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Monotone Operators in Divergence form
with x-Dependent Multivalued Graphs.

GILLES FRANCFORT - FRANÇOIS MURAT - LUC TARTAR

Sunto. – Dimostriamo l’esistenza di soluzioni per l’equazione 2div a(x , grad u) 4 f
con opportune condizioni al bordo, nel caso in cui a(x , e) sia un grafico massimale
monotono in e per ogni x fissato. Innanzitutto proponiamo un quadro adeguato per
questo problema, in particolare per quel che concerne la misurabilità. Questo con-
siste nel considerare il grafico dopo una rotazione di 457 per ogni x fissato. In altre
parole, il grafico d�a(x , e) è definito da d2e4W(x , d1e), dove W è una contra-
zione di Carathéodory in RN. Mostriamo che questa definizione è equivalente al
fatto che a(x , Q) è puntualmente monotono e che, per ogni g� [L p 8 (V) ]N ed ogni dD
0, l’equazione d1dNeNp22 e4g ha una soluzione (e , d) con d�a(x , e). Si dimostra
poi l’esistenza di soluzioni di 2div a(x , grad u) 4 f sotto ipotesi di crescita e
coercitività.

Summary. – We prove the existence of solutions to 2div a(x , grad u) 4 f, together with
appropriate boundary conditions, whenever a(x , e) is a maximal monotone graph
in e, for every fixed x. We propose an adequate setting for this problem, in particu-
lar as far as measurability is concerned. It consists in looking at the graph after a
457 rotation, for every fixed x ; in other words, the graph d�a(x , e) is defined
through d2e4W(x , d1e), where W is a Carathéodory contraction in RN. This def-
inition is shown to be equivalent to the fact that a(x , Q) is pointwise monotone and
that, for any g� [L p 8 (V) ]N and any dD0, the equation d1dNeNp22 e4g has a sol-
ution (e , d) with d�a(x , e). Under additional coercivity and growth assumptions,
the existence of solutions to 2div a(x , grad u) 4 f is then established.

1. – Introduction.

Maximal monotone operators are hardly a new topic. Since the 1960’s, an
abundant literature has been produced in two main directions. A significant
fraction of that literature is devoted to abstract maximal monotone operators
from a Banach space into its dual. This is not our concern in the present study.
An equally significant fraction examines «concrete» operators, the model of
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which is

.
/
´

2div a(x , grad u) 4 f in V ,

u40 on ¯V .

Whenenever a(x , j) : V3RN KRN is a (univalued) Carathéodory function
which further satisfies appropriate growth and coercivity conditions, existence
is classical (see e.g. [Le&Li], [Li]).

In this study we investigate equations of the form

2div d4 f in D8 (V),

with (grad u(x), d(x) ) � A(x), where A(x) is, for each x, a maximal monotone
graph. That so few results concerning this class of equations should be avail-
able came as a surprize to us. But, in all fairness, it is a near impossible task to
survey the relevant literature, so that the results that are presented here
might have been previously derived, unbeknownst to us. If such should be the
case, we will gladly apologize for the oversight, and will duly acknowledge the
anteriority of the ignored contribution.

Even more surprizing to us is the apparent absence (with the same caveat)
of available results in the case where the graph is x–independent. Note that a
very simplified version of the proofs developed below yields existence in such a
setting.

To our knowledge, the only existence result available is to be found in
[CP&DM&De], Theorem 2.7. We reproduce the statement of that result for
the reader’s convenience.

THEOREM 1.1. – Assume that A(x) %RN 3RN is an x-dependent graph
with the following properties:

(i) ]d�RN : (e , d) � A(x)( is closed for a.e. x in V and every e in RN ;

(ii) A(x) is maximal monotone for a.e. x in V;

(iii) there exists 1 EpE1Q , m(x) F0 in L 1 (V), and aD0 such that, for a.e.
x in V and every (e , d) in A(x)

d.eF2m(x)1a(NeNp 1NdNp 8 )

with 1

p
1

1

p 8
41;

(iv) for any closed set C of RN ,

](x , e) �V3RN : there exists d�C such that (e , d) � A(x)(

is measurable with respect to the s-algebra L(V)7 B(RN ), where L(V)



MONOTONE OPERATORS IN DIVERGENCE FORM ETC. 25

denotes the s-algebra of all Lebesgue measurable subsets of V and B(RN )
that of all Borel subsets of RN.

Then, for every f�W 21, p 8 (V), there exists a solution (u , d) to

.
/
´

u�W 1, p
0 (V), d� [L p 8 (V) ]N ,

2div d4 f in D8 (V),

( grad u(x), d(x) ) � A(x) a.e. in V.

The drawback of the above theorem is that assumption (iv), the measura-
bility assumption, seems difficult to check in concrete cases. Furthermore, its
proof uses delicate measurability selection theorems.

In this study, we propose a class of graphs for which measurability be-
comes obvious. Specifically, we investigate monotone graphs AW (x) of the
form

AW (x) 4 ](e , d) �RN 3RN : d2e4W(x , d1e)(,

for a.e. x in V, where W(x , l) : V3RN KRN is a Carathéodory contraction,
i.e., is measurable in x for every l and satisfies, for a.e. x in V,

NW(x , l)2W(x , l 8 )NGNl2l 8 N , l , l 8�RN .

Such graphs are easily seen to be maximal monotone (cf. Lemma 2.1 be-
low); the idea of a 457 rotation of the graph as a useful tool for the study of
monotone operators goes back to Minty, who proved an analogous result with-
out x-dependence [Mi].

If we further assume coercivity and growth in the sense of (iii) of the above
mentioned theorem, we then prove an existence result (Theorem 2.3 below).
Note that the class we propose, although apparently different from the class of
graphs considered in [CP&DM&De], is in fact identical. This was pointed out
to us by G. Dal Maso, and his proof of the equivalence is given in Remark 2.2
below. In that respect, our existence result is not new. Our proof is however
completely different, in particular because it eschews all the intricacies stem-
ming from the measurability assumption (iv) of Theorem 1.1.

Section 2 details the setting and the main result (Theorem 2.3), while Sec-
tion 3 proposes a first proof of that theorem with the help of a graph regular-
ization in RN. Section 4 proves a similar existence result under different hy-
potheses, namely maximality and monotonicity in [L p (V) ]N 3 [L p 8 (V) ]N plus
coercivity and growth (Theorem 4.4); note that in this theorem the operator is
not assumed to be local. Section 5 reconciles the results of Theorems 2.3 and
4.4 by establishing a result of interest in its own right, essentially the equiva-
lence between maximality in [L p (V) ]N 3 [L p 8 (V) ]N plus pointwise monotonic-
ity and the existence of a monotone graph AW (x), where W is a Carathéodory
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contraction. At the end of that Section we observe (Remark 5.8) that subdiffer-
entials of convex Carathéodory functions with appropriate coercivity and
growth conditions are particular cases of the class under investigation. Section
6 investigates variants of the existence result when a zeroth order term is
added or when W, and therefore a, depends on the field u, a generalization of
the so-called Leray-Lions operators.

Finally, we do not use the maximum principle at any point in this study,
and identical results for systems or higher order equations with various varia-
tional boundary conditions could be similarly obtained.

2. – The framework and the existence result.

At the onset of this section we reestablish a simple equivalence lemma
which justifies the standpoint adopted in this paper. By definition A %RN 3

RN is a monotone graph of RN 3RN if and only if

(e , d) � A

(e 8 , d 8 ) � A
} ¨ (d 82d).(e 82e) F0,

where, from now onward Q denotes the Euclidean inner product on RN. Fur-
ther, A is said to be maximal if and only if, whenever (e , d) �RN 3RN is such
that

(d 82d).(e 82e) F0, ((e 8 , d 8 ) � A,

then (e , d) � A. In other words, there is no strict monotone extension of
A.

By definition a (possibly multivalued) function W defined on a subset of RN

– its domain dom W – with values in RN is a contraction if and only if

(l , m) �graph W

(l 8 , m 8 ) �graph W
} ¨ Nm 82mNGNl 82lN ,

in which case W is actually univalued.
To any A %RN 3RN we associate the multivalued function W A defined on a

subset of RN with values in RN as follows:

(l , m) �graph W A ` )(e , d) � A, l4d1e , m4d2e .

Conversely, to any multivalued function W defined on a subset of RN with
values in RN we associate AW%RN 3RN defined as

AW4 ](e , d) �RN 3RN : d2e�W(d1e)(.(2.1)

Note that W AW
4W and AW A

4 A.
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Then, the following lemma whose proof can also be found in [Mi], Lemma 3
and Theorem 4, or in [Al&Am], Proposition 1.1, holds true:

LEMMA 2.1. – A %RN 3RN is a monotone graph if and only if W A is a con-
traction on its domain dom W A. Furthermore, A is maximal if and only if
dom W A 4RN.

