the notation of the
stratification in (2.2), the system (P)1 can be rewritten in the form

( P )2

.
`
/
`
´

g
. (1) (t) 4A (1)

1 Qj (1) ,

g
. (2) (t) 4A (2)

2 Qj (2) 1A (1)
2 (g (1) (t) ) Qj (1) ,

QQ
Q

g
. (r) (t) 4A (r)

r Qj (r) 1 !
k41

r21

Ar
(k) (g (1) (t), R , g (r2k) (t) ) Qj (k) ,

g (1) (0 ) 40

g (2) (0 ) 40

QQ
Q

g (r) (0 ) 40.

Here, for every sGr and kGs , we have introduced the Ns 3Nk matrix

A (k)
s 4A (k)

s (x (1) , R , x (s2k) ) »4 (a (k , j)
s , i (x) )1 G iGNs , 1 G jGNk

where as , r
(k , j) is the d l-homogeneous polynomial of degree s2k as in (2.4). The

system (P)2 can be directly integrated starting from the first N1 scalar equa-

tions and then proceeding downwards. The solution g(t) 4 s
0

t

g
.
(s) ds of (P)2 is

then given by

.
`
/
`
´

g (1) (t) 4 t A (1)
1 Qj (1) ,

g (2) (t) 4 t A (2)
2 Qj (2) 1s

0

t

A (1)
2 (g (1) (s) ) ds Qj (1) ,

QQ
Q

g (r) (t) 4 tA (r)
r Qj (r) 1 !

k41

r21

s
0

t

Ar
(k) (g (1) (s), R , g (r2k) (s) ) ds Qj (k) .

In particular, we see that g (1) only depends on j (1) (polynomially), g (2) depends
on j (1) and j (2) (polynomially), and so on. It is then immediate to recognize
that Exp (j) has polynomial component functions. Finally, for any given h�
RN , the equation h4Exp (j) can be rewritten as

h (1) 4A (1)
1 Qj (1) , R , h (r) 4A (r)

r Qj (r) 1 f (r) (j (1) , R , j (r21) ),(3.9)

where f (2) , R , f (r) are polynomial functions and the A (k)
k ’s are constant non-

singular matrices (see also the proof of Proposition 2.3). As a consequence,
Exp is bijective and its inverse function has polynomial component functions
(as it appears by considering 3.9). r

We are now in the position to define the group law related to the vector
fields X1 , R , Xm . The following definition is suggested by Remark 2.1.
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DEFINITION 3.2. – If X1 , R , Xm satisfy hypotheses (H0)-(H1)-(H2), we
set

x , y�RN , x i y»4exp [ Log (y) QZ](x).(3.10)

At first sight, i may seem to depend on the choice of the basis Z for S . This
is not the case, as it will follow when we prove that i defines a homogeneous
Carnot group structure on RN with Lie algebra S (which is fixed and complete-
ly determined by the Xj’s). Since X1 , R , Xm are smooth vector fields, by stan-
dard arguments of regular dependence for ODE’s, we recognize that the map
RN 3RN � (x , y) Ox i y�RN is of class C Q . The following result, together
with Remark 2, proves that i has in fact polynomial component func-
tions.

THEOREM 3.3. – With the notation of Definition 3.2, we have

d l (x i y) 4 (d l (x) ) i(d l (y) ), ( lD0, ( x , y�RN .(3.11)

PROOF. – First of all, we fix x�RN , h�RN , and we show that, if g is the sol-
ution to g

.
4 (h QZ) I(g), g(0) 4x , then m(t) »4d l (g(t) ) is the solution to m

.
4

(d l (h) QZ) I(m), m(0) 4d l (x). Indeed,

m
.

4d l (g
.
) 4 !

kGr
!

jGNk

h (k)
j d l (Z (k)

j I(g) ) 4 !
kGr

!
jGNk

h (k)
j l k (Z (k)

j I)(d l (g) )

4 !
kGr

!
jGNk

(d l (h) )(k)
j (Z (k)

j I)(m).

Here we used the fact that, for kGr and jGNk , Z (k)
j is (as a consequence of

hypothesis (H0)) a d l-homogeneous vector field of degree k . The above
yields

exp [d l (h) QZ](d l (x) ) 4m(1) 4d l (g(1) ) 4d l ( exp [h QZ](x) ).(3.12)

If in (3.12), we choose x40, we obtain

Exp (d l (h) ) 4d l ( Exp (h) ), ( lD0, ( h�RN .(3.13)

By taking Log at both sides of (3.13), we also get

d l ( Log (y) ) 4Log (d l (y) ), ( lD0, ( y�RN .(3.14)

Finally, (3.12) and (3.14) give

d l (x i y) 4d l ( exp [ ( Log y) QZ](x) ) 4exp [d l ( Log (y) ) QZ](d l (x) )

4exp [ Log (d l (y) ) QZ](d l (x) ) 4 (d l (x) ) i(d l (y) ).

