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Local Existence and Estimations for a Semilinear
Wave Equation in Two Dimension Space.

AMEL ATALLAH BARAKET

Sunto. – In questo articolo dimostriamo un teorema di esistenza locale per un proble-
ma di Cauchy associato ad un’equazione delle onde semilineare in dimensione
due. In questo problema la prima condizione iniziale è identicamente nulla, la se-
conda appartiene a L 2 (R2 ), è a simmetria radiale e a supporto compatto. Per di-
mostrare questo teorema stabiliamo prima una disuguaglianza di tipo Mo-
ser–Trudinger per il problema lineare associato e concludiamo grazie ad un’appli-
cazione di un metodo di punto fisso.

Summary. – In this paper we prove a local existence theorem for a Cauchy problem as-
sociated to a semi linear wave equation with an exponential nonlinearity in two
dimension space. In this problem, the first Cauchy data is equal to zero, the second
is in L 2 (R2 ), radially symmetric and compactly supported. To prove this theorem,
we first show a Moser-Trudinger type inequality for the linear problem and then
we use a fixed point method to achieve the proof of the result.

1. – Introduction.

In this work we study the local existence in time for a Cauchy problem as-
sociated to a semilinear wave equation:

.
/
´

pu1ue a 0 u 2

uNt40

¯t uNt40

40

40

4 f ,

(1)

where pu(t , x) 4¯ 2
t u(t , x)2D x u(t , x), x�R2 and t�R. Here f is in L 2 (R2 ),

radially symmetric, compactly supported and a 0 is a positive real. The aim of
this paper is to prove a local existence theorem for the problem (1).

THEOREM 1.1. – For every a 0 in [0 , 4p[, for every f in L 2 (R2 ) radially sym-
metric with compact support satisfying V f VL 2 G1, there exists a positive real
T0 such that the problem (1) has a solution u in C 0 ( [0 , T0 ], H 1 (R2 ) )O
C 1 ( [0 , T0 ], L 2 (R2 ) ).
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First we remark that in dimension two the problem is different from high-
er dimensions. In dimension nF3, the analogue of (1) is the following
problem:

.
/
´

pu1NuNp21 u

uNt40

¯t uNt40

40

4W

4c

on R3Rn ,

on Rn

on Rn .

(2)

It has been widely investigated and we have mainly 3 cases.

If the exponent p is subcritical, gwhich means pEpc where pc 4
n12

n22
h

after many works essentially due to Lions [L], Strauss [Str], Struwe [St]R,
Ginibre and Velo [GV1] showed the existence of a unique global solution u�
C 0 (R , H 1 (Rn ) )O C 1 (R , L 2 (Rn ) ), for initial data (W , c) in H

.
1 (Rn )3L 2 (Rn ).

For the critical case, p4pc , Ginibre, Soffer and Velo [GSV] for radial data,
then Shatah and Struwe [SS] in the general case showed the existence of a
unique global solution belonging also to L pc

loc (R , L 2pc (Rn ) ). The most important
ingredient of their proof is the Strichartz inequality (see for example [GV2]).
Indeed, we have for v the unique solution in C 0 (R , H 1 (Rn ) )O C 1 (R , L 2 (Rn ) )
of the linear Cauchy problem

.
/
´

pv

vNt40

¯t vNt40

4F

4W

4c

on R3Rn ,

on Rn

on Rn ,

(28)

where F�L 1 (R , L 2 (Rn ) ), (W , c) � H
.

1 (Rn )3L 2 (Rn ) and for TD0

VvVL q ( [0 , T], L r (Rn ) ) GCq (VFVL 1 ( [0 , T], L 2 (Rn ) ) 1VWVH 1 (Rn ) 1VcVL 2 (Rn ))(3)

with 1

q
1

n

r
4

n

2
21, qF

n11

n21
if nF4 and qD2 if n43.

The nonlinear term NuNpc21 u in (2) is then considered as the second mem-
ber F(u). However in the case n42, the estimates (3) are not available; they
will be replaced by another type of inequalities.

Finally in the case pDpc , there are only some partial results in special
cases.