PROOF. – Let (e , d), (e 8 , d 8 ) �RN 3RN. Since

N(d 81e 8 )2 (d1e)N2 2N(d 82e 8 )2 (d2e)N2 44(d 82d).(e 82e),

where N QN denotes the Euclidean norm on RN, the following equivalence
holds:

(d 82d).(e 82e) F0 ` N(d 82e 8 )2 (d2e)N2 GN(d 81e 8 )2 (d1e)N2 .

This proves the first part of the lemma.
Consider a monotone graph A. Assume that dom W A 4RN and consider

(e , d) �RN 3RN such that

(d 82d).(e 82e) F0, ((e 8 , d 8 ) � A.

Set l»4e1d and define (e 8 , d 8 ) � A by

.
/
´

d 81e 84l ,

d 82e 84W A (l).

Since (d 82d).(e 82e) F0,

N(d2e)2W A (l)N2 4

G

N(d2e)2 (d 82e 8 )N2

N(d1e)2 (d 81e 8 )N2 4Nl2lN2 40.

Thus d2e4W A (l) 4W A (d1e) and (e , d) � A, which proves the maximality
of A.

Conversely, assume that dom W A ’O RN. Then, according to Kirszbraun’s
theorem (see e.g. [Fe], [Mi]), there exists an extension WAA of W A which is a con-
traction on all of RN. Consider l�dom W A and set

.
/
´

d1e4l ,

d2e4 WAA (l) .
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Then, for any (e 8 , d 8 ) � A,

N(d 82e 8 )2 (d2e)N4NW A (d 81e 8 )2WAA (d1e)N

4NWAA (d 81e 8 )2WAA (d1e)NGN(d 81e 8 )2 (d1e)N .

Thus (d 82d).(e 82e) F0, i.e., A is not maximal. r

In the light of the previous lemma, maximal monotone graphs of RN 3RN

are equivalently defined through contractions defined on all of RN, which is
the standpoint we adopt from now onward. An identical stanpoint is adopted in
[Al&Am] who discuss the fine properties of monotone graphs of RN 3RN.

Throughout the remainder of this paper, V is a bounded open domain in
RN, p� (1 , Q) and p 84p/(p21) is its Hölder conjugate exponent, m(x) a
fixed non-negative function in L 1 (V) and a is a strictly positive real
number.

We define M(a , m , p , V) as the set of functions W(x , l) : V3RN KRN

with the following properties:

(2.2) W is Carathéodory;

(2.3) W(x , Q) is a contraction for a.e. x in V;
if for any given l in RN, e(x) and d(x) are defined, for a.e. x in V, as

.
/
´

d(x)1e(x) 4l ,

d(x)2e(x) 4W(x , l),

then, for a.e. x�V ,

d(x). e(x) F2m(x)1a(Ne(x)Np 1Nd(x)Np 8 );(2.4)

(2.5) W(x , 0 ) 40, for a.e. x�V.

For a.e. x in V we further denote by AW (x) the graph associated to W(x , Q)
as in (2.1).

Note that, due to (2.5), (0 , 0 ) � AW (x). Throughout the remainder of the
study, we will always assume that (0 , 0 ) belongs to the investigated graphs.
When W satisfies (2.2)-(2.4), it is always possible to reduce to the case
W(x , 0 ) 40 whenever there exists some d0 � [L p 8 (V) ]N such that

W(x , d0 (x) ) 4d0 (x) for a.e. x in V,

or in other terms such that (0, d0 (x) ) � AW(x); indeed defining W×, e× and d× by

W×(x , l×) 4W(x , l×1d0 (x) )2d0 (x), e×(x) 4e(x), d×(x) 4d(x)2d0 (x),
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it is easy to see that W× satisfies (2.2)-(2.5) for some m× in L 1 (V) and some
a× D0.

Observe that for V , p and m fixed, the set M(a , m , p , V) is non empty
whenever a is sufficiently small: indeed the function W(x , l) 4W(l) 4

NeNp22 e2e, where e is defined from l by NeNp22 e1e4l (the graph AW as-
sociated to this function is ](e , d) : d4NeNp22 e( %RN 3RN ), belongs to
M(a , m , p , V) when aG1/2 and m(x) F0. In contrast the
set M(a , m , p , V) can be empty if a is too large, since when aD

sup ( (1 /p), (1 /p 8 ) ), (2.4) and Young’s inequality imply

Ne(x)Np 1Nd(x)Np 8GCm(x),

in contradiction with the fact that e(x) and d(x) can be choosen such that
d(x)1e(x) 4l for every l�RN.

REMARK 2.2. – As already said in the introduction, ]AW (x) : W�
M(a , m , p , V)( is precisely the set of x–dependent graphs considered in
Theorem 1.1 above which satisfy the additional condition (0 , 0 ) � A(x), as
communicated to us by G. Dal Maso whose proof we reproduce now.

Indeed, by Theorem 1.3 of [CP&DM&De], under assumption (i), the mea-
surability assumption (iv) of Theorem 1.1 above is equivalent to the fact
that

E »4 ](x , e , d) �V3RN 3RN : (e , d) � A(x)(

belongs to the s-algebra L(V)7 B(RN )7 B(RN ). Since, by Lemma 2.1, we
have

(e , d) � A(x) ` d2e4W(x , d1e) ,

we can write

E 4 ](x , e , d) �V3RN 3RN : d2e4W(x , d1e)( 4F21 (F ) ,

where F : V3RN 3RN KV3RN 3RN is defined by

F(x , e , d) »4 (x , d1e , d2e)

and

F »4 ](x , l , m) �V3RN 3RN : m4W(x , l)( .

Therefore, under the assumptions (i), (ii), and (iii) of Theorem 1.1 above, the
measurability assumption (iv) is equivalent to the fact that F belongs to the s-
algebra L(V)7 B(RN )7 B(RN ), which by Theorem 1.3 of [CP&DM&De] is
equivalent to the fact that W : V3RN KRN is measurable with respect to the
s-algebrae L(V)7 B(RN ) and B(RN ). Since W(x , Q) is a contraction for a.e.
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x�V, this measurability condition is equivalent to the fact that W is
Carathéodory.

Therefore the graphs of M(a , m , p , V) are exactly those graphs of Theo-
rem 1.1 (Definition 2.1 of [CP&DM&De]) for which (0 , 0 ) � A(x). r

Our main goal in this paper is to prove the following theorem, which in view
of the above remark, is identical to Theorem 2.7 of [CP&DM&De], but with a
completely different proof:

THEOREM 2.3. – Consider W� M(a , m , p , V). For any f�W 21, p 8 (V) there
exists u and d such that

.
/
´

u�W 1, p
0 (V), d� [L p 8 (V) ]N ,

2div d4 f in D8 (V),

d(x)2grad u(x) 4W(x , d(x)1grad u(x) ), for a.e. x in V,

(2.6)

(or equivalently ( grad u(x), d(x) ) � AW (x) for a.e. x in V).

We present two separate proofs of Theorem 2.3 in Sections 3, 4 and 5, re-
spectively. The first proof consists in a regularization of the graph of W in RN,
which naturally leads us to a strongly monotone problem in W 1, 2

0 (V). The sec-
ond proof boils down to a regularization of a monotone graph in [L p (V) ]N 3

[L p 8 (V) ]N associated to AW . Both proofs use the abstract existence theorem
for univalued, monotone, continuous, bounded and coercive operators on a re-
flexive Banach space stated in Theorem 2.4 below. Note that the first proof
only uses it in a Hilbert space setting where it can be derived through applica-
tion of Banach’s fixed point theorem (cf. e.g. [Bre2], Theorem V.6, in the linear
case), while the second proof is concerned with a Banach space in which case
Brouwer’s fixed point theorem is used (cf. e.g. [Li], Chapter 2, Theorem 2.1).

THEOREM 2.4. – Let V be a reflexive Banach space and A : VKV 8 be a uni-
valued, monotone, continuous and bounded operator. Assume further that A
is coercive, i.e.,

lim
VvVH1Q

aA(v), vb

VvVV

41Q .

Then, A is onto.

Besides this, the proofs in the present paper only use elementary tools, ex-
cept in Section 6, a short section devoted to variants of Theorem 2.3, where
Schauder’s fixed point theorem is also used.
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Concerning notation, throughout the paper V VL p (V) denotes the norm in
both L p (V) or [L p (V) ]N depending on its argument, C denotes a generic posi-
tive constant in bounding estimates, so that, for example, 2C can be replaced
by C.

