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Cauchy-Dirichlet Problem in Morrey Spaces
for Parabolic Equations with Discontinuous Coefficients.

DIAN K. PALAGACHEV - MARIA A. RAGUSA - LUBOMIRA G. SOFTOVA

Sunto. – Siano QT un cilindro in Rn11 ed x4 (x 8 , t) �Rn3R . Si studia il problema di
Cauchy-Dirichlet per l’operatore uniformemente parabolico

.
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a ij (x) Dij u4 f (x)

u(x) 40

q.o. in QT ,

su ¯QT ,

nell’ambito degli spazi di Morrey W 2, 1
p , l (QT ), p� (1 , Q), l� (0 , n12), supponendo

che i coefficienti della parte principale appartengano alla classe delle funzioni con
oscillazione media infinitesima. Si ottengono inoltre delle stime a priori nei sud-
detti spazi, e regolarità Hölderiana della soluzione e della sua derivata spaziale.

Summary. – Let QT be a cylinder in Rn11 and x4 (x 8 , t) �Rn3R . It is studied the
Cauchy-Dirichlet problem for the uniformly parabolic operator
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a ij (x) Dij u4 f (x)

u(x) 40

a.e. in QT ,

on ¯QT ,

in the Morrey spaces W 2, 1
p , l (QT ), p� (1 , Q), l� (0 , n12), supposing the coeffi-

cients to belong to the class of functions with vanishing mean oscillation. There are
obtained a priori estimates in Morrey spaces and Hölder regularity for the sol-
ution and its spatial derivatives.

1. – Introduction.

The main goal of the present paper is to study qualitative properties in the
framework of the parabolic Morrey spaces of the Cauchy-Dirichlet prob-
lem

.
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a.e. in QT ,

on ¯QT

(1.1)
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in the case of uniformly parabolic operator P with discontinuous coefficients.
Here V%Rn is a bounded and C 1, 1-smooth domain, nF1, and QT stands for
the cylinder V3 (0 , T), TD0. As usual, ST 4¯V3 (0 , T) means the lateral
surface and ¯QT 4VNST — the parabolic boundary of QT . Throughout the
paper the standard summation convention on repeated upper and lower in-
dices is adopted. For simplicity we denote the set of the parabolic variables by
x4 (x 8 , t) 4 (x1 , R , xn , t) �Rn11 and Di u4¯u/¯xi , Dij u4¯2 u/¯xi ¯xj , ut 4

Dt u4¯u/¯t , Dx 8 u4 (D1 u , R , Dn u) means the spatial gradient of u , Dx 8
2 u4

]Dij u(ij41
n . In our further considerations we shall use the notations Rn11

1 4

Rn 3R1 and D1
n11 4Rn

13R14 ]x 8�Rn : xn D0(3 ]tD0(.
The problem (1.1) is very well studied both in Hölder and Sobolev function-

al spaces when the coefficients a ij are Hölder or uniformly continuous func-
tions in QT (see [16]). Relevant L 2-theory of (1.1) was developed in [14] suppos-
ing a ij’s to be discontinuous but owning suitable Sobolev regularity (Dx 8 a ij �
L n12 , Dt a ij �L (n12) /2).

Our principal assumption on the coefficients a ij is that they belong to the
Sarason class of functions VMO with vanishing mean oscillation (cf. [20]).
That class consists of functions f which mean oscillation is not only bounded,
i.e. f�BMO ([15]), but also converges uniformly to zero over balls shrinking to
a point. The increasing interest to VMO in the last years is due mainly to the
fact that it contains as a proper subspace the bounded uniformly continuous
functions and this ensures the possibility to extend the L p-theory of operators
with continuous coefficients ([13], [16]) to the case of discontinuous ones ([8],
[9], [3], [21]).

Differential operators with VMO principal coefficients have been consid-
ered for the first time by Chiarenza, Frasca and Longo in [8] and [9]. These
authors succeeded to modify classical methods in deriving L p-estimates for
solutions of Dirichlet boundary problem for linear elliptic equations which
allowed them to move from a ij (x) �C 0 (V) into a ij (x) �VMO . Roughly speak-
ing, their approach goes back to Calderón and Zygmund (see [4], [5]) and
makes use of an explicit representation formula for the second derivatives
D 2 u in terms of singular integrals and commutators both with variable
Calderón-Zygmund kernels.

