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Bollettino U. M. I.
(8) 7-B (2004), 129-157

Hölder Continuity Results for a Class of Functionals
with Non Standard Growth.

MICHELA ELEUTERI

Sunto. – In questo lavoro si provano risultati di regolarità per minimi di funzionali
scalari s f (x , u , Du) a crescita non-standard di tipo p(x), cioè:

L 21 NzNp(x)G f (x , s , z) GL(11NzNp(x) ) .

Si considerano per la funzione esponente p(x) D1 ipotesi di regolarità ottimali.

Summary. – We prove regularity results for real valued minimizers of the integral
functional s f (x , u , Du) under non-standard growth conditions of p(x)-type, i.e.

L 21 NzNp(x)G f (x , s , z) GL(11NzNp(x) )

under sharp assumptions on the continuous function p(x) D1.

1. – Introduction.

The aim of this paper is the study of the regularity properties of local mini-
mizers of integral functionals of the type

F(u , V) »4s
V

f (x , u(x), Du(x) ) dx ,(1.1)

where V is a bounded open set of Rn , f : V3R3Rn KR is a Carathéodory
function and u�W 1, 1

loc (V , R). The regularity theory for minimizers was suc-
cessfully carried out under the assumption of p-growth

L 21 NzNp G f (x , s , z) GL(11NzNp ) , pD1

and under natural assumptions of convexity or quasiconvexity of f (see for
example [G], [Ev], [AF1], [AF2]). At the end of the eighties some articles con-
sidering the more flexible (p , q)-growth

L 21 NzNp G f (x , s , z) GL(11NzNq ) , qDpD1

were published, after the pioneering papers of Marcellini (see [M1]-[M3], and
[ELM] with the references therein). Despite the considerable number of pub-
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lications devoted to the issue, for this type of functionals a general theory is
still lacking. A borderline case between standard and non-standard growth is
the so called p(x)-growth

L 21 NzNp(x) G f (x , s , z) GL(11NzNp(x) )(1.2)

a prominent model functional being:

s
V

NDuNp(x) dx .(1.3)

Such types of energies owe their importance to the fact that several models
(also non variational) coming from Mathematical Physics are built using a
variable growth exponent. For instance, Rajagopal and Ru

i
žička (for more de-

tails see [RR], [R1], [R2], [D], [AM3] and [AM4]) elaborated a model for elec-
trorheological fluids, which are special non-Newtonian fluids characterized by
their ability to change very quickly their mechanical properties in presence of
an electromagnetic field E(x). Later, a model for fluids showing a similar de-
pendence on the temperature was elaborated by Zhikov ([Z2]). In a different
setting, (see [Z1]) the differential system modelling the so called «thermistor
problem» includes equations like

2div (p(x)NDuNp(x)22 Du) 40 .

On the other hand, functionals like the one in (1.3) have been studied also from
a functional spaces theorical point of view since they motivate the introduction
of certain related function spaces with interesting features (see, for instance,
[ER1], [ER2], [F]).

For such functionals a regularity theory was recently developed ([AF2],
[Z1], [FZ], [CM], [AM1], [AM2], [MM]) obtaining some optimal regularity re-
sults for local minimizers of integrals functionals of the type

F0 (u , V) »4s
V

f (x , Du(x) ) dx

with the Lagrangian f (x , z) satisfying a p(x) growth assumption as in
(1.2).

In this article we extend the results in [AM1] to more general functionals
of the type in (1.1), including model examples like:

s
V

a(x , u(x) )NDuNp(x) dx ,(1.4)

and, more generally:

s
V

a(x , u(x) ) f (x , Du) dx ,(1.5)

where f (x , z) is as in (1.2) and a(x , u) is a continuous function of its argu-
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ments. Our results can be shortly summarized as follows: if the exponent p(x)
has modulus of continuity v 1 , satisfying the following assumption:

lim
RK0

v 1 (R) logg 1

R
h4l ,(1.6)

then u�C 0, a
loc (V) where afa(l) is such that:

lim
lK0

a(l) 41 .

Clearly, if

lim
RK0

v 1 (R) logg 1

R
h40 ,(1.7)

it turns out that u�C 0, a
loc (V) for each aE1. Moreover if both p(x) and a(x , u)

are Hölder continuous, then Du is Hölder continuous too. It is worth stressing
that the previous results are optimal, in the sense that if the condition (1.6)
fails for each l , then, as shown by mean of a counterexample by Zhikov, (see
[Z1]), local minimizers fail to be, in general, locally Hölder continuous. In this
respect our result is therefore sharp. In a second step, assuming higher regu-
larity both on p(x) and a(x , u) (i.e.: Hölder continuity) we prove the Hölder
continuity of the gradient Du itself. Since the Hölder continuity of the gradi-
ent is the maximal regularity expected even when p(x) is constant (compare
[Ur], where the scalar case is treated; the vectorial case has been subsequent-
ly studied in [Uh]; see also [FM] for the case of non standard growth condi-
tions) also this result is the best possible.

Finally, let us comment on some technical aspects of the paper. We are
dealing with very general convex Lagrangians of the type f (x , u , Du). Indeed
our functionals will be of the type:

sNDuNp(x) 1g(x , u , Du) dx(1.8)

where g is a Carathéodory function, convex with respect to variable z , such
that:

0 Eg(x , u , z) G (11NzNp(x) ) .

In particular such functions are not C 2 and fail to be even differentiable at
each point. Therefore, such Lagrangians f are convex but fail to be smooth and
depend explicitly on the variable u�R; so when proving our results we have to
adopt a refined freezing, variational argument based on the Ekeland varia-
tional principle and combine it with the arguments developed in the paper
[AM1]. This is due to the fact that, in order to overcome the lack of smoothness
of the function f , an involved approximation procedure is required. In turn this
leads to consider a sequence of approximating functionals whose (approximat-
ing) minimizers do converge to a certain limit function. For such minimizers,
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uniform regularity estimates are found. Now, since the functional we consider
is not, in general, convex (due to the u dependence of the function f) unique-
ness of minimizers, and therefore the convergence of the approximating mini-
mizers to the original minimizer, is not a priori guaranteed. To overcome this
obstruction, the above mentioned Ekeland principle turns out to be the appro-
priate tool, ensuring that the constructed approximating minimizers converge
to the original one. The regularity of the original minimizer is then obtained
passing to the limit the uniform estimates found for the approximating ones.
We like to remark that such a technique has been successfully adopted for
functionals with standard p-growth in the paper [CFP] (see also [CP], [FH]),
and its application in our setting arises a certain number of technical prob-
lems, especially when dealing with the estimates.

Acknowledgement. The author wishes to thank prof. E. Acerbi and prof. G.
Mingione for proposing this investigation and for many useful discus-
sions.

2. – Notation and statements.