For the reader’s convenience, we should stress that from now onward the
word «function» will always refer to univalued functions, while the expression
«graph of E3F» will refer to a subset of E3F, seen as a multivalued function
from a subset of E into F. Also, the notation (e , d) can be easily understood in
reference to electric field and flux, respectively.

Finally, the calligraphic character A will always refer to a graph of RN 3

RN (M, to a set of functions associated to graphs of that type), while the slant-
ed character A will refer to a graph of [L p (V) ]N 3 [L p 8 (V) ]N (M, to a set of
such graphs).

3. – Proof of Theorem 2.3 by a graph regularization in RN.

In this section, we propose a proof of Theorem 2.3 which uses a regulariza-
tion of the pointwise graph of the operator.

Consider a Carathéodory contraction W(x , l), that is a W that satisfies (2.2),
(2.3), and also assume that W(x , Q) is a strict contraction for a.e. x in V, i.e.,
that

NW(x , l)2W(x , l 8 )NGuNl2l 8 N , l , l 8�RN ,(3.1)

with 0 EuE1. Then,

LEMMA 3.1. – If W is a strict Carathéodory contraction ((2.2), (3.1)), then
for a.e. x in V , AW (x) is the graph of a strongly monotone (single valued)
function a(x , Q) defined on all of RN. Furthermore a(x , e) is Carathéodory on
V3RN and Lipschitz in e , almost uniformly in x�V.

PROOF. – According to (2.1), if (e , d), (e 8 , d 8 ) � AW (x), then

N(d 82e 8 )2 (d2e)N2 Gu 2 N(d 81e 8 )2 (d1e)N2 ,

that is, upon setting

Cu »4
12u 2

2(11u 2 )
D0,(3.2)

(d 82d).(e 82e) FCu (Nd 82dN2 1Ne 82eN2 ),(3.3)

which immediately proves that AW (x) is the graph of a single valued, strongly
monotone, Lipschitz function denoted by a(x , Q); in other words, the mapping
e O d is single valued, and d4a(x , e).
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The domain of a(x , Q) is all of RN, as well as its range; indeed, for every e�
RN, a(x , e) is the unique d such that d2e4W(x , e1d), because it is the only
fixed point of the mapping d O e1W(x , e1d), a strict contraction on RN for
almost every x�V; similarly, for every d�RN, a 21 (x , d) is the unique e such
that d2e4W(x , e1d), because it is the only fixed point of the mapping
e O d2W(x , e1d), a strict contraction on RN for almost every x�V.

It merely remains to prove that a(x , e) is Carathéodory. Fix e in RN, then
a(x , e) is the fixed point of the Carathéodory mapping

d O F(x , d) »4e1W(x , d1e),

which is given by the almost pointwise limit of the sequence

.
/
´

d n11 (x) 4F(x , d n (x) ),

d 0 (x) 40.

Since F is Carathéodory, each d n (x) is measurable on V hence a(x , e), their
almost pointwise limit. r

REMARK 3.2. – Note that the previous lemma does not use (2.4) nor
(2.5). r

Consider now W� M(a , m , p , V) and define, for hD0,

W h (x , l) »4
1

11h
W(x , l).(3.4)

Then W h satisfies (2.5) and (3.1) with u41/(11h).
According to Lemma 3.1, the associated ah (x , e) is Carathéodory, Lips-

chitz and strongly monotone since it satisfies, for the constant ch »4C1/(11h)

(cf. (3.2))

.
/
´

(ah (x , e 8 )2ah (x , e) ).(e 82e)Fch (Nah (x , e 8 )2ah (x , e)N21Ne 82eN2 ),

with
ch

h
K

1

2
when hK0.

(3.5)

Furthermore, since W h (x , 0 ) 4W(x , 0 ) 40, ah (x , 0 ) 40. Consequently,
ah (x , Q) is monotone, 2-coercive, and Lipschitz, almost uniformly in V for h
fixed. Then, the assumptions of Theorem 2.4 are trivially met by
Ah : W 1, 2

0 (V) KW 21, 2 (V) defined as Ah u»42div (ah (x , grad u) ), so that, for
any g� [L Q (V) ]N there exists a (unique) solution to

.
/
´

2div ah (x , grad uh ) 42div g in D8 (V),

uh�W 1, 2
0 (V).

(3.6)
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Set

.
/
´

eh (x) 4grad uh (x),

dh (x) 4ah (x , grad uh (x) ).

Then eh and dh are elements of [L 2 (V) ]N and, a.e. in V,

dh (x)2eh (x) 4W h (x , dh (x)1eh (x) ),(3.7)

which means (11h)(dh (x)2eh (x) ) 4W(x , dh (x)1eh (x) ). Defining Eh (x) and
Dh (x) by

.
`
/
`
´

Eh »4
(21h) eh2h dh

2
,

Dh »4
(21h) dh2h eh

2
,

(3.8)

we have

.
/
´

Dh (x)2Eh (x) 4 (11h)(dh (x)2eh (x) ),

Dh (x)1Eh (x) 4dh (x)1eh (x),

Dh (x)2Eh (x) 4W(x , Dh (x)1Eh (x) ),

a.e. in V and recalling (2.4) we obtain

Dh (x). Eh (x) F2m(x)1a(NEh (x)Np 1NDh (x)Np 8 )(3.9)

almost everywhere.
Integration of (3.9) over V yields

(3.10) a(VEh V

p
L p (V) 1VDh V

p 8
L p 8 (V))1

h

2
g11

h

2
h (Veh V

2
L 2 (V) 1Vdh V

2
L 2 (V))

GVmVL 1 (V) 1g11h1
h 2

2
hs

V

dh eh dx ,

which establishes, along the way, that Eh� [L p (V) ]N and Dh� [L p 8 (V) ]N. On
the other hand, the use of uh as test fuction in (3.6) and the definition of Eh

yield

s
V

dh . eh dx4s
V

geh dx4
2

21h
s

V

gEh dx1
h

21h
s

V

gdh dx ,(3.11)
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so that, recalling (3.10), we obtain

a(VEh V

p
L p (V) 1VDh V

p 8
L p 8 (V))1

h

2
g11

h

2
h (Veh V

2
L 2 (V) 1Vdh V

2
L 2 (V)) GVmVL 1 (V) 1

1g11h1
h 2

2
hg 2

21h
VgVL p 8 (V) VEh VL p (V) 1

h

21h
VgVL 2 (V) Vdh VL 2 (V)h ,

which implies, since pD1, that (for h bounded)

VEh VL p (V) 1VDh VL p 8 (V) GCE1Q ,(3.12)

khVeh VL 2 (V) 1khVdh VL 2 (V) GCE1Q .(3.13)

At the possible expense of extracting subsequences (still indexed by h) we are
thus at liberty to assume that, as hI01,

.
/
´

Eh � e

Dh � d

weakly in [L p (V) ]N ,

weakly in [L p 8 (V) ]N .
(3.14)

R e c a l l d e f i n i t i o n ( 3 . 8 ) o f Eh a n d Dh . De f i n i n g p »4 m i n (p , 2 ) an d
q »4 min (p 8 , 2 ), (3.13), (3.14) imply that

.
/
´

eh � e

dh � d

weakly in [L p (V) ]N ,

weakly in [L q (V) ]N .
(3.15)

Since eh4grad uh with uh�W 1, 2
0 (V), Poincaré’s inequality yields the exis-

tence of u�W 1, p
0 (V) such that

uh � u weakly in W 1, p
0 (V),(3.16)

with grad u4e. Furthermore, in view of (3.6),

2div d42div g in D8 (V).(3.17)

Since e� [L p (V) ]N and u�W 1, p
0 (V) with grad u4e, u�W 1, p

0 (V) when ¯V
is smooth. At this point we assume that such is the case, but will remove the
smoothness restriction later. Also, by (3.14), d� [L p 8 (V) ]N.

It remains to prove that

d(x)2e(x) 4W(x , d(x)1e(x) ), a.e. in V.
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Recalling (3.7) and the contractive character of W h , we obtain, for every
l� [L Q (V) ]N,

(3.18) Ndh (x)2eh (x)2W h (x , l(x) )N2 GNdh (x)1eh (x)2l(x)N2 , a.e. in V,

or still

(3.19) NW h (x , l(x) )N2 22dh (x). W h (x , l(x) )12eh (x). W h (x , l(x) ) G

GNl(x)N2 22dh (x). l(x)22eh (x). l(x)14dh (x). eh (x), a.e. in V.

