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A Bound for the Average Rank
of a Family of Abelian Varieties.

RANIA WAZIR

Sunto. – Si considera una famiglia di varietà abeliane A/Q(T) e si determina un estre-
mo superiore per il rango di Mordell-Weil medio, in termini del rango di Mordell-
Weil della fibra generica. Questo risultato è basato su stime di Michel per il rango
medio di una famiglia di varietà abeliane, ed estende un lavoro precedente di Sil-
verman sulle superficie ellittiche.

Summary. – In this note, we consider a one-parameter family of Abelian varieties
A/Q(T), and find an upper bound for the average rank in terms of the generic rank.
This bound is based on Michel’s estimates for the average rank in a one-parameter
family of Abelian varieties, and extends previous work of Silverman for elliptic
surfaces.

1. – Introduction.

Let p : A KP1 be a proper flat morphism of smooth projective varieties de-
fined over Q , with generic fiber an Abelian variety A defined over Q(T). This
can be thought of as a family of Abelian varieties over Q , parametrized by Z.
By the Mordell-Weil Theorem, for any Abelian variety defined over a field k
finitely generated over Q , the set of rational points is a finitely generated
Abelian group; its rank is called the Mordell-Weil rank. In particular, in the
case of the fibration p : A KP1 , this holds both for the generic fiber A/Q(T),
and for the special fibers At /Q.

Very little is known about the Mordell-Weil rank, and there are many open
questions and conjectures, even in the «simplest» case of elliptic curves over
Q. One area of much recent interest, is to find bounds on the average rank of a
one parameter family of Abelian varieties At as t varies in Z , (see, for example,
the work on families of elliptic curves of Fouvry-Pomykala [FP93], Michel
[Mic95], and Silverman [Sil98], and the work of Michel [Mic97] on families of A
belian varieties). In this paper, we use some estimates of Michel to obtain an
upper bound for the average rank of the special fibers in terms of the generic
rank.
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THEOREM 1.1. – Assume A satisfies the «standard conjectures» as des-
cribed below. Furthermore, fix a base point z0 , and suppose that the mono-
dromy representation m z0

is irreducible. Then, as TKQ , we have:

1

2X
!

NtNGX
rank At (Q) Gg LX

2X log X
1rank A(Q(T) )1

g

2
h (11o(1) ) .

This paper was inspired by Professor Joseph Silverman’s article [Sil98] on
elliptic surfaces, and I would like to thank him for many interesting discus-
sions on elliptic curves and Mordell-Weil ranks. I am also indebted to Profes-
sors Alberto Conte and Siman Wong for their help and advice.

1.1. Definitions.

For the remainder of this article, we will write simply A to indicate the fi-
bration p : A KP1. Its generic fiber A is an Abelian variety of dimension g , de-
fined over Q(T). Furthermore, we assume always A has trivial Chow trace,
and that A(Q(T) ) c¯.

Let D»4 ]t�CN At is singular(N ]Q(, let P(T) �Z[T] be the separable
polynomial that vanishes on D , and set d»4NDN4 deg (P)11. Henceforth, all
sums !

NtNGX
will be taken over t�D.

Let U»4PC
1 2D , and fix a base-point z0 �U; we thus obtain a monodromy

representation

m z0
: p 1 (U , z0 ) KH 1

ét (Az0
/Q; Ql ) `Ql

2g ,

which we denote by m z0
.

If B is an Abelian variety of dimension g , then the conductor of B , NB , is
defined by

NB »4»
p

p d p ,

where the exponent d p satisfies (see, for example, [BK94, Theorem 6.2]):

1. d p 4O( g log g) for all p

2. d p 40 if and only if B has good reduction at p

3. 0 Ed p Gg if B has semistable reduction at P

4. d p G2g for all pD2g11.

For the family of varieties A, we then let

LX »4 !
NtNGX

log NAt
.

1.2. The conjectures.

The «standard conjectures» relate to the L-series L(V, s) and L2 (V, s) that
can be attached to H 1

ét (V /k; Ql ) and H 2
ét (V /k; Ql ), respectively, of a smooth
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projective variety V defined over a field k finitely generated over Q. In the
case of varieties V /Q , these are defined as:

Li (V, s) »4»
]

det(12Frob] p 2s NH i
ét (V /Q; Ql ))

21
.

We refer to the articles of Serre [Ser65] and Tate [Tat65] for more general
definitions.

CONJECTURE 1.1 (Taniyama-Weil). – Let B be an Abelian variety defined
over Q. Then the L-series L(B , s) can be analytically continued to all of C ,
and satisfies a functional equation:

z(B , s) 4w(B) z(B , 12s),

where

w(B) 461 and z(B , s) »4NB
s/2 ((2p)2s G(s))g L(B , s).

In the case of an elliptic curve E/Q , this conjecture is a consequence of the
Modularity conjecture, which, thanks to the work of Wiles, Taylor-Wiles, Dia-
mond et al, is now a theorem.

CONJECTURE 1.2 (Birch and Swinnerton-Dyer)

ord
s41

L(B , s) 4 rank B(Q).

Unfortunately, very little is known for this conjecture. In the case of elliptic
curves E/Q , we have the following partial result:

If ord
s41

L(E , s) G1 then ord
s41

L(E , s) 4 rank E(Q).

CONJECTURE 1.3 (Generalized Riemann Hypothesis). – Assume B/Q is an
Abelian variety for which Conjecture 1.1 holds. Then every zero of L(B , s) lies
on the line Re (s) 41.

CONJECTURE 1.4 (Tate’s Conjecture). – Let k be a field finitely generated
over Q , and let V be a smooth projective variety defined over k. Then L2 (V, s)
has a meromorphic continuation to C , and satisfies

2ord
s42

L2 (V, s) 4 rank NS(V /k),

where NS(V /k) is the k-rational part of the Neron-Severi group of V. Further-
more, we assume that L2 (V, s) does not vanish on the line Re (s) 41; strictly
speaking, this is not traditionally part of Tate’s conjecture. However, it is
known to hold true in all cases where Tate’s Conjecture is known.
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2. – The average rank.

The goal of this section is to prove Theorem 1.1. In order to obtain a bound
on the average rank in terms of the generic rank, we start first with some ana-
lytic estimates obtained by Michel.

LEMMA 2.1 (Michel [Mic97, Proposition 5.1]). – If p : A KP1 is a family of
Abelian varieties with irreducible monodromy representation m z0

, then

N !
t�Fp

Trace (Frob] NH 1
ét (At /Q; Ql ) ) N G2g(d22) p

Furthermore, m z0
is irreducible for any family A arising as the Jacobian fib-

ration attached to a Lefschetz fibration f : Y KP1 with dim H 1
ét (Y /Q; Ql)40.

As we will be using the Frobenius trace above frequently, we define, for
any smooth, projective variety V /Q:

ap (V) »4 Trace (Frob] NH 1
ét (V /Q; Ql ) ),

bp (V) »4 Trace (Frob] NH 2
ét (V /Q; Ql ) ).

For singular varieties, we set ap (V) 4bp (V) 40. Furthermore, we will be most
interested in averaging the Frobenius traces over the special fibers, and so we
let:

�p (A) »4
1

p m
!

x�Fp

ap (Ax ) ,

�p (A) »4
1

p m
!

x�Fp

bp (Ax ) .

It is important to note that, from Lemma 2.1 above, it follows that �p (A) is
bounded independently of p.

The following estimate is based on a generalization to Abelian varieties of
Mestre’s explicit formula for elliptic curves. Define first the test function

Fl (x) »4 maxm0, 12N x

l
Nn .

LEMMA 2.2 (Michel [Mic97, Lemma 6.1 and 7.1 ff]). – Suppose p : A KP1 is
a family of Abelian varieties such that Conjectures 1.1, 1.2, and 1.3 hold for
all special fibers At . Then, for any lD1, and the function Fl as defined
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above, we have:

l !
NtNGX

rank At (Q) G LX 22 !
]

Fl ( log p) log p�p (A)1

1kA

l

2
(11o(1) ) 2X1O(X)1O (e l/2 ) ,

where NkANGg , and in the case that A arises from a Lefschetz fibration,
kA 41.

To simplify notation, we let

S(X) »4!
]

Fl ( log p) log p�p (A) .

In order to bound the term S(X), we will need the following result:

THEOREM 2.1 (Wazir [Waz03, Corollary 6.1]). – If Conjecture 1.4 holds for
A, then

lim
XKQ

1

X
!

pGX
2�p (A) log p1 lim

XKQ

1

X
!

pGX
�p (A)

log p

p
4

4 rank A(Q(T) )1rank NS A(Q(T) ).

Assuming further that Conjecture 1.4 is also true for the generic fiber A ,
we get

lim
XKQ

1

X
!

pGX
�p (A)

log p

p
4 rank NS A(Q(T) )(1)

and therefore

lim
XKQ

1

X
!

pGX
2�p (A) log p4 rank A(Q(T) ).(2)

We are finally ready to estimate S(X). Proceeding as in Michel, Fouvry-

Pomykala, and Silverman, we split the interval NtNGX into k 2X11

p
l intervals

of length p , and one interval, Ip , of length at most p21. Noting also that
Fl ( log p) 40 when pDe l , we rewrite the sum S(X) as:

(3) S(X) 4 !
pGe l

Fl ( log p)( log p) k 2X11

p
l �p (A)1

1 !
pGe l

Fl ( log p)
log p

p
!
t�Ip

ap (At ) .



RANIA WAZIR246

Using additive characters and Lemma 2.1, we find

!
pGe l

Fl ( log p)
log p

p
!
t�Ip

ap (At ) 4O(le l ) .(4)

Furthermore, recall that �p (A) is bounded independently of p; therefore, re-
moving the greatest integer brackets in the first term introduces an error of
the order

!
p

Fl ( log p)( log p) 4O(e l ).

Thus, it remains to estimate

!
pGe l

2Fl ( log p)
log p

p
�p (A) 4 !

pGe l
2

log p

p
�p (A)1

1

l
!

pGe l

( log p)2

p
�p (A).

Using Abel’s identity [Apo76, Theorem 4.2], we have:

!
pGe l

2
log p

p
�p (A) 4

1

e l
!

pGe l
2�p (A) log p1s

1

e l

g 1

x
!

pGx
2�p (A) log ph 1

x
dx

1

l
!

pGe l

( log p)2

p
�p (A) 4

42
1

e l
!

pGe l
2�p (A) log p1

1

l
s
1

e l

g 1

x
!

pGx
2�p (A) log ph 12 log x

x
dx .

Summing this, we get:

(5) !
p

2Fl ( log p) �p (A) log p4

4u l11

l
s
1

e l

1

x
dx2

1

l
s
1

e l

log x

x
dxv (11o(1) ) rank A(Q(T) )

4g l

2
11h (11o(1) ) rank A(Q(T) )

The equations (4) and (5) give the following estimate for S(X):

S(X) 42(2X11) rank A(Q(T) ) (11o(1) )
l

2
1O(le l ).(6)
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Combining this with Lemma 2.2, we obtain:

1

2X
!

NtNGX
rank At (Q) G

LX

2Xl
1 (11o(1) ) rank A(Q(T) )1

1Og e l

2X
h1

g

2
(11o(1) )1Og 1

l
h1Og e l

lX
h .

Finally, by setting l4 log X2 log log X , we have

1

2X
!

NtNGX
rank At (Q) G

LX

2X( log X2 log log X)
1

1(11o(1) ) rank A(Q(T) )1
g

2
1o(1),

and the theorem follows, letting XKQ.

We would also like to obtain a bound on LX

log X
. For this purpose,

let

S»4 ]s�DN As has additive reduction( ,

and define a «conductor polynomial»

N(T) »4P(T) »
s�S

(T2s) 4 »
s�D

(T2s) »
s�S

(T2s) .

By considering the properties of d p , we obtain:

log NAt
4!

p
d p log p

G !
pNP(t)

g log p1 !
pNP(t)

2g log p1 !
pE2g11

g log g log p

Gg log N(t)1O( g log g log Z),

where Z»4 »
pG2g11

p. Therefore

!
NtNGX

log NAt
Gg deg N(T)(11o(1) ) 2XG2g(d21)(11o(1) ) 2X .(7)

Putting this estimate together with Theorem 1.1, we obtain the following
bounds for average rank:

1

2X
!

NtNGX
rank At (Q) Ggg deg N(T)1rank A(Q(T) )1

g

2
h (11o(1) )

Gg2g(d21)1rank A(Q(T) )1
g

2
h (11o(1) ).
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In the case of a Lefschetz fibration, this estimate can be improved, as
will be shown below.

3. – Lefschetz fibrations.

We now consider a special family of Abelian varieties: a family of the form
Jac (Y) /Q(T), where Y is the generic fiber of a Lefschetz fibration, and Jac (Y)
has trivial Chow trace.

To be more precise, let Y be a smooth, projective surface defined over Q ,
with Lefschetz fibration f : Y KP1. Then f is a semi-stable fibration, with sec-
tion s : P1 K Y. Let Jac (Y) be the Jacobian Variety of the generic fiber Y , and
set A KP1 the Néron model of Jac (Y). Then A(Q(T) ) c¯ , and we have, for all
smooth fibers Yt , Jac (Yt ) 4 At . If furthermore Jac (Y) has trivial Chow trace,
it follows that the first Betti number

b1 (Y, l) »4 dim (H 1
ét (Y /Q; Ql ) ) 4 dim (H 1

ét (P
1 /Q; Ql ) ) 40,

and, in fact, the two conditions are equivalent. See, for example, [Shi99, Theo-
rem 3].

THEOREM 3.1. – Let f : Y KP1 , A KP1 be as defined above, and assume
also that Conjecture 1.4 holds for Y; then, as XKQ , we have:

1

2X
!

NtNGX
rank At (Q) Gg LX

2X log X
1rank A(Q(T) )1

1

2
h (11o(1) ).

Since we are assuming that Conjecture 1.4 holds for Y, [Won02, Theorem
5] gives:

lim
XKQ

1

X
!

pGX
2�p (Y) log p4 rank A(Q(T) ).

The fiber Yt has good reduction at p exactly when Jac (Yt ) has good reduction
at p , so ap (Yt ) 4ap (At ) by [Mil86, Corollary 9.6], and therefore �p (Y) 4

�p (A). The theorem follows as before.

In order to improve the bound on LX

logX
given in Equation 2.7, we note that,

for a Lefschetz fibration, we have:

i. d p (At ) 40 when Yt (and hence also At) has good reduction at p

ii. d p (At ) 41 when Yt has bad reduction at p , and pD2g11.
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From this it follows, by the same calculation as before, that

LX

log X
G (d21) 2X(11o(1) )

and therefore

1

2X
!

NtNGX
rank At (Q) Ggd2

1

2
1rank A(Q(T) )h (11o(1) ).(8)

4. – Examples.

We describe here some examples of families of Abelian varieties for which
Tate’s Conjecture is known, and use the formulas of this paper to compute
their average rank. Since very little is known about Tate’s Conjecture in vari-
eties of dimension three or more, we restrict ourselves to considering elliptic
surfaces, and families of Jacobians arising from a Lefschetz fibration of a sur-
face over P1.

For the next two examples, let E be a non-split elliptic surface, with section,
defined over Q. For elliptic surfaces, non-split is equivalent to non-constant j-
invariant, and this in turn implies that the monodromy representation is irre-
ducible. Furthermore, Conjecture 1 holds for all the fibers.

EXAMPLE 4.1. – Suppose E /Q is a Q-rational elliptic surface (i.e. bira-
tional, over Q , to P2 ). Then Conjecture 1.4 holds for E, and assuming that
Conjectures 1.2 and 1.3 hold for all nonsingular fibers, we have:

1

2X
!

