bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Bonfiglioli, Andrea:
Homogeneous Carnot groups related to sets of vector fields
Bollettino dell'Unione Matematica Italiana Serie 8 7-B (2004), fasc. n.1, p. 79-107, Unione Matematica Italiana (English)
pdf (350 Kb), djvu (371 Kb). | MR2044262 | Zbl 1178.35140

Sunto

In questo articolo ci occupiamo del seguente problema: data una famiglia di campi vettoriali regolari $X_{1}, \ldots , X_{m}$ su $\mathbb{R}^{N}$, ci chiediamo se esiste un gruppo omogeneo di Carnot $\mathbb{G}=(\mathbb{R}^{N}, \circ, \delta_{\lambda} )$ tale che $\sum_{i} X_{i}^{2}$ sia un sub-Laplaciano su $\mathbb{G}$. A tale proposito troviamo condizioni necessarie e sufficienti sugli assegnati campi vettoriali affinchè la risposta alla suddetta domanda sia positiva. Inoltre esibiamo una costruzione esplicita della legge di gruppo i che verifica i requisiti di cui sopra, fornendo dimostrazioni dirette. La prova è essenzialmente basata su una opportuna versione della formula di Campbell-Hausdorff. Per finire, mostriamo svariati esempi non banali del nostro metodo costruttivo.
Referenze Bibliografiche
[1] G. K. ALEXOPOULOS, Sub-Laplacians with drift on Lie groups of polynomial volume growth, Mem. Amer. Math. Soc., 739 (2002). | MR 1878341 | Zbl 0994.22006
[2] C. ALTAFINI, A matrix Lie group of Carnot type for filiform sub-Riemannian structures and its application to control systems in chained form, d'Azevedo Breda, A. M. (ed.) et al., Proceedings of the summer school on differential geometry, Coimbra, Portugal, September 1999. | MR 1859942 | Zbl 0990.93022
[3] I. BIRINDELLI-E. LANCONELLI, A note on one dimensional symmetry in Carnot groups, Atti Accad. Naz. Lincei, to appear. | MR 1949145 | Zbl pre02216756
[4] A. BONFIGLIOLI-E. LANCONELLI, Liouville-type theorems for real sub-Laplacians, Manuscripta Math., 105 (2001), 111-124. | MR 1885817 | Zbl 1016.35014
[5] A. BONFIGLIOLI-E. LANCONELLI, Maximum Principle on unbounded domains for sub-Laplacians: a Potential Theory approach, Proc. Amer. Math. Soc., 130 (2002), 2295-2304. | MR 1896411 | Zbl 1165.35331
[6] A. BONFIGLIOLI-E. LANCONELLI, Subharmonic functions on Carnot groups, Math. Ann., to appear. | MR 1957266 | Zbl 1017.31003
[7] A. BONFIGLIOLI-E. LANCONELLI-F. UGUZZONI, Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations, to appear. | MR 1919700 | Zbl 1036.35061
[8] A. BONFIGLIOLI-F. UGUZZONI, Families of diffeomorphic sub-Laplacians and free Carnot groups, Forum Math., to appear. | MR 2050190 | Zbl 1065.35102
[9] J.-M. BONY, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304. | fulltext mini-dml | MR 262881 | Zbl 0176.09703
[10] N. BOURBAKI, Lie Groups and Lie Algebras, Chapters 1-3, Elements of Mathematics, Springer-Verlag, Berlin, 1989. | MR 979493 | Zbl 0672.22001
[11] M. BRAMANTI-L. BRANDOLINI, $L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc., 352 (2000), 781-822. | MR 1608289 | Zbl 0935.35037
[12] L. CAPOGNA, Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263-295. | MR 1679786 | Zbl 0927.35024
[13] L. J. CORWIN-F. P. GREENLEAF, Representations of nilpotent Lie groups and their applications (Part I: Basic theory and examples), Cambridge Studies in Advanced Mathematics, 18 Cambridge University Press, Cambridge, 1990. | MR 1070979 | Zbl 0704.22007
[14] J. DAY-W. SO-R. C. THOMPSON, Some properties of the Campbell Baker Hausdorff series, Linear Multilinear Algebra, 29 (1991), 207-224. | MR 1119454 | Zbl 0728.22008
[15] D. Ž. DJOKOVIĆ, An elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula, Math. Z., 143 (1975), 209-211. | MR 399196 | Zbl 0298.22010
[16] A. EGGERT, Extending the Campbell-Hausdorff multiplication, Geom. Dedicata, 46 (1993), 35-45. | MR 1214464 | Zbl 0778.17002