Since W h is a Carathéodory contraction, W h (x , l(x) ) � [L Q (V) ]N and the
integration of (3.19) over V is licit. We obtain

s
V

NW h (x , l(x) )N2 dx22 s
V

dh (x). W h (x , l(x) ) dx12 s
V

eh (x). W h (x , l(x) ) dxG

Gs
V

Nl(x)N2 dx22 s
V

dh (x). l(x) dx22 s
V

eh (x). l(x) dx14 s
V

dh (x). eh (x) dx .

Since W h (x , l(x) ) tends to W(x , l(x) ) almost everywhere in V and remains
bounded, it is immediate in view of (3.15) to pass to the limit in all terms of the
previous inequality, except in the last one. But, by virtue of (3.6) and
(3.15)

s
V

dh (x). eh (x) dx4s
V

g(x). eh (x) dxKs
V

g(x). e(x) dx .

Since d� [L p 8 (V) ]N, using in (3.17) the test function u (which, as said before,
belongs to W 1, p

0 (V) when ¯V is smooth) yields

s
V

d(x). e(x) dx4s
V

g(x). e(x) dx ,

so that

s
V

dh (x). eh (x) dxKs
V

d(x). e(x) dx .

Collecting all limits yields

s
V

]Nd(x)2e(x)2W(x , l(x) )N2 2Nd(x)1e(x)2l(x)N2( dxG0.(3.20)
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For any rD0, choose

l(x) 4
.
/
´

d(x)1e(x)

0

if Nd(x)1e(x)NGr ,

otherwise .

Then (3.20) becomes

s
]x : Nd(x)1e(x)NGr(

Nd(x)2e(x)2W(x , d(x)1e(x) )N2 dx24 s
]x : Nd(x)1e(x)NDr(

d(x). e(x) dxG0.

Since d . e�L 1 (V), we are at liberty to let r tend to 1Q in the previous in-
equality, which finally yields

s
V

Nd(x)2e(x)2W(x , d(x)1e(x) )N2 dxG0,

that is

d(x)2e(x) 4W(x , d(x)1e(x) ), a.e. in V.(3.21)

At this point, the existence of u, e and d such that

.
/
´

u�W 1, p
0 (V), d� [L p 8 (V)NN , e4grad u ,

2div d42div g in D8 (V),

d(x)2e(x) 4W(x , d(x)1e(x) ), a.e. in V,

has been established for any g� [L Q (V) ]N when ¯V is smooth.

Consider now the case of a general bounded open set V and of a general f�
W 21, p 8 (V). We approximate V by a sequence of open sets V n with ¯V n

smooth and V n %V such that, for every compact K of RN with K%V, K%V n

for every n sufficiently large. Since f42div g with g� [L p 8 (V) ]N, we approxi-
mate f by

fn »42div gn , gn � [L Q (V) ]N , gn Kg strongly in [L p 8 (V) ]N .

Let un, en and dn be a solution to

.
/
´

un �W 1, p
0 (V n ), dn � [L p 8 (V n ) ]N , en 4grad un ,

2div dn 4 fn in D8 (V n ),

dn (x)2en (x) 4W(x , dn (x)1en (x) ), a.e. in V n .

(3.22)

For every c in L p (V n ) or L p 8 (V n ), we define its extension c
A to L p (V) or
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L p 8 (V) by

c
A

4c in V n , c
A

40 in V0V n .

Then uAn �W 1, p
0 (V) with eAn 4 ( grad un )A4grad uAn . In view of (2.4), the use

of un as test function in (3.22) yields, at least for a subsequence (still indexed
by n),

.
/
´

uAn � u

eAn � e4grad u

dAn � d

weakly in W 1, p
0 (V),

weakly in [L p (V) ]N ,

weakly in[L p 8 (V) ]N ,

while, by the above mentioned property of the sequence V n ,

2div d4 f in D8 (V).

It remains to prove that

d(x)2e(x) 4W(x , d(x)1e(x) ), a.e. in V.

For every l� [L Q (V) ]N we have

Ndn (x)2en (x)2W(x , l(x) )N2 GNdn (x)1en (x)2l(x)N2 , a.e. in V,

and the rest of the proof is very similar to that which led from (3.18) to (3.21)
since

s
V n

dn (x). en (x) dx4 s
V n

gn (x). en (x) dx4

K

s
V

gn (x). eAn (x) dxK

s
V

g(x). e(x) dx4s
V

d(x). e(x) dx .

The proof of Theorem 2.3 is complete.

REMARK 3.3. – The previous proof easily extends to the case of equations
(or even systems) of higher order, as well as to different boundary conditions
for which a variational formulation holds. r

4. – Graph regularization in [L p (V) ]N 3 [L p 8 (V) ]N.

In this section, we prove an existence result similar to Theorem 2.3, when
the graph under consideration is now a monotone graph of [L p (V) ]N 3

[L p 8 (V) ]N which is not necessarily pointwise monotone.
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From now onward, j and j××× : RN KRN are defined respectively as

j(e) 4NeNp22 e , j×××(d) 4NdNp 822 d .

We consider, for aD0, mF0, and 1 EpE1Q, the set M(a , m , p , V) of
graphs A% [L p (V) ]N 3 [L p 8 (V) ]N with the following properties:

A is monotone, that is, for any (e , d), (e 8 , d 8 ) in A,

s
V

(d 82d).(e 82e) dxF0;(4.1)

A is j×××-surjective, that is

.
/
´

for any dD0 and any e� [L p (V) ]N ,

there exists a (unique ) element (e 8 , d 8 ) �A ,

such that e 81d j×××(d 8 ) 4e ;

(4.2)

if (e , d) �A, then

s
V

d . e dxF2m1as
V

(NeNp 1NdNp 8 ) dx ,(4.3)

(4.4) (0 , 0 ) �A.

REMARK 4.1. – The set M(a , m , p , V) can be equivalently defined as the set
of all maximal monotone graphs A% [L p (V)NN 3 [L p 8 (V) ]N such that (4.3),
(4.4) hold; indeed, according to [Bre1], Proposition 2.2, in a Hilbert space set-
ting, or to [Ba], Theorem 1.2, in a reflexive Banach space setting, the maximal-
ity of a monotone graph A is equivalent to the surjectivity of either A1dj or
A 21 1d j××× for any fixed dD0. Our bias towards (4.2) is dictated by a wish not to
appeal to any non-elementary result besides Theorem 2.4. The reader who is
familiar with the theory of maximal monotone operators should thus feel at
liberty to replace hypothesis (4.2) by the maximality of A. r

REMARK 4.2. – If (4.2) is satisfied, then A is maximal (this is the easy part of
the result quoted in Remark 4.1). Indeed, take B to be a monotone extension of
A and (e , d) �B. Then, according to (4.2), there exists a unique (e 8 , d 8 ) �A
such that

e 81d j×××(d 8 ) 4e1d j×××(d).

But, since A%B, (e 8 , d 8 ) �B so that s
V

(d 82d).(e 82e) dxF0. Multiplying the
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latest equality by d 82d and integrating on V yields, since dD0

s
V

(d 82d) Q ( j×××(d)2 j×××(d 8 ) ) dxG0,

which immediately implies that d4d 8, hence that e4e 8, and finally that
(e , d) �A. Thus B4A. r

REMARK 4.3. – The graphs in M(a , m , p , V) are not necessarily «pointwise
monotone», but only «functionally monotone» in the sense of (4.1), in contrast
to the graphs considered in Section 3. An example of a graph which satisfies
(4.1)–(4.4) without being pointwise monotone is, in the case p42,

A»4mge , e1rs
V

re dxh : e� [L 2 (V) ]Nn ,

with r�L 2 (V).
However, Theorem 5.1 below shows that every graph of [L p (V) ]N 3

[L p 8 (V) ]N defined pointwise through a function W of M(a , m , p , V) belongs
to M(a , m , p , V) with m4VmVL 1 (V). Conversely Corollary 5.3 below shows that
every pointwise monotone graph of M(a , 0 , p , V) is associated to a function of
M(a , 0 , p , V). r

We now prove the

THEOREM 4.4. – Consider A in M(a , m , p , V). For any f�W 21, p 8 (V), there
exists u and d such that

.
/
´

u�W 1, p
0 (V), d� [L p 8 (V) ]N ,

2div d4 f in D8 (V),

( grad u , d) �A .

PROOF. – Define, for any eD0, the mapping A e : [L p (V) ]N K [L p 8 (V) ]N,
by

A e (e) 4d ,

where

.
/
´

e 81e j×××(d) 4e ,

(e 8 , d) �A .
(4.5)

The mapping A e is well defined in view of (4.2) and it is monotone; indeed, if e
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and e are elements of [L p (V)NN, with

.
/
´

e 81e j×××(d) 4e ,

e81e j×××(d) 4 e,

(e 8 , d) �A ,

(e8 , d) �A ,

then

(4.6) s
V

(d2d).(e2e) dx4s
V

(d2d).(e 82e8 ) dx1es
V

(d2d).( j×××(d)2 j×××(d) ) dx .