We now return to the dimension two. Instead of the Sobolev injection
H 1 (Rn ) %KL pc11 (Rn ) used in dimension nF3, we will use here the injection
of H 1

0 (V) (V bounded) in the Orlicz space, this will be developed in the next
section.
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On the other hand, multiplying formally the first equation in (1) by ¯t u and
integrating on R2 , we obtain

1

2
V˜x u(t , Q)V

2
L 2 1

1

2
V¯t u(t , Q)V

2 L 2 1
1

2a 0
s

R2

e a 0 u 2
dx4constant ,

so if we want to use an iterative schema to solve the problem (1), we have to
control the last integral term in the left hand side of the above equality; this
will be achieved by the use of a Moser-Trudinger type inequality.

Let us note that this inequality is the most important ingredient of the
proof of theorem 1.1 and in order to obtain it, we need very precise estimates
on the solution of the linear Cauchy problem associated to (1). So, for this rea-
son, we take the radial assumption on f . Moreover, if we want to prove a global
existence result, we need to show an analogue of theorem 1.1, but for u satisfy-
ing (1) with uNt40 4g . However, we restrict ourselves here to the case g equal
to zero in order to obtain the Moser-Trudinger type inequality mentioned
above.

We also mention that in a recent paper, Nakamura and Ozawa [NO]
showed the existence of a unique global solution of the associated Cauchy
problem for the semilinear wave equation with non linearity of exponential
growth. In their work the initial data (W , c) belong to H

. n

2 (Rn )3H
. n

2
21

(Rn )
but they are also supposed to be sufficently small.

This paper is organized as follows. In section two we first recall an inequal-
ity proved by Trudinger [Tr] and sharpened by Moser [M], then we show an
improved inequality for the solution of the linear problem associated to (1). Fi-
nally in section three we complete the proof of Theorem 1.1.

Acknowledgment. The author would like to thank P. Gérard who brought
her attention to this problem and for his helpful suggestions.

2. – Inequalities of Moser-Trudinger type.

2.1. The Moser-Trudinger’s inequality.

Let V be a bounded open set in Rn , nF2 and W 1, q
0 (V) be the Banach space

obtained from C Q
0 (V) by completion with the norm

VuV 1, q 4V˜x uVL q 4g s
V

N˜x uNq dxh1/q

,

where ˜x u is the gradient of u . It is well known that if 1 EqEn , W0
1, q (V) is

continuously embedded in L p (V) with 1

p
4

1

q
2

1

n
, and if qDn this space is
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continuously embedded in the Hölder space C 0, n (V) with Hölder exponent

n412
n

q
. For the case q4n , it is easy to find examples of unbounded func-

tions in W 1, n
0 (V). However, Trudinger showed in [T] that W 1, n

0 (V) is continu-
ously embedded in the Orlicz space Lf with f(t) 4e aNtNn/n21

; this means that
there exists positive constants C and a such that

s
V

e au p *
dxGC

for all u in the unit ball of W 1, n
0 (V). Here p *4

n

n21
. Later on, Moser sharp-

ened this result in proving the following one:

THEOREM 2.1 ([M]). – Let u�W 1, n
0 (V), nF2 and

s
V

N˜x uNn dxG1 .

Then there exists a constant C which depends only on n such that

s
V

e au p *
dxGCNVN ,

where p *4
n

n21
, aGa n 4nv

1

n21
n21 , NVN4 s

V
dx and v n21 is the (n21) di-

mensional volume of the unit sphere S n21. The integral on the left is finite for
any positive a but if aDa n it can be made arbitrary large by an appropriate
choice of u.

On the other hand Lions [L] proved that this embedding is not compact.
Indeed if V is the unit ball, he considered (uk )k defined by uk (x) 4

fk (2n logNxN) where

fk (t) 4

.
`
/
`
´

g k

a n
h

n21

n t

k

g k

a n
h

n21

n

if tGk

if tFk .

Clearly V˜x uk VL n 41 and uk is weakly convergent to 0 in W 1, n
0 (V) but

Vexp (a n NukN
n

n21 )VL 1 F
v n21

n
.