NtNGX
rank Et (Q) Gg LX

2X log X
1rank E(Q(T) )1

1

2
h (11o(1) ).

Furthermore, rational elliptic surfaces over Q have no additive reduction
(i.e. S4¯ , and deg N(T) 4 deg P(T)), and

rank E(Q(T) ) ) G rank E(Q(T) ) G8 [Shi92 , p . 110] .

Therefore,

1

2X
!

NtNGX
rank Et (Q) Ggd171

1

2
h (11o(1) ).

We consider next a concrete example, shown by Rosen and Silverman [Re-
mark 4.1.2] to satisfy Conjecture 1.4, and to have generic rank 2.
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EXAMPLE 4.2. – Let E KP1 be the elliptic surface defined by the Weier-
strass Equation

y 2 4x 3 233s 4 x1s 4 (8s 2 11).

Then E has j-invariant given by:

j(E) 4
9199872s 4

5260s 4 216s 2 21
,

which is clearly not constant over Q. Therefore, assuming the fibers of E sa-
tisfy Conjectures 1.2 and 1.3, we obtain the following estimate on the average
rank:

1

2X
!

NtNGX
rank Et (Q) Ggdeg N(T)121

1

2
h (11o(1) ).

Our next examples will be families of Abelian varieties arising as Jacobians of
a Lefschetz fibration f : Y KP1 , where Y is a smooth projective surface with
H 1

ét (Y /Q; Ql ) 40, and for which Conjecture 1.4 is known to hold. For this pur-
pose, we provide a list of surfaces where the conjecture is known to be true,
and whose first Betti number is trivial:

1. rational surfaces (k (Y) 42Q).

2. K3 surfaces of type CM. (k (Y) 40).

3. Fermat surfaces. (k(Y) 42 for surfaces of degree 4 or higher).

The first item is proven in [RS98, Theorem 1.8]; the rest of the list is ex-
tracted from [Ram89], where also other examples of surfaces for which Con-
jecture 1.4 holds can be found.

In the case of a Lefschetz fibration f : Y KP1 , [Kat74, Proposition 3.2.10]
shows that d does not depend on the choice of fibration, but only on the surface
Y, and on the choice of embedding f : Y %KPN ; in particular,

d4b2 (Y, l)121d14( g21) .(9)

where d is the cardinality of the intersection between Y and the axis of the
fibration.

EXAMPLE 4.3. – Let Ym be the Fermat Surface of degree m in P3 , given by
the equation:

X m 1Y m 1Z m 1U m 40.

In this case, we have b2 (Y, l) 41, hence d431d14( g21). If we assume
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also gcd (m , 6 ) 41, then by [Shi82, Example 4.3],

rank NS(Ym /Q) 43(m21)(m22)11.

Furthermore, by the Shioda-Tate formula [Shi99, Theorem 3],

rank (A(Q(T) ) ) G rank (A(Q(T) ) G rank NS(Ym /Q)22.

We thus obtain the following estimate on average rank:

1

2X
!

NtNGX
rank At (Q) Gg4g1d13(m21)(m22)2

5

2
h (11o(1) ).

EXAMPLE 4.4. – For this final example, we consider a Lefschetz fibration
on the elliptic modular surface with level M structure E[M] over Q (note, we
are not giving E[M] its elliptic surface fibration structure!) For MF4, Wong
[Won02, Theorem 4] shows that E[M] satisfies the Tate Conjecture. Further-
more, when M44 or 5, the first Betti number b1 (E[M], l)40. Fix M44, and
let Y4E[4]. We use [Shi72, p.38] to determine the geometric invariants of E:

rank NS(Y /Q)

pg (Y)

b2 (Y)

420

41

4 rank NS(Y /q)12pg (Y) 422 .

As in the previous example, we have the bound rank (A(Q(T) ) ) G

rank NS(Y /Q)22 418, and therefore

1

2X
!

NtNGX
rank At (Q) G4g1d1351

1

2
.
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