Therefore, by virtue of (4.1) together with the strictly monotone character of j×××,
A e is monotone. Further, A e (0) 40 by (4.4).

Recalling (4.3), (4.5) and the definition of j×××, we have

s
V

d . e dx4s
V

d . e 8 dx1es
V

d . j×(d) dx

F2m1as
V

(Ne 8Np 1NdNp 8 ) dx1es
V

NdNp 8 dx

42m1as
V

(Ne2e j×××(d)Np 1NdNp 8 ) dx1es
V

N j×××(d)Np dx ,

which implies that

s
V

d . e dxF2m1as
V

NdNp 8 dx1bs
V

NeNp dx(4.7)

with b depending only on p and a, provided that eGe 0 (for some e 0 depending
only on p and a) such that aNz2eyNp 1eNyNp FbNzNp.

Therefore, A e is coercive (uniformly in e), i.e.,

s
V

A e (e). e dxFbVeV

p
L p (V) 2m ,

and, upon application of Hölder’s inequality, it also satisfies a growth condition
(uniformly in e), i.e.,

VA e (e)VL p 8 (V) GC(VeV

p21
L p (V) 11).

Finally, A e is continuous for every fixed e. Indeed, let en converge to e in
[L p (V) ]N ; then dn 4A e (en ) is bounded in [L p 8 (V) ]N in view of the latest in-
equality. Recalling (4.6), we have

s
V

(d2dn ).(e2en ) dx4s
V

(d2dn ).(e 82e8n ) dx1es
V

(d2dn ).(j×××(d)2 j×××(dn ) ) dx ,
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so that

es
V

(d2dn ).(j×××(d)2 j×××(dn ) ) dxK0.

Since j×××(d) 4NdNp 822 d, it is well-known that the above limit implies in turn that
dn converges (strongly) to d in [L p 8 (V) ]N.

Summing up, we have shown that for e small enough, A e is a monotone,
bounded, continuous and coercive operator from [L p (V) ]N into [L p 8 (V) ]N.
Define

.
/
´

Ae : W 1, p
0 (V) KW 21, p 8 (V),

Ae (u) 42div A e ( grad u).
(4.8)

Theorem 2.4 applied to Ae then implies, for any f�W 21, p 8 (V), the existence of
u e with

.
/
´

u e�W 1, p
0 (V),

2div A e ( grad u e ) 4 f in D8 (V).
(4.9)

We now let e tend to 0 in (4.9). In view of the uniform coercivity and growth
properties of A e and of Poincaré’s inequality,

Vu e
VW 1, p

0 (V)

VA e ( grad u e )VL p 8 (V)

GCE1Q ,

GCE1Q ,

so that, at the possible expense of extracting a subsequence, still indexed by
e,

.
/
´

u e � u weakly in W 1, p
0 (V),

d e »4A e ( grad u e ) � d weakly in [L p 8 (V) ]N ,

with

2div d4 f in D8 (V).(4.10)

Consider, for any pair (E , D) �A, the function E e (x) defined as

E e (x) 4E(x)1e j×××(D(x) ),

which converges to E strongly in [L p (V) ]N, and remark that, by the very defi-
nition of A e,

A e (E e ) 4D .
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Then,

.
/
´

0Gs
V

(A e ( grad u e )2A e (E e ) ).( grad u e2E e ) dx

4s
V

(d e2D).( grad u e2E e ) dx .
(4.11)

In view of (4.9), (4.10),

s
V

d e . grad u e dx4

K

a f , u e bW 21, p 8 (V), W0
1, p (V) K

a f , ubW 21, p 8 (V), W0
1, p (V) 4s

V

d . grad u dx ,

which allows one to pass to the limit in (4.11) and yields

0 Gs
V

(d2D).( grad u2E) dx .

But, according to Remark 4.2, A is maximal, so that (d , grad u) �A.
The proof of Theorem 4.4 is complete. r

REMARK 4.5. – As stated in Remarks 4.1 and 4.2 above, the definition of
M(a , m , p , V) implies that every A�M(a , m , p , V) is a maximal monotone
graph in [L p (V) ]N 3 [L p 8 (V) ]N. Another way to prove Theorem 4.4 above
would be to establish that the graph A%W 1, p

0 (V)3W 21, p 8 (V) defined as

(u , f ) �A ` f42div d with (grad u , d) �A ,

is maximal monotone. We were unable to prove this assertion directly, but a
proof similar to that of Theorem 4.4 would show that the equation

.
/
´

u�W 1, p
0 (V), d� [L p 8 (V) ]N , (grad u , d) �A ,

2div (d1dNgrad uNp22 grad u) 4 f in D8 (V),

has a (unique) solution u for any dD0 and any f�W 21, p 8 (V). This surjectivity
property easily implies maximality as mentioned in Remark 4.2. r

5. – A characterization of pointwise monotone maximal graphs in
[L p (V) ]N 3 [L p 8 (V) ]N.

In this section we compare the apparently disconnected assumptions of
Theorems 2.3 and 4.4 and show that there are in fact identical when the graph
A%L p (V) ]N 3 [L p 8 (V) ]N considered in Theorem 4.4 is further assumed to be
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pointwise monotone, that is such that, for any (e , d) and (e 8 , d 8 ) in A,

(d 8 (x)2d(x) ).(e 8 (x)2e(x) ) F0, a.e. in V ,

when m4m40. Specifically we prove the following

THEOREM 5.1. – Consider a graph A% [L p(V) ]N3 [L p 8(V) ]N with (0, 0) �A.
The graph A is pointwise monotone and j×××-surjective in the sense of (4.2) if
and only if there exists a Carathéodory contraction ((2.2), (2.3)) W : V3

RN KRN with W(x , 0 ) 40 such that

(5.1) A4 ](e , d) � [L p (V) ]N 3 [L p 8 (V) ]N :

d(x)2e(x) 4W(x , d(x)1e(x) ), a.e. in V(.

REMARK 5.2. – In the spirit of Remark 4.1, Theorem 5.1 may be rephrased
as follows:

A graph A% [L p (V) ]N 3 [L p 8 (V) ]N containing (0 , 0 ) is pointwise mono-
tone and maximal if and only if it is given by (5.1) for some Carathéodory con-
traction W : V3RN KRN such that W(x , 0 ) 40. r

Adding coercivity and growth assumptions, Theorem 5.1 has the following
corollary:

COROLLARY 5.3. – A graph A�M(a , 0 , p , V) is pointwise monotone if and
only if there exists W� M(a , 0 , p , V) such that

A4](e , d)�[L p (V) ]N3[L p 8 (V) ]N : d(x)2e(x)4W(x , d(x)1e(x) ), a.e. in V(.

Note that in the above Corollary both the function m and the constant m
are set to 0.

Corollary 5.3 immediately implies that Theorem 2.3 and 4.4 are identical
when m(x) 4m40. The proof of Corollary 5.3 is based on the following locality
lemma for pointwise monotone graphs.

LEMMA 5.4. – If A% [L p (V) ]N 3 [L p 8 (V) ]N is a pointwise monotone graph
such that (4.2), (4.4) are satisfied, then A is local, i.e.,

(e , d) �A ¨ (ex B , dx B ) �A , for any measurable set B%V ,

where x B is the characteristic function of B.
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PROOF OF LEMMA 5.4. – By pointwise monotonicity, together with (4.4), if
(e , d) �A, then, for any (e 8 , d 8 ) �A and for a.e. x�V, we have

.
/
´

(d 8 (x)2d(x) ).(e 8 (x)2e(x) )

d 8 (x). e 8 (x)

F0,

F0.

Thus, for any measurable B%V, we get, by integration of the two inequalities
above over B and V0B respectively,

s
V

(d 82dx B ).(e 82ex B ) dxF0.

But (4.2) is satisfied, so that A is maximal according to Remark 4.2, and the
previous inequality then implies that (ex B , dx B ) �A. r

PROOF OF COROLLARY 5.3. – The proof of Corollary 5.3 is immediate. In-
deed, according to Theorem 5.1, if A�M(a , 0 , p , V), there exists a
Carathéodory contraction W : V3RN KR with W(x , 0 ) 40 such that

A4 ](e , d) �

d

[L p (V) ]N 3 [L p 8 (V) ]N :

(x)2e(x) 4W(x , d(x)1e(x) ), a.e. in V(.