In the case n42, the result of Moser can be stated as follows.
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There exists a positive constant C such that for every u in H 1
0 (V) satisfying

V˜uVL 2 G1, we have

s
V

e au 2
dxGCNVN ,

for every aG4p .
The aim of the next paragraph is to show an improved estimate for sol-

utions of the linear wave equation and for some a larger than 4p .

2.2. An inequality of Moser-Trudinger type for the linear problem.

We consider the linear problem for the wave equation associated to (1)

.
/
´

pv

vNt40

¯t vNt40

40

40

4 f ,

(4)

with f radially symmetric, supp f%B(0 , R) and V f VL 2 G1. The principal result
of this paragraph is the following

PROPOSITION 2.2. – The Cauchy problem (4) has a unique global solution v ,
which is radially symmetric and v� C 0 (R , H 1 (R2 ) )O C 1 (R , L 2 (R2 ) ). More-
over, there exists an absolute constant C1 such that for every 0 GaE8p , and
every positive t

s
B(0 , t1R)

e av 2
dxGC1g t 2

8p2a
1 (t1R)2h .(5)

REMARK 1. – The hypothesis f radially symmetric, vNt40 40 in problem (4)
and uNt40 40 in (1) are only technical. It seems that (5) should hold for f with
compact support and vNt40 4g .

REMARK 2. – If we don’t suppose V f VL 2 G1, we have the same result as in

Proposition 2.2 but for aE
8p

V f V L 22
and in the right hand side of (5) a is replaced

by aV f VL 2
2 .

PROOF OF PROPOSITION 2.2. – Using the Hadamard representation, the sol-
ution of problem (4) can be written as follows. For any tD0 and x in R2 , we
have

v(t , x) 4
1

2p
s

Nx2yNE t

(t 2 2Nx2yN2 )21/2 f (y) dy ,(6)
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and it is clear that v is radially symmetric. On the other hand by finite propa-
gation speed principle and since supp f%B(0 , R), the support of v(t , Q) is con-
tained in B(0 , t1R) for every positive t . For every x in B(0 , t1R), let r4

NxN; then we have the following lemma.

LEMMA 2.3. – For every positive t and every x in B(0 , t1R) such that
rF t we have

Nv(t , x)NGo t

2pr
.(7)

PROOF. – Since v is radially symmetric we can assume without loss of gen-
erality that x4 (r , 0 ); using polar coordinates y4 (r cos u , r sin u) we obtain
by (6)

v(t , x) 4
1

p k2r
s

r2 t

r1 t

r 1/2 f (r)u s
0

a

( cos u2cos a)21/2 duv dr ,(8)

where cos a4
1

2rr
(r 2 1r 2 2 t 2 ).

Let us compute the integral

I4s
0

a

( cos u2cos a)21/2 du .

If we introduce a new variable s such that

cos u4
11cos a

2
1sg 12cos a

2
h ,

we obtain

I4
k2

k31cos a
s

21

1
ds

k12s 2k11sg

where g4
12cos a

31cos a
. Since r� [r2 t , r1 t], we have cos a� [0 , 1 ], g� k0, 1

3
l ,

k11sgFo 2

3
and g 31cos a

2
h1/2

Fg 3

2
h1/2

, which lead to

IGp .(9)
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Coming back to (8), we have by the Cauchy-Schwartz inequality, V f VL 2G1 and (9)

Nv(t , x)NG
1

k2r
u s

r2 t

r1 t

rf 2 (r) drv
1/2u s

r2 t

r1 t

drv
1/2

G
1

2 kpr
V f VL 2 k2 t

Go t

2pr
.

The proof of Lemma 2.3 is complete. r

Now, in the next lemma, we will estimate the solution v for rE t .

LEMMA 2.4. – For every positive t , every x in R2 satisfying 0 ENxN4rE t ,
there exists an absolute constant M such that

Nv(t , x)NGgM1
1

4p
log

t

r
h1/2

.(10)

PROOF. – According to (6), for 0 ENxN4rE t , we obtain after using polar
coordinates

v(t , x) 4
1

2pk2r
s
0

t1r

r 1/2 f (r)u s
0

2p

g 1

cos u1l
h1/2

1

duv dr(11)

where l4l(r)4 t 22r 22r 2

2rr
and W 14max (W, 0) for every real function W .

Applying the Cauchy-Schwartz inequality to (11), we get

(12) Nv(t , x)NG
1

2p
u s

0

t1r

rf 2 (r) drv
1/2y s

0

t1r

1

2r
u s

0

2p

g 1

cos u1l
h1/2

1

duv
2

drz
1/2

G
1

(2p)3/2
u s

0

t1r

g 1

2r
g 1

cos u1l
h1/2

1

duh2

drv
1/2

Let

F(t , r) 4 s
0

t1r

1

2r
u s

0

2p

g 1

cos u1l
h1/2

1

duv
2

dr4 s
0

t1r

G(t , r , r) dr .
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In order to obtain the inequality (10), we will estimate F(t , r) in the following
Lemma.

LEMMA 2.5. – For every positive t and every 0 ErE t we have

F(t , r) GM1 (2p 2 ) log
t

r
,(13)

where M is the constant appearing in Lemma 2.4.

PROOF OF LEMMA 2.5. – First we remark that l is a strictly decreasing func-
tion of r . Let r0 422r1k3r 2 1 t 2 , r1 4 t2r , r2 4kt 2 2r 2 then 0 Er0 E

r1 Er2 E t1r and l(r0 ) 42, l(r1 ) 41, l(r2 ) 40, l(t1r) 421. Thus

F(t , r) 4s
0

r0

G(t , r , r) dr1 s
r0

t2r

G(t , r , r) dr1 s
t2r

kt 22r2

G(t , r , r) dr

1 s
kt 22r2

t1r

G(t , r , r) dr4 (a)1 (b)1 (c)1 (d).

In what follows we will set by

J4s
0

2p

g 1

cos u1l
h1/2

1

du

and we estimate the terms (a), (b), (c) and (d).

REMARK. – All the constants Ci appearing in the proof are absolute
constants.

Estimation of (a). Since r� (0 , r0 ), we have l(r) D2 and:

J42 s
0

p

( cos u1l)21/2 duG
2p

kl21

so

(a) G4p 2s
0

r0

r

t 2 2 (r1r)2
dr .



LOCAL EXISTENCE AND ESTIMATIONS ETC. 9

Computing this last integral and using the definition of r0 we obtain

4p 2s
0

r0

r

t 2 2 (r1r)2
dr44p 2 s

r

r01r

u2r

t 2 2u 2
du

42p 2klog (t 22r 2 )2log (t 22(r01r)2 )2
r

t
glog

t1r

t2r
h

1
r

t
logg t1r0 1r

t2r0 2r
hl

42p 2kg11
r

t
h log (t1r)1g12

r

t
h log (t2r)

1g r

t
21h log (t2r0 2r)2g11

r

t
h log (r0 1r1 t)l

42p 2kg r

t
21h log 22

2r

t
log (t1r1k3r 2 1 t 2)

1g r

t
21h log r1g11

r

t
h log (2r1k3r 2 1 t 2)l .

Since rE t we then obtain

(a) G (2p 2 ) kg r

t
21h log 21g r

t
21h log r1g11

r

t
h log 4 t2

2r

t
log 2 tl

G2p 2kg11
r

t
h log 21g r

t
21h log

r

t
l

then

(a) G2p 2g2 log 21 log
t

r
h .(14)

Now we will show that all the other terms of F(t , r) are bounded from
above.

Estimation of (b). Making the change of variable u4cos u in J we ob-
tain

J42 s
21

1
1

k12u 2

1

ku1l
du42 s

0

1
du

k12u 2ku1l
12 s

21

0
du

k12u 2ku1l

4 (I)1 (II).
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Since r�(r0 , t2r) and l is a decreasing function of r , we have l(r)�(1, 2); so

(I) Gp .(15)

For (II) we have:

(II) G2 s
0

1
1

kuku1l21
du

G2 s
0

1/(l21)

1

ks(s11)
ds .