[17] G. B. FOLLAND, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207. | MR 494315 | Zbl 0312.35026
[18] G. B. FOLLAND-E. M. STEIN, Hardy spaces on homogeneous groups, Mathematical Notes, 28 Princeton University Press, Princeton, N.J., 1982. | MR 657581 | Zbl 0508.42025
[19] B. FRANCHI-F. FERRARI, A local doubling formula for the harmonic measure associated with sub-elliptic operators, preprint (2001).
[20] B. FRANCHI-R. SERAPIONI-F. SERRA CASSANO, Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321 (2001), 479-531. | MR 1871966 | Zbl 1057.49032
[21] N. GAROFALO-D. VASSILEV, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann., 318 (2000), 453-516. | MR 1800766 | Zbl 1158.35341
[22] N. GAROFALO-D. VASSILEV, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J., 106 (2001), 411-448. | fulltext mini-dml | MR 1813232 | Zbl 1012.35014
[23] M. GRAYSON-R. GROSSMAN, Models for free nilpotent Lie algebras, J. Algebra, 135 (1990), 177-191. | MR 1076084 | Zbl 0717.17006
[24] C. GOLÉ-R. KARIDI, A note on Carnot geodesics in nilpotent Lie groups, J. Dyn. Control Syst., 1 (1995), 535-549. | MR 1364562 | Zbl 0941.53029
[25] M. HAUSNER-J. T. SCWARTZ, Lie groups. Lie algebras, Notes on Mathematics and Its Applications, New York-London-Paris: Gordon and Breach, 1968. | MR 235065 | Zbl 0192.35902
[26] J. HEINONEN-I. HOLOPAINEN, Quasiregular maps on Carnot groups, J. Geom. Anal., 7 (1997), 109-148. | MR 1630785 | Zbl 0905.30018
[27] G. HOCHSCHILD, La structure de groupes de Lie, Monographies universitaires de mathématique, 27, Paris: Dunod, 1968. | Zbl 0157.36502
[28] L. HÖRMANDER, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. | MR 222474 | Zbl 0156.10701
[29] N. JACOBSON, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, New York-London: Wiley, 1962. | MR 143793 | Zbl 0121.27504
[30] A. N. KOLMOGOROV, Zufällige Bewegungen, Ann. of Math., 35 (1934), 116-117. | MR 1503147 | Jbk 60.1159.01
[31] E. LANCONELLI-S. POLIDORO, On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63. | MR 1289901 | Zbl 0811.35018
[32] R. MONTGOMERY-M. SHAPIRO-A. STOLIN, A nonintegrable sub-Riemannian geodesic flow on a Carnot group, J. Dyn. Control Syst., 3 (1997), 519-530. | MR 1481625 | Zbl 0941.53046
[33] R. MONTI-D. MORBIDELLI, Regular domains in homogeneous spaces, preprint (2001).
[34] R. MONTI-F. SERRA CASSANO, Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Diff. Eq., 13 (2001), 339-376. | MR 1865002 | Zbl 1032.49045
[35] K. OKIKIOLU, The Campbell-Hausdorff theorem for elliptic operators and a related trace formula, Duke Math. J., 79 (1995), 687-722. | fulltext mini-dml | MR 1355181 | Zbl 0854.35137
[36] J. A. OTEO, The Baker-Campbell-Hausdorff formula and nested commutator identities, J. Math. Phys., 32 (1991), 419-424. | MR 1088363 | Zbl 0725.47052
[37] L. P. ROTHSCHILD-E. M. STEIN, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. | MR 436223 | Zbl 0346.35030
[38] R. S. STRICHARTZ, The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Anal., 72 (1987), 320-345. | MR 886816 | Zbl 0623.34058
[39] R. C. THOMPSON, Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula, Proc. Am. Math. Soc., 86 (1982), 12-14. | MR 663855 | Zbl 0497.17002
[40] V. S. VARADARAJAN, Lie groups, Lie algebras and their representations, Graduate Texts in Mathematics 102, Springer-Verlag, New York, 1984. | MR 746308 | Zbl 0955.22500
[41] N. T. VAROPOULOS-L. SALOFF-COSTE-T. COULHON, Analysis and geometry on groups, Cambridge Tracts in Mathematics 100, Cambridge University Press, Cambridge, 1992. | MR 1218884 | Zbl 0813.22003

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali