Bollettino

Unione Matematica Italiana

Alessandro Veneruso

Schwartz kernels on the Heisenberg group

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 6-B (2003), n.3, p. 657-666.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2003_8_6B_3_657_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2003.

Schwartz Kernels on the Heisenberg Group.

Alessandro Veneruso

Sunto. - Sia \boldsymbol{H}_{n} il gruppo di Heisenberg di dimensione $2 n+1$. Siano $\mathscr{L}_{1}, \ldots, \mathfrak{L}_{n} i$ subLaplaciani parziali su \boldsymbol{H}_{n} e T l'elemento centrale dell'algebra di Lie di \boldsymbol{H}_{n}. In questo lavoro dimostriamo che, data una funzione m appartenente allo spazio di Schwartz $S\left(\boldsymbol{R}^{n+1}\right)$, il nucleo dell'operatore $m\left(\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n},-i T\right)$ è una funzione in $S\left(\boldsymbol{H}_{n}\right)$. Inoltre dimostriamo che, date altre due funzioni $h \in S\left(\boldsymbol{R}^{n}\right)$ e $g \in S\left(\boldsymbol{R}^{2}\right)$, i nuclei degli operatori $h\left(\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n}\right)$ e $g(\mathfrak{L},-i T)$ stanno in $S\left(\boldsymbol{H}_{n}\right)$. Qui $\mathfrak{L}=\mathfrak{L}_{1}+\ldots+$ \mathfrak{L}_{n} è il sub-Laplaciano su \boldsymbol{H}_{n}.

Summary. - Let \boldsymbol{H}_{n} be the Heisenberg group of dimension $2 n+1$. Let $\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n}$ be the partial sub-Laplacians on \boldsymbol{H}_{n} and T the central element of the Lie algebra of \boldsymbol{H}_{n}. We prove that the kernel of the operator $m\left(\mathscr{L}_{1}, \ldots, \mathfrak{L}_{n},-i T\right)$ is in the Schwartz space $S\left(\boldsymbol{H}_{n}\right)$ if $m \in S\left(\boldsymbol{R}^{n+1}\right)$. We prove also that the kernel of the operator $h\left(\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n}\right)$ is in $S\left(\boldsymbol{H}_{n}\right)$ if $h \in S\left(\boldsymbol{R}^{n}\right)$ and that the kernel of the operator $g(\mathscr{L},-i T)$ is in $S\left(\boldsymbol{H}_{n}\right)$ if $g \in$ $S\left(\boldsymbol{R}^{2}\right)$. Here $\mathfrak{L}=\mathfrak{L}_{1}+\ldots+\mathfrak{L}_{n}$ is the Kohn-Laplacian on \boldsymbol{H}_{n}.

1. - Introduction.

Let \mathfrak{L} be the Kohn-Laplacian on a stratified group G and let m be the restriction on $[0,+\infty)$ of a function in the Schwartz space $S(\boldsymbol{R})$. Then it is well known that the kernel of the operator $m(\mathfrak{L})$, i.e. the unique tempered distribution M such that $m(\mathfrak{L}) f=f^{*} M$ for every $f \in S(G)$, is in $S(G)$ (see [5, 7]).

Let G be the Heisenberg group \boldsymbol{H}_{n} of dimension $2 n+1$. We denote by $\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n}$ the partial sub-Laplacians and by T the central element of the Lie algebra of \boldsymbol{H}_{n}. The Kohn-Laplacian on \boldsymbol{H}_{n} is $\mathfrak{L}=\mathfrak{L}_{1}+\ldots+\mathfrak{L}_{n}$. The operators $\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n},-i T$ form a commutative family of self-adjoint operators, so they admit a joint spectral resolution and it is possible to define the operator $m\left(\mathscr{L}_{1}, \ldots, \mathfrak{L}_{n},-i T\right)$ when m is a bounded Borel function on the joint spectrum Σ of $\left\{\mathscr{L}_{1}, \ldots, \mathfrak{L}_{n},-i T\right\}$. It has been proved by Benson, Jenkins and Ratcliff [1, Corollary 6.3] that the kernel of the operator $m\left(\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n},-i T\right)$ is in $S\left(\boldsymbol{H}_{n}\right)$ if $m \in C_{c}^{\infty}\left(\boldsymbol{R}^{n+1}\right)$ (here we identify m with its restriction on Σ) and the kernel of the operator $g(\mathfrak{L},-i T)$ is in $S\left(\boldsymbol{H}_{n}\right)$ if $g \in C_{c}^{\infty}\left(\boldsymbol{R}^{2}\right)$.

In this paper we prove the following stronger result (for the definitions of the norms in $S\left(\boldsymbol{H}_{n}\right)$ and in $S\left(\boldsymbol{R}^{d}\right)$ see Sections 2 and 3):

Theorem 1.1.
(a) Let H denote the kernel of the operator $h\left(\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n}\right)$. Then $h \mapsto H$ is a bounded linear map from $S\left(\boldsymbol{R}^{n}\right)$ to $S\left(\boldsymbol{H}_{n}\right)$.
(b) Let M denote the kernel of the operator $m\left(\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n},-i T\right)$. Then $m \mapsto M$ is a bounded linear map from $S\left(\boldsymbol{R}^{n+1}\right)$ to $S\left(\boldsymbol{H}_{n}\right)$.
(c) Let G denote the kernel of the operator $g(\mathcal{L},-i T)$. Then $g \mapsto G$ is a bounded linear map from $S\left(\boldsymbol{R}^{2}\right)$ to $S\left(\boldsymbol{H}_{n}\right)$.

2. - Notation and preliminaries.

In this paper \boldsymbol{N} denotes the set of nonnegative integers, \boldsymbol{Z}_{+}the set of positive integers and \boldsymbol{R}^{*} the set of non-zero real numbers. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in$ \boldsymbol{N}^{d}, we put $|\alpha|=\sum_{j=1}^{d} \alpha_{j}$. We shall denote by C a constant which will not be necessarily the same at each occurrence.

Fix $n \in \boldsymbol{Z}_{+}$. The $2 n+1$-dimensional Heisenberg group \boldsymbol{H}_{n} is the nilpotent Lie group whose underlying manifold is $\boldsymbol{C}^{n} \times \boldsymbol{R}$, with multiplication given by

$$
(z, t)\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}+2 \operatorname{Im}\left\langle z, z^{\prime}\right\rangle\right)
$$

where $\left\langle z, z^{\prime}\right\rangle=\sum_{j=1}^{n} z_{j} \overline{z_{j}^{\prime}}$. The Lie algebra of \boldsymbol{H}_{n} is generated by the left-invariant vector fields $Z_{1}, \ldots, Z_{n}, \bar{Z}_{1}, \ldots, \bar{Z}_{n}, T$, where

$$
\begin{aligned}
Z_{j} & =\frac{\partial}{\partial z_{j}}+i \bar{z}_{j} \frac{\partial}{\partial t} \\
\bar{Z}_{j} & =\frac{\partial}{\partial \bar{z}_{j}}-i z_{j} \frac{\partial}{\partial t} \\
T & =\frac{\partial}{\partial t}
\end{aligned}
$$

The commutators are

$$
\begin{gather*}
{\left[Z_{j}, \bar{Z}_{k}\right]=-2 i \delta_{j, k} T} \tag{2.1}\\
{\left[Z_{j}, Z_{k}\right]=\left[\bar{Z}_{j}, \bar{Z}_{k}\right]=\left[Z_{j}, T\right]=\left[\bar{Z}_{j}, T\right]=0 .} \tag{2.2}
\end{gather*}
$$

\boldsymbol{H}_{n} is a stratified group endowed with a family of dilations $\left\{\delta_{r}: r>0\right\}$ defined by

$$
\delta_{r}(z, t)=\left(r z, r^{2} t\right) .
$$

The homogeneous dimension of \boldsymbol{H}_{n} is therefore $Q=2 n+2$. We fix on \boldsymbol{H}_{n} the
following subadditive homogeneous norm (see [3]):

$$
|(z, t)|_{\boldsymbol{H}_{n}}=\left(|z|^{4}+t^{2}\right)^{1 / 4}
$$

where $|z|=\left(\sum_{j=1}^{n}\left|z_{j}\right|^{2}\right)^{1 / 2}$. We observe that

$$
\begin{equation*}
|(z, t)|_{\boldsymbol{H}_{n}} \simeq \sum_{j=1}^{n}\left|z_{j}\right|+|t|^{1 / 2} . \tag{2.3}
\end{equation*}
$$