Since lD1, we have 1

l21
� (1 , 1Q). Then

(II) G2 s
0

1
ds

ks
12 s

1

1/(l21)

ds

s
G412 s

1

1/(l21)

ds

s
.

Thus

(II) G412 log
1

l21
.(16)

(15) and (16) then give

JG41p12 log
1

l21
.(17)

If we come back to (b) and use the definition of r0 we have by (17)

(b) G
1

r
y(41p)2 (t2r2r0 )14 s

r0

t2r

glog
1

l21
h2

drz

GC2 1
4

r
s

r01r

t

glog
2r(u2r)

t 2 2u 2 h2

du

GC2 1
4

r
s

r01r

t

glog
2r(t2r)

t(t2u)
h2

du

GC2 1
4

r
y 2r(t2r)

t
z s

0

1

( log v)2 dv ,
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so

(b) GC3(18)

Estimation of (c). Here we have r� (t2r , kt 2 2r 2 ) so l(r) � (0 , 1 )
and

J42 s
0

a

( cos u1l)21/2 du

where cos a42l4
r 2 1r 2 2 t 2

2rr
is in (21, 0 ). Making the following change of

variables cosu4
11cos a

2
1s g 12cos a

2
h , we obtain:

J4
2k2

k31cos a
s

21

1
ds

k11gsk12s 2
,

with g4
12cos a

31cos a
. For s� [0 , 1 ], since cos a� (21, 0 ) we deduce that

g�g 1

3
, 1h, 11gsF1 and

2 k2

k31cos a
s
0

1
ds

k11gs k12s 2
G2 s

0

1
ds

k12s 2
4p .

We also have

2 k2

k31cos a
s

21

0
ds

k11gs k12s 2
G2 s

0

1
ds

k12gs k12s 2
.

Combining the last two inequalities we obtain:

JGp12 s
0

1
ds

k12gs k12s 2
.(19)

In the following we will estimate the integral in the right hand side of
(19).
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Let us introduce the variable u such that

u4
12e

e
(12s), where e412g

2 s
0

1
ds

k12gs k12s 2
G

2

k12e
s
0

12e

e

du

ku(u11)
,

with e�l0, 2

3
k and 12e

e
F

1

2
, so

2 s
0

1
ds

k12gs k12s 2
G2 k612 k3 log 2g 12e

e
h

and by (19)

JGp12 k612 k3 log 2g 12e

e
h .(20)

We now estimate the term (c). Using (20) we have

(c) G
C4

r
ygkt 2 2r 2 2 (t2r)h1 s

t2r

kt 22r2

glog
2

e
(12e)h2

drz

GC4
u11

1

r
s
t

r1kt 22r2

glog
u2 t

m
h2

duv
where

m4
2r

t
gt2r1kt 2 2r 2h .

Since rE t it is easy to find that

(c) GC5 .(21)

Estimation of (d). In this case we have r�(kt 22r2, t1r) and l(r)42cos a
is in (21, 0 ), so by making the same change of variables as in the previous
paragraph we obtain

J4
2 k2

k31cos a
s

21

1
ds

k12s 2 k11gs
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with cos a� (0 , 1 ) and g�g0, 1

3
h . We then easily have

JG2 s
21

1
ds

k12s 2

G2p

and

(d) 4
1

2r
s

kt 22r2

t1r

J 2 dr

G
2p 2

r
(t1r2kt 2 2r 2) ,

so

(d) GC6 .(22)

Finally combining (14), (18), (21) and (22) we obtain (13), and this ends the
proof of Lemma 2.5. r

Next, Lemma 2.5 and inequality (12) give (10) and complete the proof of
Lemma 2.4. r

End of the proof of Proposition 2.2:
According to Lemmas 2.3 and 2.4 and since the support of v(t , Q) is con-

tained in B(0 , t1R) for all positive t , we have for every positive a and every x
in R2 ,

e av 2 (t , x) Ge aMg t

r
ha/4p

if 0 ErE t

and

e av 2 (t , x) Ge a/2p if rF t .(23)

So by (23) and since aE8p we obtain for every positive t:

s
B(0 , t1R)

e av 2 (t , x) dxG2pys
0

t

rg t

r
ha/4p

e aM dr1 s
t

t1R

re a/2p drz

GC1g t 2

8p2a
1 (t1R)2h

and Proposition 2.2 is proved. r
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3. – Local existence for the semilinear problem.

In this section we will prove the Theorem 1.1 by using the estimates proved
in section 2.

PROOF OF THE THEOREM 1. – To prove the existence of the solution we use a
fixed point method in an appropriate space. We define the following
space

B0 4

.
`
/
`
´

w� C 0 ( [0 , T0 ], H 1 ), ¯t w� C 0 ( [0 , T0 ], L 2 ) such that

supp w(t , . ) %B(0 , t1R) for every t� [0 , T0 ] ,

wNt40 4¯t wNt40 40, sup
t� [0 , T0 ]

(V¯t w(t , Q)VL 2 1V˜x w(t , Q)VL 2 ) Gd 0

and sup
t� [0 , T0 ]

s
B(0 , t1R)

(e bw 2
21) dxGd 1

ˆ
`
¨
`
˜

,

where T0 , d 0 , b and d 1 are positive constants which will be chosen later on.
We then define

W : B0 KB0

w O wA

where wA is the solution of

.
/
´

p wA

wANt40

42(v1w) e a 0 (v1w)2
4g

4¯t w
A

Nt40 40
(24)

and v is the solution of the linear problem (4). First of all, by using standard
methods in solving linear evolution problems, it is well known that, for each w
in B0 , the problem (24) has a unique solution wA � C 0 ( [0 , T0 ], H 1 )O
C 1 ( [0 , T0 ], L 2 ) which satisfies the energy estimate

sup
t� [0 , T0 ]

(V¯t w
A(t , Q) )VL 2 1V˜wA(t , Q)VL 2 GCVgVL 1 ( [0 , T0 ], L 2 ) ,(25)

where C is an absolute constant.
The constants appearing in the definition of B0 will be chosen such that W is

well defined and is a contraction. The proof is divided in three steps.

STEP 1. – Energy estimate:
According to the definition of g in (24), we have for every positive t and every w
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in B0 :

Vg(t , Q)V

2
L 2 4 s

B(0 , t1R)

(v1w)2 e 2a 0 (v1w)2
dx .

Let g be fixed in (2a 0 , 8p) and e so small such that 8p

g(11e 2 )
D1. Then we take

p and b satisfying

1 EpE
8p

g(11e 2 )
and bD

p

p21
gg11

1

e 2 h .(26)

Using Hölder’s inequality, we obtain

Vg(t , Q)VL 2
2 G

1

e(g22a 0 ) s
B(0 , t1R)

e g(v1w)2
dx

GK s
B(0 , t1R)

e
g[ (11e2 )v 21 (11

1

e2
)w 2 ]

dx

GKy s
B(0 , t1R)

e g(11e2 )v 2
(e

g(11
1

e2
)w 2

21) dx1 s
B(0 , t1R)

e g(11e2 )v 2
dxz

GKyu s
B(0 , t1R)

e gp(11e2 )v 2
dxv1/pu s

B(0 , t1R)

(e
g(11

1

e2
)w 2

21)q dxv1/q

1 s
B(0 , t1R)

e g(11e2 )v 2
dxz ,

where K4
1

e(g22a 0 )
and 1

p
1

1

q
41. Using the fact that

(e
g(11

1

e2
)w 2

21)q Ge
gq(11

1

e2
)w 2

21,

we obtain:

Vg(t , Q)VL 2
2 GK yg s

B(0 , t1R)

e gp(11e2 )v 2
dxh1/pg s

B(0 , t1R)

(e
gq(11

1

e2
)w 2

21) dxh1/q

1 s
B(0 , t1R)

e g(11e2 ) v 2
dxl .

We take T0 � (0 , 1 ) and set d 1 42pe 4pM 1 (e21)p(11R)2 where M is the
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constant appearing in Lemma 2.4. Since w�B0 , it follows by (5) and (26)
that

s
B(0 , t1R)

e gp(11e2 )v 2
dxGC1g t 2

8p2gp(11e 2 )
1 (t1R)2h

and

s
B(0 , t1R)

(e gq(11
1

e2
)w 2

21) dxGd 1 .

So

Vg(t, Q)V2
L 2GKC1yg t 2

8p2gp(11e 2)
1(t1R)2h1/p

d 1/q
1 1

t 2

8p2g(11e 2)
1(t1R)2z

KC1yg 1

8p2gp(11e 2)
1(11R)2h1/p

d 1/q
1 1

1

8p2g(11e 2)
1(11R)2z .

Thus

Vg(t , Q)V

2
L 2 GKC1 K 8(27)

and

VgVL 1 ( [0 , T0 ], L 2 ) GT0 (KK 8 C1 )1/2 .(28)

We finally choose d 2
0 4T0 and T0 so small that

(KK 8 C1 T0 )1/2 G
1

C
(29)

where C is the constant appearing in the energy inequality (25). Therefore
(25), (28) and (29) imply

VgVL 1 ( [0 , T0 ], L 2 ) G
kT0

C
4

d 0

C

and

sup
[0, T0 ]

(V¯t w
A(t , Q)VL 2 1V˜x wA(t , Q)VL 2 ) Gd 0 .(30)

STEP 2. – In this paragraph we will prove that the solution wA satisfies

sup
[0, T0 ]

s
B(0 , t1R)

(e bwA2
21) dxGd 1 .
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On one hand, according to (27) and (29) we have:

Vg(t , Q)VL 2 G
1

CkT0

.(31)

On the other hand, using the Hadamard representation, the solution wA of the
problem (24) is given by

wA(t , x) 4s
0

t

E(t2s , x) * g(s , x) ds ,

where

E(t , x) 4
.
/
´

1

2p
(t 2 2NxN2 )21/2 ,

0

if NxNE t

if NxNF t .

Applying Lemmas 2.4 and 2.5 to the function h(t , s , x) 4E(t2s) * g(s , x) in-
stead of v , we get for 0 EsE t

h(t , s , x) 4

.
`
/
`
´

Vg(s , Q)VL 2gM1
1

4p
log

t2s

r
h1/2

Vg(s , Q)VL 2g t2s

2pr
h1/2

if rE t2s

if rF t2s .

So for rE t and using (31) we have

NwA(t , x)NG

G

G

sup
s� [0 , t]

Vg(s , Q)VL 2y s
0

t2r

gM1
1

4p
log

t2s

r
h1/2

ds1 s
t2r

t

g t2s

2pr
h1/2

dsz
r

CkT0

y s
1

t/rgM1
1

4p
log yh1/2

dy1
1

k2p
z

r

CkT0

yM 1/2g t

r
21h1

t

rk4p
glog

t

r
h1/2

1
1

k2p
z .

We deduce that

NwA(t , x)NG
t

CkT0

y 1

k4p
glog

t

r
h1/2

1M 1/2z .(32)
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For rF t ,

NwA(t , x)NG sup
s� [0 , t]

Vg(s , Q)VL 2s
0

t

g t2s

2pr
h1/2

ds .

So

NwA(t , x)NG
k2

3CkT0 pr
t 3/2 .(33)

(31), (32) and (33) then yield for rE tGT0 :

e bwA2
Ge

2bT0

C 2
[ 1

4p
( log t

r
1M) ]

and

e bwA2
Ge

2MbT0

C 2 g t

r
hbT0 /2pC 2

.(34)

For rF t

e bwA2
Ge

2bT0

9pC 2 .(35)

We choose again T0 so small that

bT0

2pC 2
E1 ,(36)

so (34), (35), (36), T0 E1 and the definition of d 1 imply

s
B(0 , t1R)

(e bwA2
21) dxG2ps

0

t

e 4pM tdr12pe s
t

t1R

rdr

2p(t1R)2 G2pe 4pM 1 (e21) p (11R)2 4d 1 .