In the articles [3] and [21], the parabolic Cauchy-Dirichlet and oblique
derivative problems have been studied in the Sobolev spaces W 2, 1

p (QT ),
p� (1 , Q), under VMO hypothesis on the coefficients a ij . These results along
with other classical and modern techniques regarding both elliptic and
parabolic equations with discontinuous data, including VMO , can be found in
the monograph [17].

Here we are going to extend the considerations in [3] supposing the right-
hand side of the equation (1.1) to belong to the parabolic Morrey spaces
L p , l (QT ). Let us note that the space L p , l is a subspace of L p

loc for every
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p� (1 , Q) and l� (0 , n12). This way, the existence results in Sobolev class-
es W 2, 1

p (QT ) from [3] still hold if f�L p , l (QT ). A natural question that arises is
whether P u�L p , l implies u�W 2, 1

p , l .
We show that the solution of (1.1) belongs to W 2, 1

p , l (QT ) assuming the coeffi-
cients of the uniformly parabolic operator P to be VMO functions and f�L p , l ,
p� (1 , Q), l� (0 , n12). In our investigations we make use of the results ob-
tained in [22], [23] and [19] in the framework of the Morrey spaces. These arti-
cles propose detailed study of singular integrals and commutators with kernel
k(x ; y) depending on parameter x and satisfying Calderón-Zygmund type
conditions with respect to y . The mixed homogeneity of the kernel in y , which
in [22] and [23] is of parabolic type and in [19] of general type, needs an appro-
priate metric as the one defined in [12].

Our goal here is to obtain L p , l estimates for the nonsingular integrals
which appear in the representation of the solution near the boundary. These
estimates along with the estimates for the singular integrals lead to an a priori
estimate of the solution of (1.1) in W 2, 1

p , l (QT ). Finally, Morrey’s regularity of
strong solution u to (1.1) implies Hölder regularity both of u and its gradient,
which are finer than the already known in the case P u�L p .

We refer the reader to [22] and [23] for similar results concerning oblique
derivative problem for the parabolic operator P, and to [11] and [18] for Mor-
rey regularity results regarding boundary value problems for elliptic opera-
tors with VMO coefficients.

2. – Definitions and preliminaries.

Suppose P is a uniformly parabolic operator, i.e., there exists a constant
LD0 such that

L21 NjN2 Ga ij (x) j i j j GLNjN2 , a.a. x�QT , (j�Rn .(2.1)

Besides that, requiring the coefficients matrix a4 ]a ij (ij41
n to be symmetric,

one gets immediately essential boundedness of a ij’s.
Denote by P0 a linear parabolic operator with constant coefficients a ij

0

which satisfy (2.1). The fundamental solution of the operator P0 with pole at
the origin is given by the formula (cf. [16])

G 0 (y) 4G 0 (y 8 , t) 4

.
/
´

1

(4pt)n/2 kdet a0

exp{2
A0

ij yi yj

4t
}

0

as tD0,

as tE0,

where a04]a ij
0 ( is the matrix of the coefficients of P0 and A04]A ij

0 (4a0
21.
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In the problem under consideration, the coefficients of the operator P de-
pend on x and it reflects also on the fundamental solution. To express this de-
pendence we define

(2.2) G(x ; y) 4

.
/
´

1

(4pt)n/2 kdet a(x)
exp{2

A ij (x) yi yj

4t
}

0

as tD0 ,

as tE0 ,

with a(x) 4 ]a ij (x)( and A(x) 4 ]A ij (x)( 4a(x)21 . Set also G i 4

¯G(x ; y 8 , t) /¯yi , G ij 4¯ 2 G(x ; y 8 , t) /¯yi ¯yj for i , j41, R , n .
For the goal of our further considerations, besides the standard parabolic

metric rA(x) 4 max ]Nx 8 N , NtN1/2 (, Nx 8N4g!
i41

n

xi
2h1/2

, dA(x , y) 4 rA(x2y), we

are going to use the one introduced by Fabes and Riviére in [12]

r(x) 4o Nx 8N2 1kNx 8N4 14 t 2

2
, d(x , y) 4r(x2y) .(2.3)

The topology induced by d is defined through open ellipsoids centered at zero
and of radius r

Er (0) 4{x�Rn11 :
Nx 8N2

r 2
1

t 2

r 4
E1} .

Obviously, the unit sphere with respect to that metric coincides with the unit
Euclidean sphere in Rn11 , i.e.