In the sequel V will denote an open bounded domain in Rn and B(x , R) the
open ball ]y�Rn : Nx2yNER(. If u is an integrable function defined on
B(x , R), we will set

(u)x , R 4 s–
B(x , R)

u(x) dx4
1

v n R n s
B(x , R)

u(x) dx ,

where v n is the Lebesgue measure of B(0 , 1 ). We shall also adopt the conven-
tion of writing BR and (u)R instead of B(x , R) and (u)x , R respectively, when
the center will not be relevant or it is clear from the context; moreover, unless
otherwise stated, all balls considered will have the same center. Finally the
letter c will freely denote a constant, not necessarily the same in any two oc-
currences, while only the relevant dependences will be highlighted.

The Carathéodory function f : V3R3Rn KR will be supposed to satisfy
a growth condition of the following type:

L 21 NzNp(x) G f (x , u , z) GL(11NzNp(x) )(2.1)

for all x�V , u�R , z�Rn , where p : VK (1 , 1Q) is a continuous function
and LF1. Next, we will set

F (u , A) »4s
A

f (x , u(x), Du(x) ) dx

for all u�Wloc
1 , 1 (V) and for all A %V .
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With this type of non-standard growth, we adopt the following notion
of local minimizer and local Q-minimizer:

DEFINITION 2.1. – We say that a function u�Wloc
1 , 1 (V) is a local minimizer

of the functional F if NDu(x)Np(x) �Lloc
1 (V) and

s
spt W

f (x , u(x), Du(x) ) dxG s
spt W

f (x , u(x)1W(x), Du(x)1DW(x) ) dx

for all W�W 1, 1
0 (V) with compact support in V.

DEFINITION 2.2. – We say that a function u�Wloc
1 , 1 (V) is a local Q-mini-

mizer of the functional F with QF1 if for all v�Wloc
1 , 1 (V) we have

F(u , K) GQ F(v , K) ,

where we set K4: spt (u2v) %%V .

We shall consider the following growth, ellipticity and continuity condi-
tions:

L 21 (m 2 1NzN2 )p(x) /2 G f (x , u , z) GL(m 2 1NzN2 )p(x) /2 ,(H1)

(H2) s
Q1

[ f (x0 , u0 , z0 1DW(x) )2 f (x0 , u0 , z0 ) ] dx

FL 21s
Q1

(m 2 1Nz0N
2 1NDW(x)N2 )(p(x0 )22) /2 NDW(x)N2 dx

for some 0 GmG1, for all z0 �Rn , u0 �R , x0 �V , W� C Q
0 (Q1 ), where Q1 4

(0 , 1 )n ,

(H3) Nf (x , u , z)2 f (x0 , u , z)N

GLv 1 (Nx2x0N)k(m 2 1NzN2)p(x) /2
1 (m 2 1NzN2)p(x0 ) /2l[11Nlog (m 2 1NzN2 )N]

for all z�Rn , u�R , x and x0 �V , where LF1. Here v 1 : R1KR1 is a nonde-
creasing continuous function, vanishing at zero, which represents the modulus
of continuity of p :

Np(x)2p(y)NGv 1 (Nx2yN).(H4)

We will always assume that v 1 satisfies the following condition:

lim sup
RK0

v 1 (R) logg 1

R
hE1Q ;(2.2)

thus in particular, without loss of generality, we may assume that

v 1 (R) GLNlog RN21(2.3)

for all RE1.
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We shall also consider the following continuity condition with respect to u :

Nf (x , u , z)2 f (x , u0 , z)NGLv 2 (Nu2u0N)(m 2 1NzN2 )p(x) /2(H5)

for any u , u0 �R . As usual, without loss of generality, we shall suppose that v 2

is a concave, bounded and, hence, subadditive function.

REMARK. – Following [FFM] it is possible to prove that a functional satis-
fying the previous assumptions can be written in the form (1.8), with g de-
scribed as in the introduction.

No differentiability is assumed on f with respect to x or with respect to z.
Since all our results are local in nature, without loss of generality we shall

suppose that

1 Eg 1 Gp(x) Gg 2 (x�V ,

and

s
V

NDu(x)Np(x) dxE1Q .(2.4)

Our main result is contained in the following:

THEOREM 2.3. – Let u�W 1, 1
loc (V) be a local minimizer of the functional

(1.1), where f is a continuous function satisfying (H1)-(H5). Moreover sup-
pose that

lim
RK0

v 1 (R) logg 1

R
h1v 2 (R) 40 .(2.5)

Then u� C 0, a
loc (V), for all 0 EaE1.

After the proof of the previous results we shall make some remarks lead-
ing to the following more precise statement:

THEOREM 2.4. – Let u�W 1, 1
loc (V) be a local minimizer of the functional

(1.1), where f is a continuous function satisfying (H1)-(H5). Then there exists
a nonincreasing function:

a : R1K (0 , 1 ) , lim
sK0

a(s) 41

such that if

lim
RK0

v 1 (R) logg 1

R
h1v 2 (R) Gl ,(2.6)

then u� C 0, a(l)
loc (V).
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Clearly, Theorem 2.3 is then a consequence of Theorem 2.4, taking
l40.

In the case when both the functions f and p(x) are smoother, we recover
the classical C 1, a regularity of local minimizers:

THEOREM 2.5. – Let u�W 1, 1
loc (V) be a local minimizer of the functional

(1.1), where f is a continuous function satisfying (H1)-(H5). Moreover sup-
pose that v 1 (R)1v 2 (R) GLR a for some 0 EaG1 and for all RG1. Suppose
also that f is of class C 2 with respect to the variable z in V3R3 (Rn 0]0(),
with D 2 f satisfying

L 21 (m 2 1NzN2 )(p(x)22) /2 NlN2 GD 2 f (x , u , z)l7lGL(m 2 1NzN2 )(p(x)22) /2 NlN2

for all l�Rn . Then Du is locally Hölder continuous in V .

3. – Preliminary results.

Before proving our main theorems, we need some preliminary results and
establish some basic notation. In the following we shall consider varying balls,
always having the same center when not differently specified. Moreover, by c
(or similar symbols) we denote a constant, that may vary from line to line,
while only the important connections will be highlighted. If B4R fB(xc , 4R)
we shall set:

p1, xc
(R) »4 min

x� B4R

p(x) , p2, xc
(R) »4 max

x� B4R

p(x) .(3.1)

When it will be clear from the context we shall omit to indicate the dependence
on xc just denoting

p1 fp1, xc
p2 fp2, xc

.

The following is a higher integrability result which is due, in its original ver-
sion, to Zhikov, and which we adapt to functionals of type (1.1).