STEP 3. – In this section we prove that W is a contraction. Let us define the
energy norm by

VuV E 4 sup
t� [0 , T0 ]

(V¯t u(t , Q)VL 2 1V˜x u(t , Q)VL 2 ).

For every w1 and w2 in B0 we have by the energy inequality

(37) VW(w1 )2W(w2 )V E GCV(v1w1 ) e a 0 (v1w1 )2
2 (v1w2 ) e a 0 (v1w2 )2

VL 1 (L 2 ) .
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If we note for i41, 2

gi 4 (v1wi ) e a 0 (u1wi )2
,

we then have

Vg1 2g2 V

2
L 2 4 s

B(0 , t1R)

(w1 2w2 )2 (112aw2 )2 e 2a 0 w2
dx ,

where w 4v1uw1 1 (12u) w2 , u� [0 , 1 ].
So for g fixed in (2a , 8p) , p 8 and q 8 in (1 , 1Q) such that 1

p 8
1

1

q 8
41, we

obtain by Hölder inequality

Vg1 2g2 V

2
L 2 GK1 Vw1 2w2 V

2
L 2p 8g s

B(0 , t1R)

e gq 8w2
dxh1/q 8

,(38)

where K1 is an absolute constant.
On the other hand using again the Hölder inequality, we have for every po-

sitive e

s
B(0 , t1R)

e gq 8w2
dxG s

B(0 , t1R)

e gq 8 (11e2 )v 2 kge 2gq 8 (11
1

e2
)w 2

1 21hge 2gq 8 (11
1

e2
)w 2

2 21hl

1 !
i41

2

s
B(0 , t1R)

e
gq 8 (11e2 )v 212gq 8 (11

1

e2
)w 2

i dx

GVe
gq 8 (11e2 )v 2

VL syg s
B(0 , t1R)

ge 2gq 8 r(11
1

e2
)w 2

1 21h dxh1/r

3g s
B(0 , t1R)

ge 2gq 8 l(11
1

e2
)w 2

2 21h dxh1/l

1 !
i41

2 g s
B(0 , t1R)

ge 2gq 8 k(11
1

e2
)w 2

i 21h dxh1/kl
12 s

B(0 , t1R)

e gq 8 (11e2 )v 2
dx ,

where 1

s
1

1

l
1

1

r
41 and 1

k
4

1

l
1

1

r
.

We then choose q 8 s4p , defined in step 1 and we take b again sufficiently
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large in order that:

.
`
/
`
´

2gq 8g11
1

e 2 h r

2gq 8g11
1

e 2 h l

Eb

Eb .

Using (5) and the fact that w1 and w2 are in B0 we obtain:

(39) s
B(0 , t1R)

e gq 8 w 2
dxG

C1y3g T 2
0

8p2gp(11e 2)
1(T01R)2h d 1

1/k12g T 2
0

8p2gq 8(11e 2)
1(T01R)2hz4C1K2

So by (38) and (39) we have

Vg1 2g2 V

2
L 2 GK1 (C1 K2 )1/q 8

Vw1 2w2 V

2
L 2p 8 .(40)

Since supp wi %B(0 , T0 1R) %B(0 , 11R), we have for 0 E tG11R

Vw1 2w2 VL 2p 8 GCp 8 V˜x (w1 2w2 )VL 2 ,(41)

where Cp 8 depends only on R .
Combining (40) and (41) we then have for positive t

Vg1 2g2 VL 2 GCp 8 K1
1/2 (C1 K2 )1/2q 8

V˜x (w1 2w2 )VL 2

and

Vg1 2g2 VL 1 ( [0 , T0 ], L 2 ) GT0 Cp 8 K1
1/2 (C1 K2 )1/2q 8

V˜x (w1 2w2 )VL 2 .(42)

Then, (37) and (42) imply

VW(w1 )2W(w2 )V E GT0 CCp 8 kK1(C1 K2 )1/2q 8
Vw1 2w2 V E .

Chosing again T0 sufficiently small such that

T0 CCp 8 kK1(C1 K2 )1/2q 8E1,

W is a contraction and Theorem 1 is proved. r
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