¯ E1 (0) fS n11 4mx�Rn11 : NxN4g!
i41

n

xi
2 1 t 2h1/2

41n
and x 4

x

r(x)
�S n11 . It is easy to see that for any ellipsoid Er , there exist cylin-

ders I and I (these are balls with respect to the metric rA) with measures com-
parable to r n12 and such that I % Er % I. Obviously, that relation gives an equiv-
alence of the metrics r and rA and the induced by them topologies.

DEFINITION 2.1. – A function k(y) : Rn11 0]0( KR is said to be a constant
parabolic Calderón-Zygmund (PCZ) kernel if k(y) is smooth on Rn11 0]0(;
k(ry 8 , r 2 t)4r 2(n12) k(y 8 , t) for each rD0; s

r(y)4r
k(y) ds y40 for each rD0.

A function k(x ; y): Rn11 3 (Rn11 0]0() KR is a variable PCZ kernel, if
for any fixed x�Rn11 k(x ; Q) is a parabolic PCZ kernel and

sup
r(y) 41

Ng ¯

¯y
hb

k(x ; y) N GC(b) for every multiindex b , independently of x .
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For the sake of completeness we recall here the definitions and some prop-
erties of the spaces we are going to use.

DEFINITION 2.2. – For f�L 1
loc (Rn11 ) define

g f (R) 4 sup
Ir

1

NIrN
s

Ir

Nf (y)2 fIr
Ndy

where Ir ranges over all cylinders in Rn11 of radius r and centered at some
point x , i.e., Ir (x) 4 ]y�Rn11 : Nx 82y 8NEr , Nt2tNEr 2 ( and fIr

4

NIrN
21s

Ir

f (y) dy .

Then, f�BMO (bounded mean oscillation, [15]) if V f V*4sup
R

g f(R)E1Q,

while f�VMO (vanishing mean oscillation, [20]) if lim
RK0

g f (R) 40 and the

quantity g f (R) is referred to as VMO-modulus of f .

The spaces BMO(QT ) and VMO(QT ) of functions given on QT , can be de-
fined in the same manner, taking Ir OQT instead of Ir above. As follows by re-
sult of Acquistapace (see [1, Proposition 1.3]), having a function f defined in QT

and belonging to BMO(QT ), it is possible to extend it to the whole Rn11 pre-
serving the BMO seminorm of the extension. In particular, if f�VMO(QT )
then the extended function fA belongs to VMO(Rn11 ) and g fA (R) is equivalent
to g f (R).

The problem (1.1) has been already studied in [3] in the framework of
Sobolev spaces W 2, 1

p (QT ), p� (1 , Q). Precisely, assuming (2.1) and a ij �
VMO(QT ), it is proved that for any f�L p (QT ), p� (1 , Q), there exists a unique
strong solution, i.e., a weakly differentiable function u belonging to L p (QT )
with all its derivatives D r

t D s
x 8 u , 0 G2r1sG2, such that u satisfies the equa-

tion in (1.1) almost everywhere in QT and the boundary condition holds in the
sense of trace on ¯QT .

Our goal here is to obtain finer regularity of that solution supposing P u be-
longs to the Morrey space L p , l (QT ), p� (1 , Q), l� (0 , n12).

DEFINITION 2.3. – A measurable function f�L 1
loc (Rn11 ) is said to belong to

the parabolic Morrey space L p , l (Rn11 ) with p� (1 , 1Q) and l� (0 , n12),
if the following norm is finite

V f Vp , l4usup
rD0

1

r l
s

Ir

Nf (y)Np dyv1/p

,

where Ir is any cylinder of radius r . To define the space L p , l (QT ), we insist



DIAN K. PALAGACHEV - MARIA A. RAGUSA - LUBOMIRA G. SOFTOVA672

the norm

V f Vp , l ; QT
4usup

rD0

1

r l
s

QTOIr

Nf (y)Np dyv1/p

to be finite.
We say that the function u(x) lies in W 2, 1

p , l (QT ), 1 EpEQ , 0 ElEn12,
if it is weakly differentiable and belongs to L p , l (QT ) along with all its deriva-
tives D r

t D s
x 8 u , 0 G2r1sG2. Then the quantity

VuVW 2, 1
p , l (QT ) 4VuVp , l ; QT

1VD 2
x 8 uVp , l ; QT

1VDt uVp , l ; QT

defines a norm under which W 2, 1
p , l (QT ) becomes a Banach space.