This completes the proof. r
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By the equalities (3.13) and (3.14), we infer that for every kGr and jGNk ,
the component functions (Exp )(k)

j and (Log )(k)
j are precisely d l-homogeneous

polynomials of degree k . Next crucial step is to prove that i endows RN with a
group structure. The main task is to show that i is associative. To this end, we
need the following result, which is a consequence of the Campbell-Hausdorff
formula.

LEMMA 3.4. – For every X , Y�S there exists Z�S uniquely determined by
X and Y such that (see also the definition of exp [Q] in (3.2))

exp [Y]( exp [X](x) ) 4exp [Z](x), ( x�RN .(3.15)

PROOF. – This is a straightforward corollary of Theorem 5.2 in the Ap-
pendix. Indeed, we can choose Z as in (5.2). r

We explicitly remark that Z in (3.15) depends only on X and Y and by the
structure of S and in particular it does not depend on x�RN . Lemma 3.4 en-
ables us to endow S4Lie ]X1 , R , Xm ( with a binary operation { , as we here-
after describe. Let X , Y�S be arbitrarily given. Let Z4Z(X , Y) be the vector
field in S uniquely determined by X and Y via formula (5.2) and satisfying
(3.15). We set X{Y»4Z(X , Y). This defines a binary operation (X , Y) O X{Y
on S . Since the map

RN KS , j O j QZ»4 !
k41

r

!
j41

Nk

j (k)
j Z (k)

j

is a bijection, we can also define a binary operation on RN as follows: for
every j , h�RN we set j˜h»4z where z is the only vector of RN such that
(j QZ) { (h QZ) 4z QZ . From the above definitions and by (3.15), we have

exp [h QZ]( exp [j QZ](x) ) 4exp [ (j˜h) QZ](x), ( x�RN .(3.16)

This has an important consequence: for every fixed x , y�RN , by Definition
3.2, we derive

x i y4exp [ Log (y) QZ](x) 4exp [ Log (y) QZ]( exp [ Log (x) QZ](0) )

( see (3.16)) 4exp [ ( Log (x) ˜Log (y) ) QZ](0) 4Exp ( Log (x) ˜Log (y) ).

Then for every x , y�RN and for every j , h�RN

Log (x i y) 4Log (x) ˜Log (y), Exp (j˜h) 4Exp (j) i Exp (h).(3.17)

THEOREM 3.5. – Let i be the composition law in Definition 3.2. Then
(RN , i) is a group.



ANDREA BONFIGLIOLI92

PROOF. – Identity element. We prove that 0 �RN is such that x i 040 i x4x
for every x�RN . Indeed, Exp (0) 4Log (0) 40 yields

x i 0 4exp [ Log (0) QZ](x) 4exp [0 QZ](x) 4x ;

0 i x4exp [ Log (x) QZ](0) 4Exp ( Log x) 4x .

Inverse element. We show that

x i Exp (2Log (x) ) 40 4Exp (2Log (x) ) i x , ( x�RN .(3.18)

We only prove the first equality, since the second one is analogous. From (3.5),
we get

x i Exp (2Log (x) ) 4exp [ Log ( Exp (2Log (x) ) ) QZ](x) 4exp [2Log (x) QZ](x)

4exp [2Log (x) QZ]( exp [ Log (x) QZ](0) ) 40.

In particular, the inverse of x�RN is given by x 21 4Exp (2Log (x) ).

Associativity. Let x , y , z�RN be fixed. We have to prove that (x i y) i z4

x i(y i z). By (3.16) we infer

(x i y) i z4exp [ Log (z) QZ]( exp [ Log (y) QZ](x) )4exp [ ( Log (y)˜Log (z) ) QZ](x),

whereas, from (3.17) we derive

x i(y i z) 4exp [ Log (y i z) QZ](x) 4exp [ ( Log (y)˜Log (z) ) QZ](x).

This completes the proof. r

REMARK 3.6. – The associativity of i could also be deduced once it is known
that { is an associative operation. Since the associativity of { , the so-called
Campbell-Hausdorff operation, is a profound result (see also the Appendix for
related references), we preferred to provide an argument only relying on the
existence of the operation { rather than on its non-trivial property of being as-
sociative. On the contrary, we explicitly remark that we are now able to derive
that { is associative as a consequence of the associativity of i . Indeed, the
identities in (3.17) show that the binary operation ˜ on RN (and consequently
the binary operation { on S) defines a Lie group structure isomorphic to
(RN , i).

By Theorem 3.5 and the smoothness of i , G»4 (RN , i) is a Lie group. It is
natural to ask if Lie ]X1 , R , Xm ( coincides with the Lie algebra of G .

THEOREM 3.7. – Each of the fields Z (k)
j (kGr , jGNk ) is left-invariant on

(RN , i).

PROOF. – Let a�RN and u�C Q (RN ) be fixed. We have to prove that for
every kGr and jGNk it holds Z (k)

j (u(a i x) ) 4 (Z (k)
j u)(a i x). From (3.6) and
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(3.8), for every smooth f we infer

g d

dt
h

t40

( f ( exp [tZ (k)
j ](x) ) ) 4 (Z (k)

j f )(x).(3.19)

On the other side, if e (k)
j denotes the j-th coordinate unit vector of RNk and if we

set j (k)
j »4 (0(1) , R , e (k)

j , R , 0(r) ), we have (noting that tZ (k)
j 4 tj (k)

j QZ)

(Z (k)
j f )(x) 4g d

dt
h

t40

( f ( exp [tj (k)
j QZ](x) ) ) 4g d

dt
h

t40

( f (x i Exp (tj (k)
j ) ) ).