THEOREM 3.1. – Let O be an open subset of V , let u�Wloc
1 , 1 (O) be a local

minimizer of the functional (1.1) with f : O 3R3Rn KR satisfying (H1) and
with the function p(x) satisfying (H4) and (2.2). Moreover suppose that

s
O

NDu(x)Np(x) dxGM1

for some constant M1 . Then, there exist two positive constants c0 , d depend-
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ing on g 1 , g 2 , L , M1 , such that, if BR %% O, then

g s–
BR/2

NDu(x)Np(x)(11d) dxh1/(11d)

Gc0 s–
BR

NDu(x)Np(x) dx1c0 .(3.2)

PROOF. – First step: let R/2 G tEsGRG1, and let h�C Q
0 (BR ) be a cut-off

function such that 0 GhG1, hf0 outside Bs , hf1 on Bt , NDhNG2(s2 t)21.
Moreover we set W(x) 4h(x)(u(x)2 (u)R ) and let g4u2W. We remark that
g4u on ¯Bs while on Bt we have g4 (u)R , consequently Dg40 on Bt . Hence,
using the fact that u is a local minimizer, we may write

G

G

G

G

G

G

s
Bt

NDu(x)Np(x) dx

Ls
Bs

f (x , u(x), Du(x) ) dx

Ls
Bs

f (x , g(x), Dg(x) ) dx

L 2s
Bs

(11NDg(x)Np(x)) dx

L 2 s
Bs 0 Bt

[ (12h(x) )NDu(x)N1Nu(x)2 (u)R NNDh(x)N]p(x) dx1c

c× s
Bs 0 Bt

NDu(x)Np(x) dx1cAs
Bs

N u(x)2 (u)R

s2 t Np(x) dx1c

c× s
Bs 0 Bt

NDu(x)Np(x) dx1cA
1

Ns2 tNp2
s

BR

Nu(x)2 (u)R Np(x) dx1c ,

where c× 4L 2 2g 221 , cA 4L 2 22g 221 , c 4L 2 NBRN . Now adding the quantity (i.e.:
«filling the hole»)

c×s
Bt

NDu(x)Np(x) dx

to the first and the last term of the previous chain of inequalities and dividing
by c× 11, we get

s
Bt

NDu(x)Np(x) dxGw 1s
Bs

NDu(x)Np(x) dx1dA
1

Ns2 tNp2
s

BR

Nu(x)2 (u)R Np(x) dx1d ,



HÖLDER CONTINUITY RESULTS FOR A CLASS ETC. 137

where

w 1 4
c×

c× 11
E1 , dA 4

L 2 22g 221

L 2 2g 221 11
, d 4

L 2 NBR N

L 2 2g 221 11
.

Now we can apply [G], Lemma 6.1 with the choices

Z(t) 4s
Bt

NDu(x)Np(x) dx ,

A4 dA s
BR

Nu(x)2 (u)R Np(x) dx , B4 d, C40, a4p2 , b40, r4
R

2
,

obtaining

s
BR/2

NDu(x)Np(x) dxGc k(R/2 )2p2 dA s
BR

Nu(x)2 (u)R Np(x) dx1dl
GcR p12p2s

BR

N u(x)2 (u)R

R N
p(x)

dx1cR n

GcR 2v 1 (8R)s
BR

N u(x)2 (u)R

R N
p(x)

dx1cR n

Gc exp (8L) s
BR

N u(x)2 (u)R

R N
p(x)

dx1cR n

Gcs
BR

N u(x)2 (u)R

R N
p(x)

dx1cR n ,

where in the fourth inequality we used (2.3) and c is a constant depending only
on g 1 , g 2 , L.

According to the previous facts, we find that

s–
BR/2

NDu(x)Np(x) dxGc s–
BR

N u(x)2 (u)R

R N
p(x)

dx1c .(3.3)

Second step: we fix w4 minmo n11

n
, g 1n and we take RER0 /16 where R0

is small enough to have v 1 (8R0 ) Gw21. It is easy to see that

1 G
p2 w

p1

Gw 2 G
n11

n
.



MICHELA ELEUTERI138

From the standard Sobolev-Poincaré inequality for a ball with q4
p1

w
F1, t4

p2 w

p1

, we get

s–
BR

N u(x)2 (u)R

R N
p(x)

dx

G11 s–
BR

N u(x)2 (u)R

R N
p2

dx

G11cg s–
BR

NDu(x)Np1 /w dxh
(p22p1)w

p1 g s–
BR

NDu(x)Np1 /w dxhw

G11cg s
BR

(11NDu(x)Np(x) ) dxh
(p22p1)w

p1

R
2(p22p1)wn

p1 g s–
BR

NDu(x)Np1 /w dxhw

Gc(M1 )g s–
BR

NDu(x)Np1 /w dxhw

1c ,

where in the third inequality we use the fact that p1

w
G

p(x)

w
Gp(x) and in the

last one we use again the fact that, by (2.3), R
2(p22p1)wn

p1 is bounded. So, by the
second step

s–
BR

N u(x)2 (u)R

R N
p(x)

dxGg s–
BR

NDu(x)Np(x) /w dxhw

1c .(3.4)

Third step: from (3.3) and (3.4) we obtain

s–
BR/2

NDu(x)Np(x) dxGcg s–
BR

NDu(x)Np(x) /w dxhw

1c .

Let us observe that the previous reverse Hölder estimate follows only for
those radii RER0 /16 , so we recall the version of Gehring’s lemma that can be
found, for instance, in [S] and we can finish the proof. The desired dependence
of the constant follows again looking at the statement in [S]. r

COROLLARY 3.2 (Caccioppoli inequality). – Suppose that the function u�
W 1, 1

loc (V) is a local minimizer of the functional (1.1), with f satisfying (2.1)
and (2.3), and let BR %%V . Then

s–
BR/2

NDu(x)Np(x) dxGc s–
BR

N u(x)2 (u)R

R N
p(x)

dx1c ,

where c depends only on g 1 , g 2 , L .
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PROOF. – It follows from the first step of the previous proof, formula
(3.3). r

Before going on, we need to prove some propositions. In the following we
shall consider balls BR %%V and functions u , such that:

u�W 1, q (BR ) qD1 .

This is a technical assumption that will be always satisfied with a suitable
choice of the function u and of the exponent q , when applying the propositions
below in the next section.

PROPOSITION 3.3. – Let g : Rn KR be a function of class C 2 satisfying

L 21 (m 2 1NzN2 )q/2 Gg(z) GL(m 2 1NzN2 )q/2 ,(H1c)

(H2c) s
Q1

[ g(z0 1DW(x) )2g(z0 ) ] dx

FL 21s
Q1

(m 2 1Nz0N
2 1NDW(x)N2 )(q22) /2 NDW(x)N2 dx

with LD1, where q is a constant such that g 1 GqGg 2 , and mD0. Let u�
W 1, q (BR ), BR %%V and let vA �u1W0

1, q (V) be a minimizer of the functional

H(w , BR ) »4s
BR

g(Dw(x) ) dx1w 0s
BR

NDw2Dv0Ndx»4 G0 1w 0s
BR

NDw2Dv0Ndx

in the Dirichlet class u1W0
1, q (BR ), where w 0 F0 and v0 �u1W0

1, q (BR ) is a
fixed function. Then for all bD0 and for all A0 D0 we have

s
Br

NDvA(x)Nq dxGcg r

R
hn

s
BR

(m 2 1NDvA(x)N2 )q/2 dx

1cw 0s
BR

NDu(x)2DvA(x)Ndx1cR n w
0

q

q21 k 1

A0
l

qb

q21

1c[A0 ]qbs
BR

(11NDu(x)Nq ) dx ,

for any 0ErER, where cfc(g 1 , g 2 , n) is independent of v0 , vA, u , q , m and R.

PROOF. – Let v�W 1, q (BR ) be a local minimizer of the functional
w O s

BR

g(Dw(x) ) dx in the Dirichlet class u1W 1, q
0 (BR ). We remark that the
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function g(z) satisfies the assumptions of [AM1], Theorem 3.2 and g 1 GqGg 2 ,
so comparing v and vA in BR we have, for any 0 ErER

s
Br

(m 2 1NDv(x)N2 )q/2 dxGcg r

R
hn

s
BR

(m 2 1NDvA(x)N2 )q/2 dx ,

where cfc(g 1 , g 2 , n). Now, arguing in a standard way (see again [AM1],
[CFP]), it is easy to see that

(3.5) s
Br

(m 2 1NDvA(x)N2 )q/2 dx

Gcg r

R
hn

s
BR

(m 2 1NDvA(x)N2 )q/2 dx

1cs
BR

(m 2 1NDvA(x)N2 1NDv(x)N2 )(q22) /2 NDvA(x)2Dv(x)N2 dx

and that (since in our case we are assuming mD0):

(3.6) G0 (vA)2 G0 (v)

Fc 21s
BR

(m 2 1NDvA(x)N2 1NDv(x)N2 )(q22) /2 NDvA(x)2Dv(x)N2 dx .

Again we remark that c depends only on L , g 1 , g 2 . On the other hand, using
the minimality of vA and triangular inequality in the second estimate, we
deduce

G

G

G

G0 (vA)2 G0 (v)

H(vA)2 H(v)1w 0s
BR

NDvA(x)2Dv(x)Ndx

1w 0s
BR

NDv(x)2Du(x)Ndx2w 0s
BR

NDv(x)2Du(x)Ndx

w 0s
BR

NDu(x)2DvA(x)Ndx1s
BR

{w 0k 1

A0
lb}]NDv(x)2Du(x)N[A0 ]b( dx

w 0s
BR

NDu(x)2DvA(x)Ndx1cR n w
0

q

q21 k 1

A0
l

qb

q21

1c[A0 ]qbs
BR

(11NDu(x)Nq ) dx

for all bD0 and all A0 D0. Connecting the last inequality to (3.5) and (3.6) we
get the thesis. r
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The previous result, as the following one, are technical preliminaries that
will be needed later. Now, our next task is to derive a «non smooth» version of
the previous proposition. Let us start with a simple smoothing result.

LEMMA 3.4. – Let h(z) : Rn KR be a continuous function satisfying (H1c)
and (H2c) where q is a constant such that g 1 GqGg 2 and mF0, and let
(Gm )m�N be a sequence of continuous functions defined by:

Gm (z) »4 s
B(0 , 1)

W(y) hgz1
y

m
h dy ,

where W : B(0 , 1 ) K [0 , 1 ] is a positive and symmetric mollifier. Then for
any m�N the function Gm satisfies (H1c) and (H2c) with L replaced by 8g 2 L

and m 2 replaced by m 2 1
1

m 2
.

PROOF. – It easily follows from [FF]. r

PROPOSITION 3.5. – Let h(z) : Rn KR be a continuous function satisfying
(H1c) and (H2c) where q is a constant such that g 1 GqGg 2 , and mF0; for all
u�W 1, q (V) let v0 �u1W 1, q

0 (BR ) be a minimizer of the functional

H(w , BR ) »4s
BR

h(Dw(x) ) dx1w 0s
BR

NDw2Dv0Ndx

in the Dirichlet class u1W 1, q
0 (BR ), where w 0 F0. Then for all bD0 and all

A0 D0 we have

s
Br

NDv0 (x)Nq dxGcg r

R
hn

s
BR

(m 2 1NDv0 (x)N2 )q/2 dx

1cw 0s
BR

NDu(x)2Dv0 (x)Ndx

1cR n w
0

q

q21 k 1

A0
l

qb

q21

1c[A0 ]qbs
BR

(11NDu(x)Nq ) dx ,

for any 0 ErER , where cfc(g 1 , g 2 , n) is independent of v0 , u and R.

PROOF. – The proof of this proposition can be obtained following a standard
approximation argument (see [FF], [CFP]). We confine ourselves to sketch it.
We define vm �u1W 1, q

0 (BR ) as the unique minimizer of the functional

Hm (w , BR ) »4s
BR

Gm (Dw(x) ) dx1w 0s
BR

NDw2Dv0Ndx

in the Dirichlet class u1W 1, q
0 (BR ). Using a standard coercivity argument and

the strict convexity of the functional H, it turns out that, up to subsequences,
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vm weakly converges to u in W 1, q (BR ) and the estimate stated follows passing
to the limit the corresponding ones of Proposition 3.3, valid, uniformly, for
each vm . r

Finally, we recall the main result from [FZ]:

THEOREM 3.6. – Let u�W 1, 1
loc (V) be a local minimizer of the functional

(1.1), where f is a continuous function satisfying (H1) and with the function
p(x) satisfying (H4) and (2.2). Then there exists an exponent gf

g(n , p(x), L) � (0 , 1 ) such that any local minimizer of the functional (1.1) is
in C 0, g

loc (V).

4. – Proof of Theorems 2.3 and 2.4.

We give the proof of Theorem 2.3, the proof of Theorem 2.4 being just a
straightforward consequence of the arguments developed for the first
one.

Setting of the quantities.

From now on, since we are going to prove local regularity results, we shall
assume that our minimizer u is globally Hölder continuous, that is:

Nu(x)2u(y)NG [u]g Nx2yNg(4.1)

for all x , y�V .
We start the proof of the main theorems by fixing some important quanti-

ties. We start applying Theorem 3.1 in order to get a higher integrability expo-
nent for the gradient Du, dD0. Obviously we can replace at will the exponent

d with smaller constants; so we choose d such that dE minmg 1 21, g

12g
n,

where g is the Hölder continuity exponent coming from Theorem 3.6. There-
fore the exponent d will depend upon the quantities g 1 , g 2 , L , M1, where (see
(2.4))

M1 »4L 2s
V

(11NDu(x)N2 )p(x) /2 dx .(4.2)

Let 0 ER0 E1 (that will be used as a radius) such that v 1 (8R0 ) Gd/4 , where d
is the higher integrability exponent. Observe that since df

d(n , g 1 , g 2 , M1 , L) then also the radius R0 will depend on the same
quantities.

In the following RD0 will always denote a radius such that 16RER0 G1;
therefore we shall always take balls BR fB(xc , R) %%V with R satisfying
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16RER0 G1. For such a ball we shall set

p1 (R) fp1, xc
(R) »4 min

x� B4R

p(x), p2 (R) fp2, xc
(R) »4 max

x� B4R

p(x) .(4.3)

This choice implies that

p2 (11d/4 ) Gp(x)(11d/41v 1 (8R) ) Gp(x)(11d) in B4R ,(4.4)

and also that

p(x) Fg 1 Dd11 D11d/4 .(4.5)

Finally we set

pm »4 max
BR0

p(x) .

With such a choice, (4.4) and the higher integrability result given by Theorem
3.1 allow us to say that:

s
BR0 /4

NDu(x)Npm dxG s
BR0 /4

NDu(x)Np(x)(11d) dx1cR0
n(4.6)

GcR0
ng s–

BR0

(NDu(x)Np(x) 11) dxh11d

GcR0
2ndg s

BR0

(NDu(x)Np(x) 11) dxh11d

: GM2 .

In the last inequality, we use the previous (4.2) and the fact that R0 f

R0 (n , g 1 , g 2 , M1 , L) (since it is determined only after d) to deduce that the
constant M2 depends only on L , g 1 , g 2 , VNDuNp(x)

VL 1 (V) ; we may suppose, with-
out loss of generality, that M2 FM1 .

Let B(xc , 4R) fB4R %%BR0 /4 be not necessarily concentric with BR0
; from

now on, when not differently specified, all the balls considered, except BR0
,

will have the same center xc .

Freezing.

We first remark that by Theorem 3.1 and by (4.4) we get that u�
W 1, p2 (11d/4 ) (B4R ).

Let x0 � B4R such that

p(x0 ) fp2, xc
(R) »4 max

x� B4R

p(x) .
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For any x�B4R , z�Rn we set

h(z) »4 f (x0 , (u)R , z) ,

G0 (w , BR ) »4s
BR

h(Dw(x) ) dx4s
BR

f (x0 , (u)R , Dw(x) ) dx ,(4.7)

since we are freezing the function f at the point (x0 , (u)R ), let us remark again
that the center of the ball BR is xc , which in general it is different form x0 . Let
v be the local minimizer of G0 in the Dirichlet class u1W 1, 1

0 (BR ). We observe
that the function h(z) »4 f (x0 , (u)R , z) satisfies the assumption of [AM1], Lem-
ma 3.1 with p4p2 , g 1 Gp2 Gg 2 . So, by the minimality of v , it follows that
there exist two constants c and e� (0 , d/4 ) both depending on g 1 , g 2 , L and
independent of R and v , such that

(4.8) g s–
BR

Dv(x)Np2 (11e) dxh1/(11e)

Gc s–
BR

NDv(x)Np2 dx1cg s–
B2R

NDu(x)Np2 (11d/4 ) dxh1/(11d/4 )

,

s
BR

NDv(x)Np2 dxGcs
BR

(11NDu(x)Np2 ) dx .(4.9)

Since u is a local minimizer of the functional (1.1), we obtain

G0 (u) G G0 (v)1s
BR

f (x , v(x), Dv(x) ) dx2s
BR

f (x , u(x), Dv(x) ) dx(4.10)

1s
BR

f (x , u(x), Dv(x) ) dx2s
BR

f (x0 , u(x), Dv(x) ) dx

1s
BR

f (x0 , u(x), Dv(x) ) dx2s
BR

f (x0 , (u)R , Dv(x) ) dx

1s
BR

f (x0 , (u)R , Du(x) ) dx2s
BR

f (x0 , u(x), Du(x) ) dx

1s
BR

f (x0 , u(x), Du(x) ) dx2s
BR

f (x , u(x), Du(x) ) dx

4 G0 (v)1I1II1III1IV1V .

Bounds for the quantities I , II , R , V.
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First of all we estimate I

IGLs
BR

v 2 (Nv(x)2u(x)N)(m 2 1NDv(x)N2 )p(x) /2 dx

GLs
BR

v 2(Nv(x)2u(x)N)(m 21NDv(x)N2)p2/2dx1Ls
BR

v 2 (Nv(x)2u(x)N) dx4: A1B.

Let r4p2 (11e) � (p2 , p2 (11d/4 ) ) the higher integrability exponent given

by [CFP], Lemma 2.7. Using Hölder inequality with exponents r

p2

and

g r

p2
h8

4
r

r2p2

and the fact that v 2 is bounded, we deduce that

AGc k s
BR

(m 2 1NDv(x)N2 )r/2 dxlp2 /rk s
BR

v
2

r

r2p2 (Nv(x)2u(x)N) dxl
r2p2

r

GcR nk s–
BR

v 2 (Nv(x)2u(x)N) dxl
r2p2

r

1cg s
BR

NDv(x)Nr dxhp2 /rk s
BR

v
2

r

r2p2 (Nv(x)2u(x)N) dxl
r2p2

r

4: C1D ,

where cfc(g 1 , g 2 , L , n). Using the concavity of v 2 we estimate:

C4cR nk s–
BR

v 2 (Nv(x)2u(x)N) dxl
r2p2

r

Gcv 2
sg s–

BR

(Nv(x)2u(x)N) dxh R n ,

where we set s4
r2p2

r
4

e

11e
. Further using (4.8), (4.9), (4.4), by Theorem

3.1 and arguing as before, we obtain

DGcR ny s–
BR

NDv(x)Np2 dx1g s–
B2R

NDu(x)Np2 (11d/4 ) dxh
1

11d/4z

3kv 2
sg s–

BR

Nv(x)2u(x)Ndxhl
Gc k s

BR

(11NDu(x)Np2 ) dx1R n s–
B2R

(11NDu(x)Np(x)(11d/41v 1 (8R) ) dx)
1

11d/4 l
3kv 2

sg s–
BR

Nv(x)2u(x)Ndxhl
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Gcy s
BR

(11NDu(x)Np2 ) dx1R nyg s–
B4R

(11NDu(x)Np(x) ) dxh
11d/41v 1(8R) )

11d/4 zz

3kv 2
sg s–

BR

Nv(x)2u(x)Ndxhl

Gcy s
BR

(11NDu(x)Np2 ) dx1R
2n

v 1(8R)

11d/4 g s
B4R

(11NDu(x)Np(x) ) dxh
v 1(8R)

11d/4

3 s
B4R

(11NDu(x)Np2 ) dxl kv 2
sg s–

BR

Nv(x)2u(x)Ndxhl
Gc k s

B4R

(11NDu(x)Np2 ) dxl kv 2
sg s–

BR

Nv(x)2u(x)Ndxhl ,

since R
2n

v 1(8R)

11d/4 is bounded (argue as in the first step of Theorem 3.1). More-
over c depends only on L , g 1 , g 2 , M1 . On the other hand, again using the
boundedness and the concavity of v 2

BGcR n v 2
sg s–

BR

Nv(x)2u(x)Ndxh ,

where again, cfc(g 1 , g 2 , n , L).
Combining the previous facts and using Poincaré inequality we have

IGc k s
B4R

(11NDu(x)Np2 ) dxl v 2
sg s–

BR

Nv(x)2u(x)Ndxh
GcV11NDuNVL p2 (B4R )

p2 v 2
sgR s–

BR

NDv(x)2Du(x)Ndxh
GcV11NDuNVL p2 (B4R )

p2 v 2
skgR p2 s–

BR

NDv(x)2Du(x)Np2 dxh1/p2l
GcV11NDuNVL p2 (B4R )

p2 v 2
skgR p2 s–

BR

(11NDu(x)Np2 dxh1/p2l
GcV11NDuNVL p2 (B4R )

p2 v 2
skgR p2 s–

BR

(11NDu(x)Np(x)(11d) ) dxh1/p2l ,

where in the last inequality we used (4.5). By Theorem 3.6, u� C 0, g (V); we set
[u]g to be the Hölder constant of u in V and recall that, by our choice, it follows

that dE
g

12g
. We set mA »4g1gd2d and we remark that 0 E mA E1. So first
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using Theorem 3.1 and then Caccioppoli inequality we get

v 2
sygR p2 s–

BR

(11NDu(x)Np(x)(11d) ) dxh1/p2l
Gcv 2

skRg s–
BR

(11NDu(x)Np(x) ) dxh(11d) /p2l
Gcv 2

syRu s–
B4R

g11N u(x)2 (u)4R

R N
p2h dxv(11d) /p2z

Gcv 2
syuR p2y s–

B4R

g11
[u]p2

g R p2 g

R p2
hdxz(11d)v1/p2z

4cv 2
s [ (R p2 1 [u]p2 (11d)

g R p2 [11g1gd212d] )1/p2 ]

Gcv 2
s (R mA ).

So, finally

IGcv 2
s (R mA ) s

B4R

(11NDu(x)Np2 ) dx ,

where cfc(g 1 , g 2 , L , n , M1 ).
Now we proceed estimating the remaining terms starting by III. We can

use (H5) and (4.9) and again the fact that u is Hölder continuous (see
(4.1)):

IIIGLs
BR

v 2 (Nu(x)2 (u)RN)(m 2 1NDv(x)N2)p(x) /2
dx

Gcv 2 (R g ) s
BR

(11NDu(x)Np2) dx .

In a similar way we get the estimate of IV :

IVGLs
BR

v 2 (Nu(x)2 (u)RN)(m 2 1NDu(x)N2)p(x) /2
dx

Gcv 2 (R g ) s
BR

(11NDu(x)Np2) dx .

We stress that the constants (denoted by c) found in the previous inequalities
depend on (g 1 , g 2 , n , L , M1 ) also via [u]g (see again Theorem 3.6).
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To get the estimates of II and V we can argue exactly as in [AM1] but using
(4.6) and our higher integrability Theorem 3.1. We obtain

IIGcv 1 (R) logg 1

R
h s

B4R

NDu(x)Np2 dx1cv 1 (R)R n ,

VGcv 1 (R) logg 1

R
h s

B2R

NDu(x)Np2 dx1cv 1 (R)R n ,

where the constant c now depends also upon M2 .
Collecting the previous bounds and summing up we get (keeping into ac-

count that v 2 (R g ) Gcv 2
s (R mA )):

(4.11) I1II1III1IV1V

Gc kv 1 (R) logg 1

R
h1v 2

s (R mA ) )l s
B4R

(11NDu(x)Np2 ) dx .

Applying Ekeland variational principle.

We set for simplicity

F(R) »4v 1 (R) logg 1

R
h1v 2

s (R mA ) .

The assumption (2.5) allows us to say that

lim
RK0

F(R) 40 .

Now, by the minimality of v , from (4.10) and (4.11), we obtain

G0 (u) G inf
u1W 1, 1

0 (BR )
G0 1H(R) ,

where we set

H(R) »4cF(R) s
B4R

(11NDu(x)Np2 ) dx .

We apply Theorem 1 from [Ek] («Ekeland variational principle»). Let V4u1

W 1, 1
0 (BR ) equipped with the distance

d(w1 , w2 ) »4H
2

1

p2 R
2n p221

p2 s
BR

NDw1 (x)2Dw2 (x)Ndx .

It is easy to see that the functional G0 is lower semicontinuous with respect to
the topology induced by the distance d. Then by [Ek], Theorem 1 it follows
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that there exists v0 �u1W 1, 1
0 (BR ) such that

(i) s
BR

NDu(x)2Dv0 (x)NdxG [H(R) ]1/p2 R
n p221

p2 ,

(ii) G0 (v0 ) G G0 (u),

(iii) v0 is a local minimizer of the functional

w O G0 (w)1 y H(R)

R n
z

p221

p2

s
BR

NDw2Dv0Ndx .

By the minimality of v0 we have that for every W�W 1, p2
0 (BR ):

G0 (v0 , BR ) G G0 (v0 1W , BR )1 y H(R)

R n
z

p221

p2

s
BR

NDv0 (x)1DW(x)2Dv0 (x)Ndx

G G0 (v0 1W , BR )1
1

2L
s

BR

NDv0 (x)1DW(x)Np2 dx

1
1

2L
s

BR

NDv0 (x)Np2 dx1cH(R) ,

Using growth assumptions (2.1) it follows in a simple way that

s
BR

NDv0 (x)Np2 dxGcs
BR

NDv0 (x)1DW(x)Np2 dx1c(H(R)1R n ) ,

with cfc(g 1 , g 2 , n , L). This means that v0 is a Q-minimizer of the functional

w Os
BR

gNDwNp2 1
H(R)

R n
11h dx ,

where QfQ(g 1 , g 2 , n , L) D1. Observe that the dependence upon M1 and M2

is incorporated in H(R). Then it is easy to see that (see [G], Theorem 6.7) there
exists an exponent of higher integrability s� (p2 , p2 (11d/4 ) ) and a constant
cD0 such that

g s–
BR/2

NDv0 (x)Ns dxhp2 /s

Gcs–
BR

NDv0 (x)Np2 dx1cg11
H(R)

R n h .