For a given measurable function f�L 1
loc (Rn11 ) we define the Hardy-Little-

wood maximal operator

Mf (x) 4 sup
I�x

1

NIN
s
I

Nf (y)Ndy for a.a. x�Rn11 ,

where the supremum is taken over all cylinders I centered at the point x . A
variant of it is the sharp maximal operator

f J (x) 4 sup
I�x

1

NIN
s
I

Nf (y)2 fI Ndy for a.a. x�Rn11 .

The following lemmas give L p , l estimates for f , Mf and f J . Analogous
bounds in the space Rn endowed with the Euclidean metric can be found in [7]
and [11]. The L p , l estimates below follow in the same manner, making use of
the parabolic metrics rA or r and corresponding to them diadic partition of the

space Rn11 42INg 0
k41

Q

2k11 I02k Ih where I is either a cylinder or an ellipsoid

centered at some point x�Rn11 and of radius r . We note that 2k I means cylin-
der (ellipsoid) with the same center and of radius 2k r .

LEMMA 2.1 (Maximal inequality). – Let p� (1 , Q), l� (0 , n12) and f�
L p , l (Rn11 ). Then there exists a constant C independent of f such that

VMf Vp , lGCV f Vp , l .

LEMMA 2.2 (Sharp inequality). – Let 1 EpEQ , 0 ElEn12, f�
L p , l (Rn11 ). There exists a constant C independent of f such that

V f Vp , lGCV f J

Vp , l .
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Analogous estimates are valid also in Dn11
1 4Rn

13R1 , where the corre-
sponding diadic partition of the space has the form Dn11

1 42I1N

g 0
k41

Q

2k11 I1 02k I1
h with I14IO ]xn D0, tD0( and I is a cylinder centered

at x�Dn11
1 . Then

VMf Vp , l ; Dn11
1

GCV f Vp , l ; Dn11
1

, V f Vp , l ; Dn11
1

GCV f J

Vp , l ; Dn11
1

.

We shall exploit below the well known technique, based on an expansion
into spherical harmonics of certain kernels (cf. [4], [5], [8], [3]). Recall that the
restriction to the unit sphere S n11 of any homogeneous and harmonic polyno-
mial p(x) : Rn11 KR of degree m is called an (n11)-dimensional spherical
harmonic of degree m . Set Ym for the space of all (n11)-dimensional spheri-
cal harmonics of degree m . It is a finite-dimensional linear space and setting
gm 4dim Ym , we have

gm 4gm1n

n
h2gm1n22

n
hGC(n) m n21(2.4)

with the second binomial coefficient to be settled 0 when m40, 1 , i.e., g0 41,
g1 4n11. Further, let ]Ysm (x)(s41

gm be an orthonormal base of Ym . Then
]Ysm (x)(s41, m40

gm , Q is a complete orthonormal system in L 2 (S n11 ) and

sup
x�S n11

Ng ¯

¯x
hb

Ysm (x) N GC(n) m NbN1 (n21) /2 , m41, 2 , R .(2.5)

In particular, let f�C Q (S n11 ) and !
s , m

bsm Ysm (x) be the Fourier series expan-

sion of f(x) with respect to ]Ysm (. Then

(2.6) bsm 4 s
S n11

f(x) Ysm (x) ds , NbsmNGC(l) m 22 l sup
NgN42 l
x�S n11

Ng ¯

¯x
hg

f(x) N

for every integer lD1 and !
s , m

f !
m40

Q

!
s41

gm

. Therefore, the expansion of f into

spherical harmonics converges uniformly to f (see [4], [5] for details).

3. – Integral estimates in Morrey spaces.

This section is devoted to Morrey continuity of certain nonsingular inte-
gral operators near the lateral boundary ST of the cylinder QT . For what con-
cerns the regularity of ¯V we will suppose that it is C 1, 1-smooth. In other
words, ¯V can be represented locally as a graph of function having Lipschitz
continuous first derivatives. Indeed, by virtue of Rademacher’s theorem,
C 1, 1

fW 2, Q and therefore all the diffeomorphisms which flatten locally ¯V
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(and thus ST) will have L Q-smooth second-order generalized derivatives.
Suppose now that ST is locally flatten such that QT %Dn11

1 4Rn
13R1 , and

let the coefficients of the operator P be defined in Dn11
1 . Construct a general-

ized symmetry T in the next manner. Denote by an (y) the last row of the ma-
trix a4 ]a ij ( and define

T(x 8 , t ; y 8 , t) 4x 822xn
an (y 8 , t)

a nn (y 8 , t)
, T(x) 4T(x 8 , t ; x 8 , t),

for any x 8 , y 8�Rn
1 and any fixed t�R1. Obviously T maps Rn

1 into Rn
2 and if

k(x ; Q) is a variable PCZ kernel then k(x ; T(x)2y) turns out to be a nonsin-
gular variable kernel for any x , y�Dn11

1 .
Let f�L p , l (Dn11

1 ) with p� (1 , Q), l� (0 , n12) and a�BMO(Dn11
1 ). De-

fine the operators

K
A

f (x) 4

C
A

[a , f ](x)

4 s
Dn11

1

k(x ; T(x)2y) f (y) dy ,

s
Dn11

1

k(x ; T(x)2y)[a(y)2a(x) ] f (y) dy .