In particular, if we choose f4u(a i Q), we obtain (by the associativity of i)

Z (k)
j (u(a i x) ) 4g d

dt
h

t40

]u(a i(x i Exp (tj (k)
j ) ) )(

4g d

dt
h

t40

]u( (a i x) i Exp (tj (k)
j ) )( 4 (Z (k)

j u)(a i x).

This completes the proof. r

COROLLARY 3.8. – The Lie algebra of (RN , i) coincides with
Lie ]X1 , R , Xm (

PROOF. – By Theorem 3.7, it follows that S4Lie ]X1 , R , Xm ( is contained
in the Lie algebra of G , which is N-dimensional since the underlying manifold
of G is RN . On the other side, S is also N-dimensional (see Proposition 2.3),
whence the Lie algebra of G coincides with S . r

We are now in the position to state and complete the proof of our main
result.

THEOREM 3.9. – Let X1 , R , Xm be smooth vector fields satisfying hypothe-
ses (H0)-(H1)-(H2) of Section 2. Let ]d l(l be the family of dilations defined
in (2.2). Finally, let i be the operation on RN introduced in Definition 3.2.
Then G4 (RN , i , d l ) is a homogeneous Carnot group of step r and with m
generators. Moreover, the Lie algebra of G coincides with Lie ]X1 , R , Xm (

and !
j41

m

Xj
2 is a sub-Laplacian on G .

PROOF. – By Theorem 3.5, G4 (RN , i) is a Lie group. By Theorem 3.3,
]d l(l is a family of Lie group automorphisms of G . From Proposition 2.3, we
directly infer that m4N1 (where N1 is as in the definition of d l). By Remark
3.8, the Lie algebra S of G coincides with Lie ]X1 , R , Xm (. Let Y1 , R , Ym be
the vector fields of S that agree with the first m partial derivatives at the ori-
gin. Since S4Lie ]X1 , R , Xm (, every Yj is a linear combination of commuta-
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tors of X1 , R , Xm . Since all the Xj’s and all the Yj’s are d l-homogeneous of de-
gree 1 , it is not difficult to show that the Yj are necessarily linear combinations
only of X1 , R , Xm . Since Y1 , R , Ym are linearly independent, this proves that
span ]Y1 , R , Ym ( 4span ]X1 , R , Xm (. As a consequence, we have
Lie ]Y1 , R , Ym ( 4Lie ]X1 , R , Xm ( 4S . This completes the proof. r

4. – Examples.

In this section, we show several examples of sets of vector fields satisfying
the hypotheses (H0)-(H1)-(H2) in Section 2. We then construct the related
homogeneous Carnot groups, as described in Section 3. Given n�N , Bn will
denote the following n3n (nilpotent of step n) matrix

Bn »4
.
`
´

0
1

QQ
Q

0

0
0

Q Q
Q

. . .

. . .

. . .

Q Q
Q

1

0
0

QQ
Q

0

ˆ
`
˜

(4.1)

4.1. The Laplace operator.

The simplest examples of sub-Laplacians are the constant coefficient ellip-
tic operators. The only homogeneous Carnot group on RN of step 1 is the usual
additive group on RN . If d l denotes the Euclidean dilation on RN , a set of vec-
tor fields satisfying the hypotheses (H0)-(H1)-(H2) is necessarily given by

]Xj (jGN , where Xj 4 !
i41

N

ai , j ¯i and A4 (ai , j )i , j is a non-singular N3N matrix,

whence !
j41

N

Xj
2 is a constant coefficient elliptic operator. Given j , x�RN , we

have exp [j](x) »4exp k!
j41

N

j j Xjl (x) 4g(1), where g
.
(r) 4A Qj and g(0) 4x .

This yields exp [j](x) 4x1A Qj , Exp (j) 4A Qj , Log (y) 4A 21 Qy and conse-
quently x i y4exp [ Log (y) ](x) 4x1y .

4.2. The Kohn Laplacians.

We now consider the group Hn »4R2n11 whose points will be denoted by
z4 (x , y , t), x , y�RN and t�R . We also set Xj »4¯xj

12yj ¯t , Yj »4¯yj
2

2xj ¯t ( j41, R , n). If we equip Hn with the dilations d l (z) 4 (lx , ly , l 2 t), it
is easily verified that the above 2n vector fields fulfill the hypotheses (H0)-
(H1)-(H2). We let T»4 [Xj , Yj ] 424¯t . Fixed z4 (j , h , t), z4 (x , y , t) �Hn ,

we have exp [z](z) »4exp k!
j41

n

(j j Xj 1h j Yj )1tTl (z) 4 (m(1), n(1), r(1) ),
where

(m
.
, n

.
, r

.
)(r) 4 (j , h , 24t12an(r), jb22am(r), hb), (m , n , r)(0) 4 (x , y , t).
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This yields exp [z](z) 4 (x1j , y1h , t24t12ay , jb22ax , hb), whence
Exp (z) 4 (j , h , 24t), Log (z 8 ) 4 (x 8 , y 8 , 2t 8 /4 ). If we fix z , z 8�Hn , we
obtain

z i z 84exp [ Log (z 8 ) ](z)4(x1x 8 , y1y 8 , t1t 812ay , x 8 b22ax , y 8 b).(4.2)

The group (Hn , i) is the well-known Heisenberg group, and the sub-Laplacian

D Hn »4 !
j41

n

(Xj
2 1Yj

2 ) is the Kohn Laplacian.