MICHELA ELEUTERI150

On the other hand from the growth assumption (2.1) and from property (ii):

L 21s
BR

NDv0 (x)Np2 dxG G0 (v0 ) G G0 (u) GLs
BR

(11NDu(x)Np2)dx ,

so

g s–
BR/2

Dv0 (x)Ns dxhp2 /s

Gc s–
B4R

(11NDu(x)Np2) dx .(4.12)

Comparison and conclusion.

We apply Proposition 3.5 with the following choices: h(z) »4 f (x0 , (u)R , z),

q4p2 , A0 4F(R), w 0 4 k H(R)

R n l
p221

p2
and

H(w , BR ) 4 G0 (w)1 y H(R)

R n
z

p221

p2

s
BR

NDw2Dv0Ndx .

Then, by property (i) we have for every bD0

s
Br

NDv0 (x)Np2 dxGcg r

R
hn

s
BR

(m 21NDv0 (x)N2)p2/2dx1c[F(R)]p2bs
BR

(11NDu(x)Np2) dx

1cy H(R)

R n
z

p221

p2

[H(R) ]1/p2 R
n p221

p2 1cR ny H(R)

R n
z y 1

F(R)
z

p2b

p221

Gcg r

R
hn

s
BR

(m 2 1NDu(x)N2 )p2 /2 dx1cH(R)1cH(R)[F(R) ]
p2 b

12p2

1c[F(R) ]p2 bs
BR

(11NDu(x)Np2 ) dx ,

for any 0 ErER . We choose bD0 such that

g 1 21

g 2
2

E
p2 21

p2
2

EbE
p2 21

p2

E
g 2 21

g 1

.

Combining the previous facts, we easily get

(4.13) s
Br

NDv0 (x)Np2 dx

Gcg r

R
hn

s
BR

(m 2 1NDu(x)N2 )p2 /2 dx1c[F(R) ]p2 b s
B4R

(11NDu(x)Np2 ) dx ,
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with cfc(g 1 , g 2 , n , L , M1 , M2 ) and for any 0 ErER . Now we use (4.13)
obtaining

s
Br

NDu(x)Np2 dxGcs
Br

NDv0 (x)Np2 dx1cs
Br

NDu(x)2Dv0 (x)Np2 dx(4.14)

Gc kg r

R
hn

1 [F(R) ]p2 bl s
B4R

NDu(x)Np2 dx

1cR n 1c s
BR/2

NDu(x)2Dv0 (x)Np2 dx

again for any 0 ErER . In order to complete the proof, we have to estimate of
the last term in the previous formula. We are going to do this by (4.12), (4.4),
(2.3) and Theorem 3.1. We choose u� (0 , 1 ) such that u/s112u41/p2 ; then,
recalling that s� (p2 , p2 (11d/4 ) ), we have that

s
BR/2

NDu(x)2Dv0 (x)Np2 dx

GcR ng s–
BR/2

NDu(x)2Dv0 (x)Ns dxhup2 /sg s–
BR/2

NDu(x)2Dv0 (x)Ndxh(12u)p2

GcR n [H(R)1/p2 R 2n/p2 ](12u)p2kg s–
BR/2

NDu(x)Ns dxhup2 /s

1g s–
BR/2

NDv0 (x)Ns dxhup2 /sl

GcR nu [H(R) ](12u)yg s–
BR/2

NDu(x)Np2 (11d/4 ) dxh
u

11d/4

1g s–
B4R

(11NDu(x)Np2 ) dxhuz
GcR nu [H(R) ](12u)

3yg s–
BR/2

(11NDu(x)Np(x)(11d/41v 1 (8R) ) ) dxh
u

11d/4

1g s–
B4R

(11NDu(x)Np2 ) dxhuz
GcR nu [H(R) ](12u)

3yg s–
BR

(11NDu(x)Np(x) ) dxh
u(11d/41v 1(8R) )

11d/4

1g s–
B4R

(11NDu(x)Np2 ) dxhuz
Gc(M1 ) R nu [H(R) ](12u)
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3kR
2n

uv 1(8R)

11d/4 g s–
BR

(11NDu(x)Np2 ) dxhu

1g s–
B4R

(11NDu(x)Np2 ) dxhul
Gc(L)g s

B4R

(11NDu(x)Np2 ) dxhu

[H(R) ](12u) Gc[F(R) ](12u) s
B4R

(11NDu(x)Np2 ) dx .

In the previous estimate the constant depends on (g 1 , g 2 , n , L , M1 , M2 )
while we remark that we used (2.3) to bound R

2n
uv 1(8R)

11d/4 Gc. We can now insert
this estimate in (4.14) and get

s
Br

NDu(x)Np2 dxGc kg r

R
hn

1 [F(R) ](12u) 1 [F(R) ]p2 bl s
B4R

NDu(x)Np2 dx1cR n ,

for any 0 ErER . We set W(R) »4 [F(R) ](12u) 1 [F(R) ]p2 b ; from our assump-
tions it is clear that

lim
RK0

W(R) 40 .

Therefore, since the function

RKp2 (R)

is non-decreasing, we may estimate:

s
Br

NDu(x)Np2 (r) dxGckg r

R
hn

1W(R)l s
B4R

NDu(x)Np2 (R) dx1cR n ,

for any 0 ErER , where c depends only on g 1 , g 2 , n , L , M1 , M2 . At this
point the conclusion come arguing as in the last part of the proof of [AM1],
Proposition 3.1; so fixing 0 EtEn , by [AM1], Lemma 3.2 if we take R1 D0 de-
pending only on g 1 , g 2 , L , M1 , M2 , v 1 , v 2 , t , such that W(R) Ge 0 whenever
0ERE16R1, we may conclude, since p2 (r) is nondecreasing with respect to r ,

s
Br

NDu(x)Np2 (r) dxGc(M2 )r n2t

whenever 0 ErER1 , a fact that we may assume without loss of generality. On
the other hand g 1 Gp2 (r); so that

s
Br

NDu(x)Ng 1 dxGc(M2 )r n2t

for any 0 ErER1 . At this point the thesis of the theorem follows from an inte-
gral characterization of Hölder continuous functions due to Campanato (see
[G], chapter 2, section 3) together with a standard covering argu-
ment. r
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PROOF OF THEOREM 2.4. – The proof of this theorem can be achieved follow-
ing Remark 3.3 from [AM1] observing that, fixed the Hölder continuity expo-
nent a, in order to apply the iteration lemma as Proposition 3.1 from [AM1],
the assumption (2.5) is only used to establish that, for a constant lf

l(n , p(x), L , a) D0 it follows there exists R1 fR1 (n , p(x), L , a) such
that:

lim
RK0

v 1 (R) logg 1

R
h1v 2 (R) Gl ,

that is exactly (2.6). r

5. – Proof of Theorem 2.5.