We consider the series expansion of the nonsingular kernel k(x ; T(x)2y) on
S n11 with respect to the base ]Ysm (x)(s41, m40

gm , Q

k(x , T(x)2y) 4r(T(x)2y)2(n12) k(x , T(x)2y) 4

r(T(x)2y)2(n12) !
s , m

bsm (x) Ysm (T(x)2y) 4 !
s , m

bsm (x) Hsm (T(x)2y).

The kernels Hsm (Q) �C Q (Rn11 0]0() are constant parabolic Calderón-Zyg-
mund kernels satisfying Hörmander type condition (see [3]). Thus
Hsm (T(x)2y) for x�Dn11

1 are nonsingular. Further, the expansion of
k(x , T(x)2y) leads also to series expansions of the integrals K

A
f and

C
A

[a , f ]

K
A

f (x) 4 !
s , m

bsm (x) s
Dn+1

+

Hsm (T(x)2y) f (y) dy4 !
s , m

bsm (x) K
A

sm f (x),

C
A

[a , f ](x) 4 !
s , m

bsm (x) s
Dn11

1

Hsm (T(x)2y)[a(y)2a(x) ] f (y) dy(3.1)

4 !
s , m

bsm (x) C
A

sm [a , f ](x).

Before proving the L p , l-boundedness of the above integrals we shall pay at-
tention to some preliminary results. For any x 8�Rn

1 and t�R1 we define xA84
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(x1 , R , xn21 , 2xn ) �Rn
2 and xA 4 (x1 , R , xn21 , 2xn , t) �Dn11

2 4Rn
13R2 .

Hence the following integral operators

F f (x) 4 s
Dn11

1

f (y)

r(xA 2y)n12
dy ,

S(a , f )(x) 4 s
Dn11

1

Na(y)2a(x)Nf (y)

r(xA 2y)n12
dy

are nonsingular.

THEOREM 3.1. – Let f�L p , l (Dn11
1 ) with p� (1 , Q), l� (0 , n12) and a�

BMO(Dn11
1 ). Then

V F f Vp , l ; Dn11
1

GCV f Vp , l ; Dn11
1

(3.2)

V S(a , f )Vp , l ; Dn11
1

GCVaV* V f Vp , l ; Dn11
1

(3.3)

and the constant C depends on n , p , l but not on f .

PROOF. – Let I be a cylinder centered at x0 �Dn11
1 and of radius r . We set

I14IODn11
1 and 2k I1 stands for 2k IODn11

1 . Every function f defined on
Dn11

1 could be written as

f (x) 4 f (x) x 2I1
(x)1 !

k41

Q

f (x) x 2k11 I1 0 2k I1
(x) 4 !

k40

Q

fk (x)

with x being the characteristic function of the respective set. As is shown in [3,
Lemma 3.3], F is a continuous operator acting from L p into itself, whence

s
I1

N F f0 (y)Np dyG

4

V F f0 V

p
p ; Dn11

1
GC(p)V f0 V

p
p ; Dn11

1

C(p) s
2I1

Nf (y)Np dyGC(p) r l
V f V

p
p , l ; Dn11

1
.

It is easy to see that for every y�2k11 I102k I1 and x�I1 , kF1, one has

r(xA 2y) Fr(x2y) F (2k 21) rF2k21 r .
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Thus

N F fk (x)Np 4u s
2k rEr(x02y) E2k11 r

Nf (y)N

r(xA 2y)n12
dyvp

Gu 1

(2k21 r)n12
s

r(x02y) E2k11 r

Nf (y)Ndyvp

GC
1

(2k21 r)p(n12)
u s

r(x02y) E2k11 r

1dyvp21u s
r(x02y) E2k11 r

Nf (y)Np dyv
GC2k(l2 (n12) ) r l2 (n12)

V f V

p
p , l ; Dn+1

+
.

Now we get

s
I1

N F f (y)Np dy4

G

!
k40

Q

s
I1

N F fk (y)Np dy

Cr lg11 !
k41

Q

2k(l2 (n12) )h V f V

p
p , l ; Dn11

1
GCr l

V f V

p
p , l; Dn11

1

and the constant depends on n , p and l . Moving r l on the left-hand side and
taking the supremum with respect to r we get exactly (3.2).

To prove (3.3) we use the following inequality

N S(a , f )J (x)NGCVaV*( (M( (F N fN)q )(x) )1/q 1 (M(N fNq )(x) )1/q )

proved in [2, Theorem 3.1]. Thus, for any q� (1 , p) and f�L p , l (Dn11
1 ) we

write

s
I1

N S(a , f )J (y)Np dyG

CVaV

p
*m s

I1

NM(F N fN)q (y)Np/q dy1s
I1

NM(N fNq )(y)Np/q dyn4CVaV

p
*(J1 1J2 ).

Making use of Lemma 2.1 and (3.2), it is easy to see that

J1 4s
I1

NM(F N fN)q (y)Np/q dyGr l
VM(F N fN)q

V

p/q
p/q , l ; Dn+1

+

Gr l
V(F N fN)q

V

p/q
p/q , l ; Dn11

1
4r l

V F N fNV

p
p , l ; Dn11

1

GCr l
V f V

p
p , l ; Dn11

1
.

Analogous arguments hold also for the estimate of J2 .
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The estimate (3.3) follows from the sharp inequality (Lemma 2.2) which
completes the proof of Theorem 3.1. r

THEOREM 3.2. – Let the functions f and a be as above and K
A

sm f and
C
A

sm [a , f ] be the integrals from the series expansions (3.1). Then there exist
constants depending on n , p , l such that

V K
A

sm f Vp , l ; Dn11
1

GCm (n21) /2
V f Vp , l ; Dn11

1
(3.4)

V C
A

sm [a , f ]Vp , l ; Dn11
1

GCm (n21) /2
VaV* V f Vp , l ; Dn11

1
.(3.5)

PROOF. – From the boundedness of Ysm (x) (see (2.5)) and the relation be-
tween the distances (see [3, Lemma 3.2])

C1 r(xA 2y) Gr(T(x)2y) GC2 r(xA 2y)

we have

N K
A

sm f (x)NG s
Dn11

1

NYsm (T(x)2y)N

r(T(x)2y)n12
Nf (y)NdyGCm (n21) /2 s

Dn11
1

Nf (y)N

r(xA 2y)n12
dy .

The last integral is exactly F N fN so we can apply the estimate (3.2), which
gives

V K
A

sm f Vp , l ; Dn11
1

GCm (n21) /2
V f Vp , l ; Dn11

1
.

Analogously we get (3.5), making use of (3.3). r

We are in position now to prove our main result concerning L p , l (Dn11
1 ) es-

timates for the nonsingular integral operators K
A

and C
A

.

THEOREM 3.3. – Let f�L p , l (Dn11
1 ), p� (1 , Q), l� (0 , n12) and a�

BMO(Dn11
1 ). There exists a constant C(n , p , l) such that

V K
A

f Vp , l ; Dn11
1

GCV f Vp , l ; Dn11
1

(3.6)

V C
A

[a , f ]Vp , l ; Dn11
1

GCVaV* V f Vp , l ; Dn11
1

.
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PROOF. – The estimates (2.4), (2.6) and (3.4) ensure total convergence in
L p , l (Dn11

1 ) of the series expansion (3.1) of K
A

f

V K
A

f Vp , l , Dn11
1

G

E

!
s , m

Vbsm VQ V K
A

sm f Vp , l , Dn11
1

CV f Vp , l , Dn11
1

!
m41

Q

m 22 l1 (n21)/21n21

if the integer l is preliminary chosen greater than (3n21) /4 . Analogous argu-
ments hold also for the commutator. r

4. – A priori estimates, strong solvability and Hölder continuity.

THEOREM 4.1. – Suppose a ij �VMO(QT ), (2.1), ¯V�C 1, 1 and let u�
W 2, 1

p , l (QT ), p� (1 , Q), l� (0 , n12), be a strong solution to (1.1). Then

VuVW 2, 1
p , l (QT ) GCV f Vp , l ; QT

(4.1)

where the constant depends on n , p , l , L , T , ¯V and the VMO-moduli of a ij .

PROOF. – Step 1: Interior estimate. The interior representation formula for
the second spatial derivatives ([3, Theorem 1.4]) expresses Dij u in terms of
singular integral operators and their commutators with kernels G ij (x ; x2y)
(the derivatives of the fundamental solution (2.2) with respect to the second
variable). Further, G ij (x ; x2y)’s are variable PCZ kernels (cf. [12]) that are
homogeneous of degree 21 with respect to x 8 and of degree 22 with respect
to t . Thus, the singular integrals and commutators under consideration are a
particular case of more general class of singular operators with kernels
k(x ; y) of mixed homogeneity studied in [19]. We refer the reader to [23, The-
orem 3.1] for the continuity properties of these operators in Morrey spaces. As
a consequence of [23, Eq. (5.5)] (see also [19, Theorem 2]), the following interi-
or regularity of solutions to (1.1) follows

THEOREM 4.2. – Let u�W 2, 1
p (QT ) be a strong solution to the uniformly

parabolic equation Dt u2a ij (x) Dij u4 f (x) with a ij �VMO(QT ) and
f�L p , l (QT ). Then D 2

x 8 u , Dt u�L p , l (Q 8T ) for any cylinder Q 8T 4V 83 (0 , T),
V 8%%V , and

VuVW 2, 1
p , l (Q 8T ) GC(VuVp , l ; QT9 1V f Vp , l ; QT

)(4.2)

where QT94V 93 (0 , T), V 8%%V 9%%V and C depends on known quantities
and on dist (¯V 8 , ¯V).
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Step 2: Boundary estimate. Suppose ST is locally flatten near the point x0

such that QT %D1
n11 and consider a semicylinder I1 centered at x0 and of

radius r . Recall the boundary representation formula for the second deriva-
tives Dij u (see [3, Theorem 1.5])

(4.3) Dij u(x) 4 Cij [a hk , Dhk u](x)1 Kij f (x)1 f (x) s
S n11

G j (x ; y) n i ds y 2Iij (x),

with

Cij [a hk , Dhk u](x) 4P.V. s
Rn11

G ij (x ; x2y)[a hk (y)2a hk (x) ] Dhk u(y) dy ,

Kij f (x) 4P.V. s
Rn11

G ij (x ; x2y) f (y) dy ,

Iij (x) 4 C
A

ij [a hk , Dhk u](x)1 K
A

ij f (x) i , j41, R , n21 ;

Iin (x) 4Ini (x) 4 !
l41

n

(Dn T(x))lgC
A

il [a hk , Dhk u](x)1 K
A

il f (x)h i41, R , n21 ;

Inn (x) 4 !
l , r41

n

(Dn T(x))l (Dn T(x))rgC
A

lr [a hk , Dhk u](x)1 K
A

lr f (x)h

where (Dn T(x))l stands for the l-th component of the vector Dn T(x) and n i is
the i-th component of the unit outward normal to S n11 .

The first two integrals in (4.3) are singular and of the kind treated in [23,
Theorem 3.1] and [19, Theorem 1], while the third one is bounded nonsingular
integral. Thus

VDij uVp , l ; I1
GC(VaV* V D 2

x 8 uVp , l ; I1
1V f Vp , l ; I1

)1VIij Vp , l ; I1
,(4.4)

where the constant depends on known quantities but not on f . To estimate the
last norm above we use the results for nonsingular integrals established in
Theorem 3.3. Thus

VIij Vp , l ; I1
GC(VaV* VD 2

x 8 uVp , l ; I1
1V f Vp , l ; I1

)

where the constant depends on n , p , l , L and VaV*4 max
1 G i , jGn

Va ij
V*. By means

of the VMO-assumption on a ij’s, we are able to choose rD0 sufficiently small
in order to move the term VD 2

x 8 uVp , l ; I1
on the left-hand side of (4.4).

Therefore,

VD 2
x 8 uVp , l ; I1

GCV f Vp , l ; I1
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and similar estimate holds true also for VDt uVp , l ; I1
by virtue of ut 4

a ij (x) Dij u1 f (x). Finally, expressing u(x 8 , t) 4 s
0

t

Ds u(x 8 , s) ds and applying
Jensen’s integral inequality, we obtain

VuVW 2, 1
p , l (I1 ) GCV f Vp , l ; I1

.

Covering QT 0Q 8 with a finite number of subcylinders I1 we get a W 2, 1
p , l -es-

timate of the solution near the lateral boundary ST which, combined with (4.2)
completes the proof. r

We are in a position now to derive existence of a unique strong solution to
the Cauchy-Dirichlet problem (1.1).