It remains to show that (2.4) is satisfies with m(x) 40. But, since A is point-
wise monotone, A is local in view of Lemma 5.4, so that (4.3) holds true with
any measurable B%V in lieu of V itself. Since m40, (4.3) becomes

d(x). e(x) Fa(Ne(x)Np 1Nd(x)Np 8 ), for a.e. x�V ,

and W� M(a , 0 , p , V). The converse is obvious, provided Theorem 5.1 holds
true. r

The proof of Theorem 5.1 reduces to that of the two following lemmata:

LEMMA 5.5. – If W is a Carathéodory contraction with W(x , 0 ) 40,
then, for every dD0 and every f� [L p 8 (V) ]N and g� [L p (V) ]N , there exists
a unique solution (e , d) � [L p (V) ]N 3 [L p 8 (V) ]N to

.
/
´

d1dj(e) 4 f ,

(e(x), d(x) ) � AW (x), a.e. in V,
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and to

.
/
´

e1d j×××(d) 4g ,

(e(x), d(x) ) � AW (x), a.e. in V,

(see (2.1) for the definition of AW (x)).

LEMMA 5.6. – If A% [L p (V) ]N 3 [L p 8 (V) ]N is a pointwise monotone graph
such that (4.2), (4.4) are satisfied, then there exists a Carathéodory contrac-
tion W with W(x , 0 ) 40 such that

A4](e , d)�[L p (V) ]N3[L p 8 (V) ]N : d(x)2e(x)4W(x , d(x)1e(x) ), a.e. in V(.

PROOF OF LEMMA 5.5. – Upon changing (e , d) into (d , e), p into p 8, and W
into 2W, the first result immediately yields the second one. Let us prove the
first result.

As in (3.4) we define W h by

W h (x , l) 4
1

11h
W(x , l),

so that W h is a strict Carathéodory contraction and that, according to (3.5), the
associated ah (x , e) is Lipschitz and strongly monotone with associated con-
stant chAh/2.

In a first step, we fix f� [L Q (V) ]N and show that we can uniquely solve, for
any dF0,

ah (x , e)1dj(e) 4 f ,

with e in [L Q (V) ]N. In a second step, we impose dD0, let h tend to 0 and, in a
third step, we consider f in [L p 8 (V) ]N in lieu of [L Q (V) ]N.

Step 1. Let (eh , dh ) be the measurable pair defined, for a.e. x in V, as

.
/
´

dh (x)2eh (x) 4W h (x , f (x) ) 4W h (x , dh (x)1eh (x) ),

dh (x)1eh (x) 4 f (x),

or equivalently as

.
/
´

dh (x)1eh (x) 4 f (x),

dh (x) 4ah (x , eh (x) ).

Note that eh and dh are elements of [L Q (V) ]N. Therefore one can define a
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mapping Th : [L Q (V) ]N K [L Q (V) ]N by

Th (e) 4e ,

with

ah (x , e(x) )1e(x) 4 f (x)1e(x), a.e. in V.

If e and e8 are in [L Q (V) ]N, then in view of (3.5)

N(Th (e)2Th (e8 ) )(x)NG
1

ch11
N(e2e8 )(x)N , a.e. in V,

so that Th is a strict contraction on [L Q (V) ]N. The Banach fixed point theorem
implies the existence of a unique e� [L Q (V) ]N such that Th (e) 4e, or in other
words of a unique e� [L Q (V) ]N with

ah (x , e(x) ) 4 f (x), a.e. in V.(5.2)

Let us now prove that, for any dF0 and any f� [L Q (V) ]N, there exists a
unique solution to

ah (x , e)1di(e) 4 f ,(5.3)

with i : RN KRN, i monotone, i(0) 40 and i Lipschitz, with Lipschitz constant
Li . To this effect, let us assume that, for some dF0 and for any f� [L Q (V) ]N,
we were able to prove the existence of a unique solution e� [L Q (V) ]N to

ah (x , e(x) )1di(e(x) ) 4 f (x).(5.4)

A fixed point argument identical to that which proves the existence of a unique
solution to (5.2) would then yield a unique solution e� [L Q (V) ]N to

ah (x , e(x) )1 (d1e) i(e(x) ) 4 f (x), a.e. in V,(5.5)

provided that 0 EeEch /Li (just look at the mapping e Ke with ah (x , e)1

di(e) 4 f2ei(e) ). Since e is independent of d and since, by virtue of (5.2) we
know how to solve (5.4) with d40, we conclude to the existence of a unique
solution to (5.3) for any dF0 and any f� [L Q (V) ]N.

If pF2, choose

jR (e) 4
.
/
´

j(e) 4NeNp22 e , NeNGR ,

R p22 e , NeNDR ,

which is Lipschitz with jR (0) 40. Note that jR is monotone, as derivative of the
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C 1 convex function c R defined as

c R (e) 4

.
`
/
`
´

1

p
NeNp , NeNGR ,

1

2
R p22 NeN2 1g 1

p
2

1

2
h R p , NeNDR .

According to (5.3), there exists a unique solution to

ah (x , e)1djR (e) 4 f ,(5.6)

for any f� [L Q (V) ]N and any dF0.
Multiplication of (5.6) by e yields

Ne(x)NG
V f VL Q (V)

ch

, a.e. in V,

so that if we choose RDV f VL Q (V) /ch , then jR (e) 4 j(e) and we have solved

ah (x , e)1dj(e) 4 f .(5.7)

The solution to (5.7) is unique since ah is strictly monotone.
If now pE2, choose

jR (e) 4
.
/
´

R p22 e , NeNER ,

j(e) 4NeNp22 e , NeNDR ,

which is once again a Lipschitz monotone function with jR (0) 40. According to
(5.3), there exists a unique solution to

ah (x , e)1djR (e) 4 f ,(5.8)

for any f� [L Q (V) ]N and any dF0.
Assume first that f is piecewise constant, i.e. is a finite sum

f (x) 4Sx k (x) fk ,

where x k is the characteristic function of the set of points x�V where f (x) 4

fk �RN. Then the solution e(x) to (5.8) is of the form

e(x) 4Sx k (x) ek (x),

with

ah (x , ek (x) )1djR (ek (x) ) 4 fk .(5.9)
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If fk 40, then clearly ek (x) 40; if fk c0, then, in view of (5.8) and (3.5),

NfkNG
1

ch

Nek (x)N1dNek (x)Np21 , a.e. in V.

The mapping t�R1K
1

ch

t1dt p21 is monotone increasing; thus if we choose R

such that NfkNF
1

ch

R1dR p21 for every k with NfkNc0, we have

Nek (x)NFR ,

so that we have solved

ah (x , e(x) )1dj(e(x) ) 4 f (x), a.e. in V,(5.10)

for any piecewise constant function f and any dF0.
Consider now an arbitrary element f� [L Q (V) ]N. Let fn be a sequence of

piecewise constant functions on V which converges a.e. to f in V, and define en

as the solution to (5.10) associated to fn .
Fix x to be a point in V such that ah (x , Q) is continuous, fn (x) K

n
f (x), and

such that, for all n,

ah (x , en (x) )1dj(en (x) ) 4 fn (x).

Then en (x) and ah (x , en (x) ) are bounded sequences in RN. Thus there exists a
subsequence ]k(n)( of ]n( with k(n)HQ (this subsequence depends on x)
such that for some ex �RN

ek(n) (x) Kex .

We now show that ex does not depend upon the subsequence ]k(n)( of ]n(.
Indeed, if ]k 8 (n)( is an other subsequence of ]n( with k 8 (n)HQ such
that

ek 8 (n) (x) Ke 8x ,

then, since

ah (x , ek 8 (n) (x) )2ah (x , ek(n) (x) )1d( j(ek 8 (n) (x) )2j(ek(n) (x) ) )4fk 8 (n) (x)2fk(n) (x),

we obtain, having multiplied the above equality by (ek 8 (n) (x)2ek(n) (x) ) and
passed to the limit in n,

(ah (x , e 8x )2ah (x , ex ) ).(e 8x 2ex )1d( j(e 8x )2 j(ex ) ).(e 8x 2ex ) 40;

since ah (x , e) is strictly monotone in e (or, when dD0, since j is strictly mono-
tone), we conclude that ex 4e 8x , hence the result.

Consequently the whole sequence en (x) converges to ex ; since x is an arbit-
rary point in V (up to a set of zero measure) we conclude that e(x) »4ex is mea-
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surable (and actually belongs to [L Q (V) ]N) and that we have solved

ah (x , e(x) )1dj(e(x) ) 4 f (x), a.e. in V,(5.11)

for any f� [L Q (V) ]N and any dF0.

Step 2. We have thus established in (5.7) and (5.11) the existence and
uniqueness of the solution (eh , dh ) � [L Q (V) ]N 3 [L Q (V) ]N to

.
/
´

dh1dj(eh ) 4 f ,

dh (x)2eh (x) 4
1

11h
W(x , dh (x)1eh (x) ), a.e. in V,

for any f� [L Q (V) ]N and any dF0. We now impose dD0. Multiplication of
the first equation by eh implies that eh is bounded in [L Q (V) ]N, independently
of h, because j(eh ). eh4NehNp. Then an argument identical to that which led to
(5.11) shows the existence (and uniqueness) of (e , d) � [L Q (V) ]N 3 [L Q (V) ]N

with

.
/
´

d1dj(e) 4 f ,

d(x)2e(x) 4W(x , d(x)1e(x) ), a.e. in V.

Step 3. Consider now f� [L p 8 (V) ]N and approximate it by fn � [L Q (V) ]N.
Once again the very same argument used to derive (5.11) implies the existence
(and uniqueness) of (e , d) � [L p (V) ]N 3 [L p 8 (V) ]N with

.
/
´

d1dj(e) 4 f ,

d(x)2e(x) 4W(x , d(x)1e(x) ), a.e. in V,
(5.12)

provided that dD0.
The proof of Lemma 5.5 is complete. r

REMARK 5.7. – We could have limited the result of Step 1 to piecewise con-
stant functions without prejudice for the subsequent steps. r

PROOF OF LEMMA 5.6. – Since by assumption (4.2) is satisfied, we consider
the mapping A e : [L p (V) ]N K [L p 8 (V) ]N defined as in the proof of Theorem 4.4
by

A e (e) 4 de ,
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with

.
/
´

ee1e j×××(de ) 4e ,

(ee , de ) �A .

As already established at the onset of the proof of Theorem 4.4, A e is a single-
valued, monotone, continuous and bounded operator from [L p (V) ]N into
[L p 8 (V) ]N.

In a first step we show that, for any f� [L Q (V) ]N, there exists a unique sol-
ution e e� [L Q (V) ]N to

A e (e e )1e e4 f .

In a second step we pass to the limit in e and conclude to the existence of a pair
(e , d) �A such that for any f� [L Q (V) ]N

d1e4 f .(5.13)

The final step is devoted to the construction of W, starting from (5.13).

Step 1. We define

lR (e) 4

.
/
´

e

NeNp22 e

R p22

if NeNER ,

if NeNFR ,

and note that it defines a strictly monotone, continuous and bounded operator
from [L p (V) ]N into [L p 8 (V) ]N, so that, A e1 lR has the same properties. Appli-
cation of Theorem 2.4 permits to conclude to the existence of a unique solution
e e� [L p (V) ]N to

A e (e e )(x)1 lR (e e (x) ) 4 f ,(5.14)

for any f� [L p 8 (V) ]N. If f� [L Q (V)N ], and if we choose RFV f VL Q (V) , (5.14) re-
duces to

A e (e e )1e e4 f ;(5.15)

indeed multiplication of (5.14) by e e immediately yields that, if Ne e (x)NDR,

Ne e (x)Np21 GR p22 Nf (x)NGR p21 ,

so that Ne e (x)NGR, which is a contradiction. Moreover we have

Ve e
VL Q (V) GV f VL Q (V) .(5.16)
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Step 2. We now pass to the limit in (5.15) as eI01. By virtue of (5.16), and
since A e (e e ) 4 f2e e , there exists a subsequence ]e 8( of ]e( such that

.
/
´

e e 8

A e 8 (e e 8 )

� e weak-x in [L Q (V)NN ,

� d weak-x in [L Q (V)NN ,
(5.17)

with

d1e4 f , a.e. in V.(5.18)

Consider an arbitrary element (e, d) �A and set

ee4 e1e j×××(d),

so that

eeK e strongly in [L p (V) ]N ,(5.19)

and

A e (ee ) 4 d.(5.20)

Then, since A e is monotone,

s
V

(A e 8 (e e 8 )2A e 8 (ee 8 )).(e e 82ee 8 ) dxF0.(5.21)

But, in view of (5.15), the weak lower semicontinuity of the L 2-norm, and
(5.18),

lim s
V

A e 8 (e e 8 ). e e 8 dx4 lim s
V

( f2e e 8 ). e e 8 dxGs
V

f . e dx2s
V

NeN2 dx4s
V

d . e dx ,

while all the other terms in (5.21) pass to the limit by virtue of (5.19) and (5.20).
We obtain

s
V

(d2d).(e2e) dxF0.(5.22)

But, according to Remark 4.2, A is maximal, so that (5.22) implies that
(e , d) �A.

Recalling (5.18), we have thus proved the existence of (e , d) �AO
( [L Q (V) ]N 3 [L Q (V) ]N ) such that

d1e4 f

for any f in [L Q (V) ]N.

Step 3. Define the mapping T :[L Q (V) ]N K [L Q (V) ]N by

T( f ) 4d2e .(5.23)
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The pointwise monotone character of A immediately implies (see the be-
ginning of the proof of Lemma 2.1) that, for any f , f 8� [L Q (V) ]N ,

NT( f )2T( f 8)N(x) GNf2 f 8 N(x), a.e. in V.(5.24)

Define, for l�QN,

W(x , l) 4T(l)(x), a.e. in V.

Except maybe on a set of zero measure,

NW(x , l)2W(x , l 8 )NGNl2l 8N , l , l 8�QN ,

so that, for a.e. x in V and every l�RN, W(x , l) is well defined as the (unique)
limit of W(x , l n ) with l n �QN and l n Kl. Further, W(x , l) is clearly
Carathéodory on V3RN.

For a fixed f in [L Q (V) ]N, consider a sequence fn of piecewise constant
functions such that

fn K f , a.e. in V.

By virtue of (5.24)

T( fn ) KT( f ), a.e. in V.(5.25)

But, if fn is constant on a measurable subset v of V, it is immediately
seen, by the definition of W, that

T( fn )(x) 4W(x , fn (x) ), a.e. in v.

Since W is a Carathéodory contraction

W(x , fn (x) ) KW(x , f (x) ), a.e. in V,

which, together with (5.25), implies that

T( f )(x) 4W(x , f (x) ), a.e. in V.

We have thus shown so far that, for any (e , d) �AO ( [L Q (V) ]N 3

[L Q (V) ]N ),

d(x)2e(x) 4W(x , d(x)1e(x) ), a.e. in V.(5.26)

Equality (5.26) remains true if (e , d) �A. Indeed, according to Lemma
5.4, A is local, so that, for any integer n, and for f4d1e ,

(en , dn ) »4 (ex ]x�V : Nf(x)NGn( , dx ]x�V : Nf(x)NGn( ) �AO ( [L Q (V) ]N 3 [L Q (V) ]N ).

Further,

(en (x), dn (x) ) K (e(x), d(x) ), a.e. in V,(5.27)

while, according to (5.26),

dn (x)2en (x) 4W(x , dn (x)1en (x) ).(5.28)
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Passing to the limit in (5.28) is obvious in view of (5.27) because of the
Carathéodory character of W.

The proof of Lemma 5.6 is complete. r

We conclude this section by showing that a well-known class of monotone
operators, namely the subdifferentials of convex Carathéodory functions on
RN with appropriate coercivity and growth assumptions, are associated to ele-
ments of M(a , m , p , V) for an adequate choice of a , m , p. This is the object
of the following

REMARK 5.8. – Consider C : V3RN KR, Carathéodory, convex in its se-
cond argument, with c(x , 0 ) 40, and such that, for some mF0 in L 1 (V) and
some a, bD0,

aNeNp GC(x , e) Gm(x)1bNeNp , e�RN .(5.29)

Then the subdifferential ¯e C(x , e) belongs to the class M(g , m , p , V) for

g4 infga ,
1

p 8
g 1

bp
hp 8 /ph .

Indeed, if C*(x , Q) denotes the Legendre transform of C(x , Q), then

C*(x , d) 4 sup
e 8

]d . e 82C(x , e 8 )( F sup
e 8

]d . e 82m(x)2bNe 8Np ( 4

42m(x)1CNdNp 8 ,

for C4
1

p 8
g 1

bp
hp 8 /p

. Since, for a.e. x�V,

d�¯e C(x , e) ` d . e4C(x , e)1C*(x , d),

we obtain that for d�¯e c(x , e),

d . eF2m(x)1aNeNp 1CNdNp 8 .(5.30)

Further, consider

J : e� [L p (V) ]N Ks
V

C(x , e(x) ) dx .