Let f be as in the assumptions of the theorem. For any u�
W 1, p(x0 ) (B(xc , R) ), the problem

minm s
B(xc , R)

f (x0 , (u)R , Dw) dx : w�u1W 1, p(x0 )
0 (B(xc , R) )n(5.1)

has a unique solution that we will denote with v . Using [Ma], estimates (2.4)
and (2.5), we can easily obtain

(5.2) s–
B(xc , r)

NDv(x)2(Dv)xc , rN
p(x0)dx4 s–

B(xc , r)

N s–
B(xc , r)

(Dv(x)2Dv(y)) dyN
p(x0)

dx

G k sup
x , y�B(xc , r)

NDv(x)2Dv(y)Nlp(x0 )

G kcg r

R
hb

sup
BR/2

NDvNlp(x0 )

Gcg r

R
hbp(x0 )

s–
B(xc , R)

(11NDv(x)Np(x0 ) ) dx ,

where rGR/2 , cD0, 0 EbE1 and both c and b depend only on g 1 , g 2 , L . We
consider the ball B(xc , 4R) %%BR0 /4 ; from now on, when not differently speci-
fied, all the balls considered will have the same center xc . We set p2 »4

max
B4R

p(x) fp2 (R). Let t4
ajb

2(n1b)
, where we fix

j»4 min{ 1

4
,

mAs

2
} ,

where s and mA are as in the proof of Theorem 2.3. Arguing as in the previous
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section we get that there exists R1 and a constant c , both only dependent on
L , g 1 , g 2 , a and VNDuNp(x)

VL 1 (V) , such that, whenever 0 ERER1 , we ob-
tain

s
BR

NDu(x)Np2 (R) dxGcR n2t .(5.3)

Let now R be such that 4RER1 , take x0 � B4R such that p(x0 ) 4p2 and let v�
u1W 1, p2

0 (BR ) be the solution of the previous problem (5.1). Working in a stan-
dard way and recalling the definitions of the function h(z) and of the function-
al G0 given in (4.7), we get

(5.4) G0 (u)2 G0 (v)

4s
BR

aDh(Dv(x) ), Du(x)2Dv(x)b dx [40]

1s
BR

dxs
0

1

(12t)D 2h(tDu(x)1(12t)Dv(x))(Du(x)2Dv(x))7(Du(x)2Dv(x)) dt

Fns
BR

dxs
0

1

(12t)(m 21NtDu(x)1 (12 t)Dv(x)N2 )(p222) /2 NDu(x)2Dv(x)N2 dt

Fc 21s
BR

(m 2 1NDu(x)N2 1NDv(x)N2 )(p222) /2 NDu(x)2Dv(x)N2 dx .

We remark (see [SZ]) that the second integral in the first equality may have a
singularity when

tDu(x)1 (12 t) Dv(x) 40 ,(5.5)

but this may happen at most for one value of t . On the other hand D 2 h(p) is a
positive defined form for pc0, so it is not difficult to see that this identity is
also valid in the exceptional case in which (5.5) is satisfied for a certain t0 . For
example one can erase an interval (t0 2e , t0 1e) from the integration domain,
get the result of the integral and then let eK0. So estimates (5.4) are also
valid in the case of functions f of class C 2 with respect to the variable z in the
domain V3R3 (Rn 0]0(), while all the other estimates in this section are
still valid without differentiability assumptions on f ; hence we can prove Theo-
rem 2 without approximation arguments.

Arguing as in the previous section, we get

G0 (u) G G0 (v)1c kv 2
s [R mA ]1v 1 (R) logg 1

R
hl s

B4R

(11NDu(x)Np2 ) dx .
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Now, using the assumptions and by the previous definition of j , we get

s
BR

(m 2 1NDu(x)N2 1NDv(x)N2 )(p222) /2 NDu(x)2Dv(x)N2 dx

GcR 2aj s
B4R

(11NDu(x)Np2 ) dx .

On the other hand, it is not difficult to get the following estimate:

s
BR

NDu(x)2Dv(x)Np2 (R) dxGcR aj s
B4R

(11NDu(x)Np2 ) dx ;(5.6)

in the case pF2, the previous inequality is obvious, while in the case pG2 we
can rapidly deduce it by Hölder inequality (see [AM1], pag. 138), the minimali-
ty of v and the bounds for f .

Finally, we recall that we choose 4RER1 and so we can use (5.2), (5.3),
(5.6), the minimality of v and the fact that the map R O p2 (R) is nondecreas-
ing, to get

s
Br

NDu2(Du)rN
p2 dxGs

Br

NDu2(Dv)rN
p2dx

Gcr ns–
Br

NDv2(Dv)rN
p2dx1cs

BR

NDu(x)2Dv(x)Np2dx

Gcg r

R
hbp2(R)

r ns–
BR

(11NDuNp2(R)) dx

1cR ajs
B4R

(11NDu(x)Np2) dx

Gcg r

R
hbp2(R)

r n1g r

R
hbp2(R)g r

R
hn

R n2t1cR aj[R n1R n2t]

Gcr n1bR 2b2t1cR ajR n2t.

Now we chose r4
1

2
R 11u with u4 (aj) /(n1b). If we write again the last

term only with r , we get that the exponent of the two term of the sum are
equal and so by the previous choice of t , they are equal to n1l with l4

(ajb) /2(n1b1aj); from the choice of a , b , j we easily get that lFl 0 D0 for
some l 0 dependent only on L , g 1 , g 2 . From the previous chain of inequalities,
again by the integral characterization of Hölder continuous functions due to
Campanato and the usual covering argument, we get that Du is Hölder contin-
uous. This finishes the proof. r
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HÖLDER CONTINUITY RESULTS FOR A CLASS ETC. 157

[G] E. GIUSTI, Metodi diretti nel calcolo delle variazioni, U.M.I., Bologna, 1994.
[Ma] J. J. MANFREDI, Regularity for minima of functionals with p-growth, J. Differ-

ential Equations, 76 (1988), 203-212.
[M1] P. MARCELLINI, Regularity of minimizers of integrals of the Calculus of Varia-

tions with non standard growth conditions, Arch. Rational Mech. Anal., 105
(1989), 267-284.

[M2] P. MARCELLINI, Regularity and existence of solutions of elliptic equations with
p , q-growth conditions, J. Differential Equations, 90 (1991), 1-30.

[M3] P. MARCELLINI, Everywhere regularity for a class of elliptic systems without
growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996),
1-25.

[MM] E. MASCOLO - A. P. MIGLIORINI, Everywhere regularity for vectorial func-
tionals with general growth, ESAIM: Control Optim. Calc. Var., 9 (2003),
399-418.

[RR] K. R. RAJAGOPAL - M. RU
i
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