4.3. Bony-type sub-Laplacians.

In [9, Remarque 3.1], J.M. Bony refers to the following operator L on R11N

(whose points are denoted by (t , x1 , R , xN ))

L4g ¯

¯t
h2

1gt
¯

¯x1

1 t 2 ¯

¯x2

1R1 t N ¯

¯xN
h2

as an example of a sum of squares satisfying Hörmander condition but never-
theless with a quadratic form «very degenerate». Clearly L is not a sub-Lapla-

cian on any Carnot group, since the vector field !
j41

N

t j ¯/¯xj vanishes on the hy-

perplane t40. It is however sufficient to add a new coordinate in order to lift
L to a sub-Laplacian. We indeed consider on R21N (whose points are denoted
by (t , s , x), t , s�R , x�RN) the following operator L »4T 2 1S 2 where

T»4¯t , S»4¯s 1 t¯x1
1

t 2

2 !
¯x2

1R1
t N

N!
¯xN

.

If we equip R21N with the family of dilations defined by

d l (t , s , x) »4 (lt , ls , l 2 x1 , l 3 x2 , R , l N11 xN ),

it is readily verified that T and S are d l-homogeneous of degree 1 and linearly
independent, whence hypothesis (H0) is fulfilled. For every k41, R , N , we
then consider the vector field

Xk »4 [T , [T , R[T
���

k times

, S]R] ] 4¯xk
1 t¯xk11

1R1
t N2k

(N2k) !
¯xN

.

With the notation of Section 2, we have W (1) 4span ]T , S( and (for k41,
R , N) W (k11) 4span ]Xk (. It is then easy to recognize that the hypothesis
(H1) is satisfied. Finally, we have dim ( Lie ]T , S( I(0) ) 421N , whence also
the hypothesis (H2) holds. As a consequence L is a sub-Laplacian on a suitable
homogeneous Carnot group (G , i) on R21N , with step 11N and with 2 gener-
ators. We now turn to construct the group multiplication i on G , as described
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in Section 3. Let a , b�R and j�RN be fixed. We have

aT1bS1 !
k41

N

j k Xk 4ga , b ,gb t j /j!1 !
k41

j

j k t j2k/( j2k) !h
j41, R , N

h .

This yields exp [a , b , j](t , s , x) »4exp kaT1bS1 !
k41

N

j k Xkl (t , s , x) 4

(t , s , g)(1), where

.
/
´

t
.
(r) 4a , t(0) 4 t , s

.
(r) 4b , s (0) 4s ,

g
.

j (r) 4bt j (r) /j!1 !
k41

j

j k t j2k (r) /( j2k) ! , g j (0) 4xj ( j41, R , N).

From a direct integration, it follows that exp [a , b , j](t , s , x) is given by

ua1t, b1s, xj1b
(a1t) j112t j11

( j11)! a
1!

k41

j

j k

(a1t) j2k112t j2k11

( j2k11)! a
( j41, R , N)v .

We remark that the case a40 is also contained, since all the incremental ra-
tios in the above expression are defined in a natural way even when a40. We
now define the following matrices

F(a) »4

.
`
`
`
`
`
´

1

a

2!
a 2

3 !

QQ
Q

a N21

N!

0

1

a

2!

QQ
Q

a N22

(N21) !

0

0

1

Q Q
Q

. . .

. . .

. . .

Q Q
Q

Q Q
Q

a

2!

0

0

QQ
Q

0

1

ˆ
`
`
`
`
`
˜

, V(a) »4

.
`
`
`
`
`
´

a

2!
a 2

3 !
a 3

4 !

QQ
Q

a N

(N11) !

ˆ
`
`
`
`
`
˜

, U(a) »4

.
`
`
`
`
`
´

a

a 2

2 !
a 3

3 !

QQ
Q

a N

N!

ˆ
`
`
`
`
`
˜

FA(a , t) »4a21 ( (a1 t) F(a1 t)2 tF(t) ), VA(a , t) »4a21 ( (a1 t) V(a1 t)2

tV(t) ). It then holds

exp [a , b , j](t , s , x) 4 (a1 t , b1s , x1FA(a , t) Qj1bVA(a , t) ),

Exp (a , b , j) 4 (a , b , F(a) Qj1bV(a) ),

Log (t , s , y) 4 (t , s , F 21 (t) Q (y2sV(t) ).