THEOREM 4.3. – Suppose (2.1), ¯V�C 1, 1 and a ij �VMO(QT ). Then the
problem (1.1) admits a unique strong solution u�W 2, 1

p , l (QT ) with p� (1 , Q),
l� (0 , n12), for every f�L p , l (QT ).

PROOF. – The unicity assertion follows immediately from the a priori esti-
mate (4.1).

To prove existence of solution to (1.1), the continuity method ([13, Theo-
rem 5.2]) will be employed. Consider the Cauchy-Dirichlet problem for the
heat equation

.
/
´

H u4ut 2Du4 f (x)

u40

a.e. in QT

on ¯QT .
(4.5)

It is easy to see that for any f�L p , l (QT ) the above problem is uniquely solv-
able in W 2, 1

p , l (QT ). In fact, the L p-theory of linear parabolic operators (see [16])
asserts existence of a unique strong solution u�W 2, 1

p (QT ) of (4.5) because of
f�L p (QT ). Further, in the interior and boundary representation formulas for
that solution the commutators disappear since H is a constant coefficients op-
erator. This means u�W 2, 1

p , l (QT ) in view of Theorem 4.2 and Theorem 3.1.
To apply the method of continuity, we define the Banach space

M 4 ]u�W 2, 1
p , l (QT ): uN¯QT

40(, V QVM 4V QVW 2, 1
p , l (QT )

and for any r� [0 , 1 ] consider the convex combination Pr4r P 1(12r) H.
Obviously, P0 4 H, P1 4 P, Pr : M KL p , l (QT ), and the coefficients of Pr satis-
fy (2.1). Furthermore, the a priori estimate (4.1) implies

VuVM GCV Pr uVp , l ; QT

with C independent of r.
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Since P0 is a surjective mapping, the method of continuity asserts that
P1 4 P is surjective too. Bearing in mind the unicity assertion, we obtain that
(1.1) possesses a unique solution u�W 2, 1

p , l (QT ) for any f�L p , l (QT ), p� (1 , Q),
l� (0 , n12). r

An immediate consequence of the last result is Hölder continuity of the
strong solution u to (1.1) or its spatial gradient Dx 8 u for suitable values of p
and l . To be more precise, define

[u]a ; QT
4 sup

(x 8 , t), (y 8 , t) �QT
(x 8 , t) c (y 8 , t)

Nu(x 8 , t)2u(y 8 , t)N

(Nx 82y 8N2 1Nt2tN)a/2
, 0 EaE1

and set C 0, a (QT ) for the space of all functions u : QT KR of finite norm

VuV0, a ; QT
4VuVQ ; QT

1 [u]a ; QT
.

COROLLARY 4.1. – Suppose a ij �VMO(QT ), ¯V�C 1, 1 , (2.1), f�L p , l (QT )
with p� (1 , Q) and l� (0 , n12) and let u�W 2, 1

p , l (QT ) be the unique strong
solution of the problem (1.1). Then

1. u�C 0, a (QT ) and VuV0, a ; QT
GCV f Vp , l ; QT

with a4
1

n11
1

l2 (n12)

p
if

lD max ]0, n122p/(n11)(,

2. Dx 8 u�C 0, a (QT ) and VDx 8 uV0, a ; QT
GCV f Vp , l ; QT

with a411
l2 (n12)

p
if lD max ]0, n122p(.

PROOF. – Hölder’s regularity of the strong solution u is a direct conse-
quence of Theorem 4.3 and [10, Theorem 4.1].

Concerning the Hölder continuity of the spatial gradient Dx 8 u it is a rather
delicate matter because of the lack of derivatives Dtt u and Dx 8 t u . Anyway, a
standard approach consisting of passage through the parabolic Poincaré in-
equality ([6, Lemma 2.2], [17, Chapter 3]) yields

s
QTOI

NDx 8 u2 (Dx 8 u)QTOIN
p dxGr p s

QTOI

(Nut N
p 1NDx 8

2 uNp) dx

GCr p1l
VuVW 2, 1

p , l (QT )

for any cylinder I%QT of radius r . Therefore, Dx 8 u belongs to the Campanato
space Lp , p1l (QT ) and it is known (see [10, Theorem 3.1], [17, Section 3.3.2])
that Lp , p1l (QT ) coincides with C 0, 11 (l2 (n12) ) /p (QT ) for l� (n122p ,
n12). r
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