The functional J is convex and continuous. For any f� [L p 8 (V) ]N and any
dD0, the functional

I : e� [L p (V) ]N KJ(e)1
d

p
s

V

NeNp dx2s
V

f . e dx ,
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admits a unique minimum e� [L p (V) ]N that satisfies 0 �¯I(e); equivalently,
there exists d�¯J such that, for a.e. x�V

d(x)1dNe(x)Np22 e(x) 4 f (x).(5.31)

But d�¯J if and only if d(x) �¯e C(x , e(x) ), a.e. in V, so that, by virtue of
(5.31), there exists d� [L p 8 (V) ]N such that, for a.e. x�V,

.
/
´

d(x)1dNe(x)Np22 e(x) 4 f (x),

d(x) �¯e C(x , e(x) ).

Finally note that C(x , 0 ) 40 and (5.29) imply that 0 �¯e C(x , 0 ).
In conclusion, the graph

AC »4 ](e , d) � [L p (V) ]N 3 [L p 8 (V) ]N : d(x) �¯e C(x , e(x) ), a.e. in V(

meets the hypotheses of Theorem 5.1, and there exists a Carathéodory con-
traction W C (x , e) such that, for a.e. any (e , d) �AC ,

e(x)2d(x) 4W C (x , d(x)1e(x) ), a.e. x�V ,

which, together with (5.30), proves the result.
A classical computation moreover yields the following expression for W C in

terms of ¯e C(x , e):

W C (x , l) 4l22(i(Q)1¯e C(x , Q) )21 (l). r

6. – Miscellaneous extensions.

The possible non-uniqueness of the solution u to (2.6) in Theorem 2.3 can
be cured by the addition of a zeroth order term in (2.6). Specifically, consider
for l�R the function h(l) 4NlNp22 l; then the following theorem holds
true:

THEOREM 6.1. – Consider W� M(a , m , p , V). For any f�W 21, p 8 (V), there
exists a unique u�W 1, p

0 (V) and a (possibly non-unique) d� [L p 8 (V) ]N such
that

.
/
´

2div d1h(u) 4 f in D8 (V),

d(x)2grad u(x) 4W(x , d(x)1grad u(x) ), a.e. in V.
(6.1)
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PROOF. – We recall that the proof of Theorem 4.4 also provides a proof of
Theorem 2.3 since any function of M(a , m , p , V) is associated to a graph of
M(a , m , p , V) (see Theorem 5.1), and we use this proof. The operator

.
/
´

H : W 1, p
0 (V) KW 21, p 8 (V),

H(u) »4h(u),

is clearly monotone, bounded, continuous, and compact, so that Theorem 2.4
applies to Ae1H with Ae defined in (4.8) and yields the existence and unique-
ness of u e�W 1, p

0 (V) with

2div A e ( grad u e )1h(u e ) 4 f in D8 (V).(6.2)

Passing to the limit of (6.2) as e tends to 0 is performed exactly as at the end of
the proof of Theorem 4.4 once it is observed that

f2h(u e ) K f2h(u) strongly in W 21, p 8 (V).

The uniqueness of u is immediate in view of the strict monotonicity of the
function h. r

REMARK 6.2. – Note that the proof of Theorem 2.3 presented in Section 3
would be more technical to generalize to the above setting because the regu-
larization used there introduces an L 2-setting which is ill suited to accommo-
date additional terms of the form h(u) if pc2. r

REMARK 6.3. – Any continuous, bounded, strictly monotone mapping
h× :[L p (V) ]N K [L p 8 (V) ]N would do in lieu of h in Theorem 6.1; in particular,
dh, with any dD0, is a valid candidate. r

We now propose to extend the results of Theorem 2.3 and 6.1 to u depen-
dent graphs. Specifically we consider W : V3RN 3RN KRN such that

(6.3) W is Carathéodory;

(6.4)
.
/
´

NW(x , u , l)2W(x , u , l 8 )NGNl2l 8 N ,

for a.e. x�V , any u�R , and any l , l 8�RN ,

if for any u�R and any l�RN, eu (x) and du (x) are defined, for a.e.
x�V, as

.
/
´

du (x)1eu (x) 4l ,

du (x)2eu (x) 4W(x , u , l)
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then, for a.e. x�V,

du (x). eu (x) F2m(x)1a(Neu (x)Np 1Ndu (x)Np 8 );(6.5)

(6.6) W(x , u , 0 ) 40, for a.e. x�V and any u�R. r

The following generalization of Theorems 6.1 and 2.3 holds true:

THEOREM 6.4. – Assume that W : V3R3RN KRN satisfies (6.3)-(6.6). For
any f�W 21, p 8 (V), there exists u and d such that

.
/
´

u�W 1, p
0 (V), d� [L p 8 (V) ]N

2div d1h(u) 4 f in D8 (V),

d(x)2grad u(x) 4W(x , u(x), d(x)1grad u(x) ), a.e. in V.

(6.7)

Furthermore, the same result holds true if the zeroth order term h(u) is
dropped from the equation.

PROOF. – Fix f�W 21, p 8 (V) and for any v�L p (V) define W v : V3RN KRN

as

W v (x , e) »4W(x , v(x), e).

Then W v � M(a , m , p , V), so that Theorem 6.1 yields the existence of u�
W 1, p

0 (V), d� [L p 8 (V) ]N, with uniqueness for u, such that

.
/
´

2div d1h(u) 4 f in D8 (V),

d(x)2grad u(x) 4W v (x , d(x)1grad u(x) ), a.e. in V.
(6.8)

We define the mapping T : L p (V) KL p (V) as

T(v) 4u ,

where u is the unique solution to (6.8).
This mapping is continuous on L p (V). Indeed, if vn tends strongly to v in

L p (V), then a subsequence vnk
of vn is such that

vnk
(x) Kv(x), a.e. in V.

Since W is Carathéodory,

W vnk
(x , e) KW v (x , e), a.e. in V,

for every e�RN. If unk
is the solution to (6.8) (with W vnk

replacing W v ), the coer-
civity and growth condition (6.5) and Poincaré’s inequality immediately imply
the existence of a subsequence of ]nk ( (still denoted by ]nk () such that

.
/
´

unk
� u , weakly in W 1, p

0 (V) and strongly in L p (V),

dnk
� d , weakly in [L p 8 (V) ]N .

(6.9)
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Further, straightforward continuity yields

2div d1h(u) 4 f in D8 (V).(6.10)

Also we have

dnk
(x)2grad unk

(x) 4W vnk
(x , dnk

(x)1grad unk
(x) ), a.e. in V,

and therefore, for any l� [L Q (V) ]N,

Ndnk
(x)2grad unk

(x)2W vnk
(x , l(x) )N2 GNdnk

(x)1grad unk
(x)2l(x)N2 ,

a.e. in V . From here onward the argument is exactly that used in deriving
(3.21) from (3.18) and it will not be repeated here. We obtain

d(x)2grad u(x) 4W v (x , grad u(x) ), a.e. in V,

which, together with (6.9), (6.10) implies that T(vnk
) KT(v), strongly in L p (V).

But T(v) does not depend upon the actual choice of subsequence of vn, so that
the whole sequence T(vn ) converges to T(v) in L p (V).

Further, the mapping T is compact. Indeed, as already used in (6.9), if u
satisfies (6.8), then because of the coercivity assumption (6.5),

VuVW 1, p
0 (V) GCE1Q ,(6.11)

with C only depending on V f VW 21, p 8 (V), VmVL 1 (V) and a. Rellich’s theorem imme-
diately implies the result.

Finally note that T sends all of L p (V) into the closed convex compact sub-
set of L p (V) defined by (6.11). Appealing to Schauder’s fixed point theorem,
we conclude that T admits a fixed point u which thus satisfies (6.7).

Let us now consider the case without zeroth order term. Let (un , dn ) be a
solution to

.
`
/
`
´

un �W 1, p
0 (V), dn � [L N (V) ]N

2div dn 1
1

n
h(un ) 4 f in D8 (V),

dn (x)2grad un (x) 4W(x , un (x), grad un (x) ), a.e. in V.

Such a solution exists according to (6.7) with h replaced by 1

n
h (see Remark

6.3). The same elementary estimates that were used before imply that, for a
subsequence ]nk ( of ]n(,

.
/
´

unk
� u , weakly in W 1, p

0 (V), strongly in L p (V), and a.e. in V,

dnk
� d , weakly in [L p 8 (V) ]N ,

with

2div d4 f in D8 (V).
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The result is obtained as for proving the continuity of T upon noting that, for
every e in RN,

W(x , unk
(x), e) KW(x , u(x), e), a.e. in V.

This completes the proof of Theorem 6.4. r

REMARK 6.5. – As a final note, we observe that all our results extend to
the case of equations and systems of higher order, and to different sets of vari-
ational boundary conditions. r
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