Let (t , s , x) and (t , s , y) �R21N be given. Then, we have

(t , s , x) i(t , s , y) 4 (t1 t , s1s , x1FA(t , t) QF 21 (t) Q (y2sV(t) )1sVA(t , t) ).
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If we now prove that the following identities hold

FA(t , t) 4exp (tBN ) QF(t), VA(t , t)2exp (tBN ) QV(t) 4U(t),(4.3)

then the explicit form of the multiplication i turns out to be:

(t, s, x) i (t, s, y)4(t1t, s1s, x1exp (tBN) Q y1sU(t))

4ut1t, s1s, x11y11st, R , xN1!
k41

N

yk
t N2k

(N2k)!
1s

t N

N!
v .

(4.4)

The first identity in (4.3) follows by proving that, for every i , j� ]1, R , N(

with iF j , one has

(t1 t)i2 j11 2 t i2 j11

(i2 j11) ! t
4 !

k4 j

i t i2k

(i2k) !
Q

t k2 j

(k2 j11) !
,

which readily follows by applying Newton binomial formula to the left-hand
side; the second identity is equivalent to

t i

i!
4

(t1 t)i11 2 t i11

(i11) ! t
2 !

k41

i
t k

(k11) !
Q

t i2k

(i2k) !
, i41R , N ,

which can be proved analogously.

4.4. Kolmogorov-type sub-Laplacians.

We describe an example of sub-Laplacians on Carnot groups arising in the
theory of diffusion and Brownian motions. These groups have been introduced
in [31] for the study of a class of hypoelliptic ultraparabolic operators includ-
ing the classical model operators of Kolmogorov-Fokker-Planck. The group
law in [31] was suggested by the structure of the fundamental solution of the
operator in R3 ¯x1

2 1x1 ¯x2
2¯x3

given by Kolmogorov in [30]. For this reason,
we shall call our sub-Laplacians of Kolmogorov-type. We consider the follow-
ing sum of squares in RN11

L 4 !
j41

p1

(¯xj
)2 1 (¯t 2 ax , B Q˜b)2 4 !

j41

p1

Xj
2 1Y 2 ,
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where x�RN , t�R , ˜4 (¯x1
, R , ¯xN

)T , whereas B is a N3N matrix of the
type

B4

.
`
`
`
´

0

0

QQ
Q

0
0

B (1)

0

QQ
Q

0
0

0

B (2)

Q Q
Q

. . .

. . .

. . .

Q Q
Q

Q Q
Q

0
0

0

QQ
Q

0

B (r)

0

ˆ
`
`
`
˜

.

Here, for j41R , r , B ( j) is a matrix of order pj 3pj11 and with rank pj11 , p1 F

p2 FRFpr11 F1 and p1 1p2 1R1pr11 4N . We claim that (by a suitable
choice of a basis for Lie ]X1 , R , Xp1

, Y() the group law introduced in [31] can
be easily obtained as we showed in Section 3. To this purpose, we equip RN11

with the following family of dilations

d l (t , x) »4 (lt , lx (1) , l 2 x (2) , R , l r11 x (r11) ),

where, for every j41, R , r11, x ( j) �Rpj . Furthermore, we consider the fol-
lowing linearly independent vector fields (for h41, R , p1)

X (1)
h »4¯/¯xh

(1) ,

Y4¯t 2 ax , B Q˜b 4¯t 2 !
jGr

!
iGpj11

!
kGpj

B ( j)
k , i xk

( j) ¯/¯xi
( j11) .

It is easily checked that these fields are d l-homogeneous of degree 1 . In par-
ticular hypothesis (H0) holds. For h41, R , p1 , we also have

X (2)
h »4 [Y , X (1)

h ] 4 !
i41

p2

B (1)
h , i ¯/¯x (2)

i .

As a consequence, since, by assumption, the matrix B (1) has rank p2 , this im-
plies that W (2) 4span ]X (2)

h Nh41, R , p1 ( contains exactly p2 linearly inde-
pendent vector fields. In particular, since the fields in W (2) have constant coef-
ficients, for every j41, R , p2 , we have ¯/¯x (2)

j �W (2) . Let now k�
]3, R , r11( be fixed. For h41, R , p1 , we have

X (k)
h »4 [Y , X (k21)

h ] 4 !
i41

pk

(B (1) QB (2) Q Q QB (k21) )h , i ¯/¯x (k)
i .

Since the matrix B (1) QB (2) Q Q QB (k21) has rank pk , W (k) 4span ]X (k)
h Nh4

1, R , p1 ( contains exactly pk linearly independent vector fields and, as previ-
ously observed, this implies that for every j41, R , pk , we have ¯/¯x (k)

j �W (k) .
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From what has just been proved, it follows

dim (W (k))4dim (span ]X1, R , Xp1
, Y()411p1

dim (W (k))4pk, ( k42, R , r11
n

dim (Lie ]X1, R , Xp1
, Y()411p11R1pr11411N

¨ (H1) holds;

¨ (H2) holds.

