Palagachev, Dian K. and Ragusa, Maria A. and Softova, Lubomira G.: 
Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients
 Bollettino dell'Unione Matematica Italiana Serie 8 6-B (2003), fasc. n.3, p. 667-683, Unione Matematica Italiana (English)
pdf (297 Kb), djvu (233 Kb).  | MR2014826  | Zbl 1121.35067  
Sunto
Siano $Q_{T}$ un cilindro in $\mathbb{R}^{n+1}$ ed $x=(x',t)\in \mathbb{R}^{n}\times \mathbb{R}$. Si studia il problema di Cauchy-Dirichlet per l'operatore uniformemente parabolico $$ \begin{cases} u_{t}-\sum_{i,j=1}^{n}a^{ij}(x) D_{ij}u=f(x) & \text{q.o. in } Q_{T}, \\ u(x)=0 & \text{su } \partial Q_{T}, \end{cases} $$ nell'ambito degli spazi di Morrey $W^{2,1}_{p,\lambda}(Q_{T})$, $p\in (1, \infty)$, $\lambda\in (0, n+2)$ supponendo che i coefficienti della parte principale appartengano alla classe delle funzioni con oscillazione media infinitesima. Si ottengono inoltre delle stime a priori nei suddetti spazi, e regolarità Hölderiana della soluzione e della sua derivata spaziale.
Referenze Bibliografiche
[1] 
P. ACQUISTAPACE, 
On BMO regularity for linear elliptic systems, 
Ann. Mat. Pura Appl., 
161 (
1992), 231-269. | 
MR 1174819 | 
Zbl 0802.35015[2] 
M. BRAMANTI, 
Commutators of integral operators with positive kernels, 
Le Matematiche, 
49 (
1994), 149-168. | 
MR 1386370 | 
Zbl 0840.42009[3] 
M. BRAMANTI-
M. C. CERUTTI, 
$W_p^{1, 2}$ solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, 
Comm. in Partial Diff. Equations, 
18 (
1993), 1735-1763. | 
MR 1239929 | 
Zbl 0816.35045[4] 
A. P. CALDERÓN-
A. ZYGMUND, 
On the existence of certain singular integrals, 
Acta. Math., 
88 (
1952), 85-139. | 
MR 52553 | 
Zbl 0047.10201[5] 
A. P. CALDERÓN-
A. ZYGMUND, 
Singular integral operators and differential equations, 
Amer. J. Math., 
79 (
1957), 901-921. | 
MR 100768 | 
Zbl 0081.33502[6] 
P. CANNARSA, 
Second order nonvariational parabolic systems, 
Boll. Unione Mat. Ital., 
18-C (
1981), 291-315. | 
MR 631584 | 
Zbl 0473.35043[7] 
F. CHIARENZA-
M. FRASCA, 
Morrey spaces and Hardy-Littlewood maximal functions, 
Rend. Mat. Appl., 
7 (
1987), 273-279. | 
MR 985999 | 
Zbl 0717.42023[8] 
F. CHIARENZA-
M. FRASCA-
P. LONGO, 
Interior $W^{2, p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, 
Ric. Mat., 
40 (
1991), 149-168. | 
MR 1191890 | 
Zbl 0772.35017[9] 
F. CHIARENZA-
M. FRASCA-
P. LONGO, 
$W^{2,p}$ solvability of the Dirichlet problem for nondivergence form elliptic equations with VMO coefficients, 
Trans. Amer. Math. Soc., 
336 (
1993), 841-853. | 
MR 1088476 | 
Zbl 0818.35023[10] 
G. DA PRATO, 
Spazi $\mathcal{L}^{p,\theta}(\Omega, \delta)$ e loro proprietà, 
Ann. Mat. Pura Appl., 
69 (
1965), 383-392. | 
MR 192330 | 
Zbl 0145.16207[11] 
G. DI FAZIO-
D. K. PALAGACHEV-
M. A. RAGUSA, 
Global Morrey regularity of strong solutions to Dirichlet problem for elliptic equations with discontinuous coefficients, 
J. Funct. Anal., 
166 (
1999), 179-196. | 
MR 1707751 | 
Zbl 0942.35059[13] 
D. GILBARG-
N. S. TRUDINGER, 
Elliptic Partial Differential Equations of Second Order, 2nd ed., 
Springer-Verlag, Berlin, 
1983. | 
MR 737190 | 
Zbl 0562.35001[14] 
F. GUGLIELMINO, 
Sulle equazioni paraboliche del secondo ordine di tipo non variazionale, 
Ann. Mat. Pura Appl.,65 (
1964), 127-151. | 
MR 186940 | 
Zbl 0141.29202[15] 
F. JOHN-
L. NIRENBERG, 
On functions of bounded mean oscillation, 
Comm. Pure Appl. Math., 
14 (
1961), 415-426. | 
MR 131498 | 
Zbl 0102.04302[16] 
O. A. LADYZHENSKAYA-
V. A. SOLONNIKOV-
N. N. URAL'TSEVA, 
Linear and Quasilinear Equations of Parabolic Type, 
Transl. Math. Monographs, Vol. 
23, 
Amer. Math. Soc., Providence, R.I. 
1968. | 
Zbl 0174.15403[17] 
A. MAUGERI-
D. K. PALAGACHEV-
L. G. SOFTOVA, 
Elliptic and Parabolic Equations with Discontinuous Coefficients, 
Wiley-VCH, Berlin, 
2000. | 
MR 2260015 | 
Zbl 0958.35002[18] 
D. K. PALAGACHEV-
M. A. RAGUSA-
L. G. SOFTOVA, 
Regular oblique derivative problem in Morrey spaces, 
Electr. J. Diff. Equations, 
2000 (
2000), No. 39, 1-17. | 
MR 1764709 | 
Zbl 1002.35033[19] 
D.K. PALAGACHEV-
L.G. SOFTOVA, 
Singular integral operators with mixed homogeneity in Morrey spaces C. R. Acad. Bulgare Sci., 
54 (
2001), No. 11, 11-16. | 
MR 1878039 | 
Zbl 0983.42008[20] 
D. SARASON, 
Functions of vanishing mean oscillation, 
Trans. Amer. Math. Soc., 
207 (
1975), 391-405. | 
MR 377518 | 
Zbl 0319.42006[21] 
L. G. SOFTOVA, 
Regular oblique derivative problem for linear parabolic equations with VMO principal coefficients, 
Manuscr. Math., 
103, No. 2 (
2000), 203-220. | 
MR 1796316 | 
Zbl 0963.35032[22] 
L. G. SOFTOVA, 
Morrey regularity of strong solutions to parabolic equations with VMO coefficients, 
C. R. Acad. Sci., Paris, Ser. I, Math., 
333, No. 7 (
2001), 635-640. | 
MR 1868228 | 
Zbl 0990.35035[23] 
L. G. SOFTOVA, 
Parabolic equations with VMO coefficients in Morrey spaces, 
Electr. J. Diff. Equations, 
2001, No. 51 (
2001), 1-25. | 
MR 1846667 | 
Zbl 1068.35517