For k41, R , r11 and j41, R , pk , we set Z (k)
j »4¯/¯x (k)

j . If t ,
t�R and x , j�RN are fixed, we have exp [t , j](t , x) »4

exp ktY1 !
k41

r11

!
j41

pk

j (k)
j Z (k)

j l(t , x) 4 (m(1), g(1) ), where

m
.
(r) 4t , m(0) 4 t ; g

.
(r) 4j2t B T Qg(r), g(0) 4x .

This yields

exp [t , j](t , x) 4ut1 t , exp (2tB T ) Qx1s
0

1

exp (2t(12r) B T ) Qj drv ,

Exp (t , j) 4ut , s
0

1

exp (2t(12r) B T ) Qj drv ,

Log (s , y) 4us ,u s
0

1

exp (2s(12r) B T ) drv
21

Qyv .

As a consequence,

(t , x) i(s , y) 4 (t1s , y1exp (2sB T ) Qx).(4.5)

We explicitly remark that this is the same group multiplication found in [31].
(RN11 , i) is a homogeneous Carnot group of step r11 and with 11p1 genera-
tors. We finally observe that, if r4N21, pr11 4pj 41 and B ( j) 4 (1) for
every j41, R , r , the second-order differential operator

(2¯t 1x1 ¯x2
1x2 ¯x3

1R1xN21 ¯xN
)2 1 (¯x1

)2

is a sub-Laplacian of Kolmogorov-type on R11N analogous to the one studied
in [2] (see the following Example 4.5).

4.5. Sub-Laplacians related to Carnot groups arising in Control Theory.

In this subsection, we discuss an example of homogeneous Carnot group
arising from Control Theory, while referring to [2] for a description of the rel-
evance of this example in that context. In RN we consider the following vector
fields

X1 »4¯1 1x2 ¯3 1x3 ¯4 1R1xN21 ¯N , X2 »4¯2 .
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For every k43, R , N , we have Xk »4 [Xk21 , X1 ] 4¯k whence it is readily
verified that X1 and X2 fulfill hypotheses (H0)-(H1)-(H2), with respect to the
family of dilations

d l (x1 , x2 , x3 , R , xN ) »4 (lx1 , lx2 , l 2 x3 , R , l N21 xN ).

As a consequence, L 4X1
2 1X2

2 is a sub-Laplacian on a suitable homogeneous
Carnot group (G , i) on RN , with step N21 and with 2 generators. In [2] it is
given a representation of G by means of matrices of the following form

.
`
`
`
`
`
´

1

0

0

0

QQ
Q

0

x2

1

0

0

QQ
Q

0

x3

x1

1

0

Q Q
Q

. . .

x4

x1
2

2 !

x1

1

Q Q
Q

0

. . .

. . .

Q Q
Q

Q Q
Q

Q Q
Q

0

xN

x1
N22

(N22) !

QQ
Q

x1
2

2 !

x1

1

ˆ
`
`
`
`
`
˜

f (x1 , x2 , R , xN ) �G ,

whereas the Lie group law is given by the matrix product. We hereafter show
how to obtain the composition law following the lines described in Section 3.
Let j�RN be fixed. We have

!
k41

N

j kXk4(j 1, j 2, j 31j 1x2, R , j N1j 1xN21)4j1j 1H Q x,

where H is the following N3N matrix

H»4g0
0

0
BN22

h .

This gives exp [j](x) »4exp k !
k41

N

j k Xkl (x) 4g(1) where g
.
(r) 4j1j 1 H Qg(r),

g(0) 4x , whence

g(r) 4exp (j 1 r H) Qx1s
0

r

exp (j 1 (r2 t) H) Qj dt .

In particular,

exp [j](x) 4exp (j 1 H) Qx1s
0

1

exp (j 1 (12 t) H) Qj dt ,

Exp (j) 4s
0

1

exp (j 1 (12 t) H) Qj dt .
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It is straightforward to recognize that for every r�R , we have

exp (rH) 4g1
0

0
exp (rBN21 )

h .

Given y4 (y1 , y×) �RN , the equation y4Exp (j) is equivalent to the following
system (setting j4 (j 1 , j×) �RN)

y1 4j 1 , y× 4s
0

1

exp (j 1 (12 t) BN21 ) Qj× dt .

As a consequence,

Log (y) 4uy1 ,u s
0

1

exp (y1 (12 t) BN21 ) dtv
21

Qy×v .

For any fixed x , y�RN this gives

(4.6) x i y4exp [ Log (y) ](x) 4

y1exp (y1 H) Qx4 (y1 1x1 , y×1exp (y1 BN21 ) Qx×) 4

uy1 1x1 , y2 1x2 , y3 1x3 1y1 x2 , R , yN 1!
j42

N y1
N2 j

(N2 j) !
xjv .

5. – Appendix. The Campbell-Hausdorff formula.

The main aim of the Appendix is to sketch a proof of Lemma 3.4. We show
in details how to reduce to apply a general version of the Campbell-Hausdorff
formula for formal power series, proved in [15]. Before doing this, we recall
some references on the Campbell-Hausdorff formula. Roughly speaking, if X
and Y are two non-commuting indeterminates, the (Baker-)Campbell-
(Dynkin-)Hausdorff formula states that «log ( exp (X) exp (Y) )» can be ex-
pressed in terms of an infinite sum of iterated commutators of X and Y . This
statement can be made precise in many contexts, such as for formal power
series, for matrix algebras, for general normed Banach algebras, for finite-di-
mensional Lie groups, for solutions of differential equations, etc. Classical ref-
erences on this formula are Bourbaki [10], Hausner-Schwartz [25], Hochschild
[27], Jacobson [29], Varadarajan [40]. The applications of this tool to Analysis
are discussed for example in [28, 37, 41]. We would also like to cite a few pa-
pers concerning with remarkable applications of the Campbell-Hausdorff for-
mula, referring the reader to the therein references for further details: [14,
16, 35, 36, 38, 39]. We finally recall the paper by Grayson&Grossman [23]: this
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paper, besides being concerned with the Campbell-Hausdorff formula, also
contains a remarkable algorithm which permits to construct explicit models
for every free nilpotent Lie algebra. It is interesting for the aim of our paper
to notice that the models in [23] are given by the Lie algebras generated by
certain vector fields on RN ; these fields are homogeneous of degree 1 with re-
spect to a suitable family of dilations as in (2.2) and they also satisfy hypothe-
ses (H0)-(H1)-(H2) of Section 2.

Since in the previous sections we were mainly concerned with the Lie
groups and Lie algebras setting, we briefly recall how the Campbell-Haus-
dorff formula naturally arises in that context. Let (R , [Q , Q] ) be an abstract
nilpotent finite-dimensional Lie algebra. For X , Y�R we set

X{Y»4

4

!
nF1

(21)n11

n
!

pi1qiF1
1GiGn

( ad X)p1 ( ad Y)q1
R ( ad X)pn ( ad Y)qn21 Y

g!
j41

n

(pj 1qj )h p1 ! q1 ! R pn ! qn !

X1Y1
1

2
[X , Y]1

1

12
[X , [X , Y] ]2

1

12
[Y , [X , Y] ]

2
1

48
[Y , [X , [X , Y] ] ]2

1

48
[X , [Y , [X , Y] ] ]1]brackets of heightF5(.

(5.1)

Since R is nilpotent, (5.1) is a finite sum and { determines a binary operation on
R , which is defined by a universal sum of Lie monomials. We call { the Camp-
bell-Hausdorff operation on R . The most relevant property of { is its associa-
tivity. As stated in Section 3, the associativity of { is a non-trivial result and is
a consequence of abstract profound results which we now recall. Since R is fi-
nite-dimensional, then (by the Third Fundamental Theorem of Lie, see [40,
Theorem 3.15.1]) there exists a connected and simply connected Lie group
(F , ˜) whose Lie algebra is isomorphic to R . The following theorem then
shows that { defines a Lie group structure on R .

THEOREM 5.1 ([13], Theorem 1.2.1). – Let (F ,* ) be a connected and simply
connected Lie group. Suppose that the Lie algebra R of F is nilpotent. Then {

defines a Lie group structure on R and Exp : (R , { ) K (F ,* ) is a Lie group iso-
morphism. In particular, if Log is the inverse function of Exp, the following
Campbell-Hausdorff formula for Lie groups holds

Log ( Exp (X)˜Exp (Y) ) 4X{Y , ( X , Y�R .

To end this Appendix, we turn to the proof of Lemma 3.4. Throughout the
sequel, X1 , R , Xm will be smooth vector fields satisfying hypotheses (H0)-
(H1)-(H2) of Section 2. We set S4Lie ]X1 , R , Xm (. We recall that r is the
step of nilpotence of S . The notation in Section 3 will also be used.
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THEOREM 5.2. – Let X , Y�S be fixed. Let Z be the differential operator de-
fined by the formal expansion

(5.2) !
j41

r (21) j11

j
g !

k11k241

r X k2 Y k1

k1 ! k2 !
hj

4Z1

msummands of the type c QY yn X xn . . .Y y1 X x1 with !
i41

n

(yi 1xi ) Drn.

Then, Z turns out to be a vector field belonging to Lie ]X , Y( (hence in S)
such that

exp [Y]( exp [X](x) ) 4exp [Z](x), ( x�RN .(5.3)

PROOF. – Throughout the end of the proof, X , Y�S are fixed. We begin by
noticing that, arguing as in the proof of Proposition 3.1, we easily recognize
that the map R3RN � (t , x) O exp [tX](x) has polynomial component func-
tions. Moreover we have

!
i41

n

(yi 1xi ) Dr ¨ Y yn X xn . . .Y y1 X x1 If0.(5.4)

This follows by recalling that any field in S is a sum of vector fields d l-homo-
geneous of degree at least 1 and by observing that the component functions of
the identity map I are d l-homogeneous monomials of degree at most r . Since

exp [tX](x) is an analytic function of t , (3.7) gives exp [X] f !
k40

r 1

k!
X k I . We

henceforth fix x�RN and we set

F(t1 , t2 ) »4exp [t1 Y]( exp [t2 X](x) ), t1 , t2 �R .

Clearly, any component function of F is a polynomial in t1 , t2 . From (3.6) and
(3.8), we have

g dk

dt k h
t40

( f ( exp[tX](x) ) )4 (X k f )(x), f�C Q (RN , RN ), k�N , x�RN .

This gives, for every k1 , k2 �N ,

g ¯k11k2

¯t1
k1¯t2

k2
hN(t1, t2)4(0, 0)F(t1, t2)4g ¯k2

¯t2
k2
h

t240
g ¯k1

¯t1
k1
h

t140

I(exp [t1Y](exp [t2X](x)))

4g ¯k2

¯t2
k2
h

t240

(Y k1 I)( exp [t2 X](x) )4(X k2 Y k1 I)(x).
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Since F is a polynomial and by exploiting (5.4), we derive

exp [Y]( exp [X](x) ) 4F(1 , 1 ) 4 !
k11k240

r 1

k1 ! k2 !
(X k2 Y k1 I)(x).(5.5)

We now introduce the following higher order differential operator

W(t , X , Y) »4!
j41

r (21) j11

j
g !

k11k241

r t k11k2

k1 ! k2 !
X k2 Y k1h j

.

We formally expand W(t , X , Y) and we order it as a polynomial in t ,
setting

W(t , X , Y) 4 !
k41

r

t k Zk (X , Y)1 !
k4r11

r 2

t k Zk (X , Y) 4: Z(t , X , Y)1R(t , X , Y).

We explicitly remark that the differential operator Z appearing in (5.2) in the
statement of the theorem is simply given by Z(t , X , Y) with t41. It is easy to
recognize that, by (5.4), any power of R(t , X , Y) vanishes the identity map,
i.e.,

(R(t , X , Y) )k If0, for every kF0.(5.6)

We claim that

Zk (X , Y) �Lie ]X , Y(, for every kFr .(5.7)

We now show that from (5.7) the theorem is proved. Indeed, if we set Z»4

Z(1 , X , Y), from the definition of Z(t , X , Y) and from (5.7) we derive that Z�
Lie ]X , Y(. Then we turn to prove that (5.3) is satisfied. Indeed, we have

exp [Z](x) 4

4

4

4

!
k40

r 1

k!
Z k I(x)

!
k40

r 1

k!
(Z(1 , X , Y)1R(1 , X , Y) )k I(x)

!
k40

r 1

k!
{!

j41

r (21) j11

j
g !

k11k241

r 1

k1 ! k2 !
X k2 Y k1h j}k

I(x)

I(x)1 !
k11k241

r 1

k1 ! k2 !
X k2 Y k1 I(x) 4exp [Y]( exp [X](x) ).

The first equality follows from the fact that Z�S and from (3.7); the second
one follows from (5.6) and homogeneity arguments; the third one is the defini-
tion of W(1 , X , Y); the fourth equality is a consequence of the formal power
series expansion of the identity 11x4exp ( log (11x) ), jointly with (5.4) (see
below); the last equality follows from (5.5). More precisely, the fourth equality
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is a consequence of the identity

( H�S , !
k40

r 1

k!
{!

j41

r (21) j11

j
H j}k

4I1H1 !
j4r11

r 2

cj H j ,

jointly with (5.4).
Finally we are left with the proof of the claim (5.7). A simple proof can be

found in [15], where an analogous formula is derived in the more general con-
text of the formal power series in two non-commuting indeterminates X and Y .
The arguments used in [15] within the formal power series setting can be
adapted also to the present case: indeed, the identities between formal power
series therein found readily reduce, in our context, to identities between finite
sums, by making use of arguments such as (5.4). This completes the proof of
the theorem. r
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[15] D. Ž. DJOKOVIĆ, An elementary proof of the Baker-Campbell-Hausdorff-Dynkin
formula, Math. Z., 143 (1975), 209-211.

[16] A. EGGERT, Extending the Campbell-Hausdorff multiplication, Geom. Dedicata,
46 (1993), 35-45.

[17] G. B. FOLLAND, Subelliptic estimates and function spaces on nilpotent Lie groups,
Ark. Mat., 13 (1975), 161-207.

[18] G. B. FOLLAND - E. M. STEIN, Hardy spaces on homogeneous groups, Mathemat-
ical Notes, 28 Princeton University Press, Princeton, N.J., 1982.

[19] B. FRANCHI - F. FERRARI, A local doubling formula for the harmonic measure as-
sociated with sub-elliptic operators, preprint (2001).

[20] B. FRANCHI - R. SERAPIONI - F. SERRA CASSANO, Rectifiability and perimeter in the
Heisenberg group, Math. Ann., 321 (2001), 479-531.

[21] N. GAROFALO - D. VASSILEV, Regularity near the characteristic set in the non-lin-
ear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot
groups, Math. Ann., 318 (2000), 453-516.

[22] N. GAROFALO - D. VASSILEV, Symmetry properties of positive entire solutions of
Yamabe-type equations on groups of Heisenberg type, Duke Math. J., 106 (2001),
411-448.

[23] M. GRAYSON - R. GROSSMAN, Models for free nilpotent Lie algebras, J. Algebra, 135
(1990), 177-191.
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