The following lemma will be useful later:
Lemma 2.1. - Fix $u, v \in \boldsymbol{H}_{n}$ and $a \geqslant 1$. Then

$$
a+|u|_{\boldsymbol{H}_{n}} \leqslant\left(a+|v|_{\boldsymbol{H}_{n}}\right)\left(1+\left|u v^{-1}\right|_{\boldsymbol{H}_{n}}\right) .
$$

PRoof.

$$
\begin{aligned}
a+|u|_{\boldsymbol{H}_{n}} & =a+\left|u v^{-1} v\right|_{\boldsymbol{H}_{n}} \\
& \leqslant a+\left|u v^{-1}\right|_{\boldsymbol{H}_{n}}+|v|_{\boldsymbol{H}_{n}} \\
& \leqslant a+a\left|u v^{-1}\right|_{\boldsymbol{H}_{n}}+|v|_{\boldsymbol{H}_{n}}+|v|_{\boldsymbol{H}_{n}}\left|u v^{-1}\right|_{\boldsymbol{H}_{n}} \\
& =\left(a+|v|_{\boldsymbol{H}_{n}}\right)\left(1+\left|u v^{-1}\right|_{\boldsymbol{H}_{n}}\right) .
\end{aligned}
$$

The bi-invariant Haar measure on \boldsymbol{H}_{n} coincides with the Lebesgue measure on $\boldsymbol{R}^{2 n+1}$. The convolution $f * g$ of two functions $f, g \in L^{1}\left(\boldsymbol{H}_{n}\right)$ is defined by

$$
\begin{align*}
(f * g)(z, t) & =\int_{\boldsymbol{H}_{n}} f\left((z, t)(\zeta, \tau)^{-1}\right) g(\zeta, \tau) d \zeta d \tau \tag{2.4}\\
& =\int_{\boldsymbol{H}_{n}} f(z-\zeta, t-\tau-2 \operatorname{Im}\langle z, \zeta\rangle) g(\zeta, \tau) d \zeta d \tau
\end{align*}
$$

As usual, we denote by $S\left(\boldsymbol{H}_{n}\right)$ the Schwartz space of rapidly decreasing smooth functions on \boldsymbol{H}_{n} and by $S^{\prime}\left(\boldsymbol{H}_{n}\right)$ the dual space of $S\left(\boldsymbol{H}_{n}\right)$, i.e. the space of tempered distributions on \boldsymbol{H}_{n}. The topology of the Fréchet space $S\left(\boldsymbol{H}_{n}\right)$ is given by the family of norms $\|\cdot\|_{\left(N, \boldsymbol{H}_{n}\right)}(N \in \boldsymbol{N})$ defined by

$$
\begin{equation*}
\|f\|_{\left(N, \boldsymbol{H}_{n}\right)}=\sup _{\substack{| | \mid \leqslant N \\ x \in \boldsymbol{H}_{n}}}\left(1+|x|_{\boldsymbol{H}_{n}}\right)^{(N+1)(Q+1)}\left|X^{I} f(x)\right| \tag{2.5}
\end{equation*}
$$

where $I=\left(i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}, l\right) \in \boldsymbol{N}^{2 n+1}$ and

$$
\begin{equation*}
X^{I}=Z_{1}^{i_{1}} \ldots Z_{n}^{i_{n}} \bar{Z}_{1}^{j_{1}} \ldots \bar{Z}_{n}^{j_{n}} T^{l} \tag{2.6}
\end{equation*}
$$

If $\left\{f_{k}\right\}_{k \in N}$ is a sequence of functions in $S\left(\boldsymbol{H}_{n}\right)$, the series $\sum_{k=0}^{+\infty} f_{k}$ converges abso-
lutely in $S\left(\boldsymbol{H}_{n}\right)$ if and only if

$$
\sum_{k=0}^{+\infty}\left\|f_{k}\right\|_{\left(N, \boldsymbol{H}_{n}\right)}<+\infty
$$

for every $N \in \boldsymbol{N}$. If $f \in S\left(\boldsymbol{H}_{n}\right)$ and $u \in S^{\prime}\left(\boldsymbol{H}_{n}\right)$, the convolution $f * u$ is the tempered distribution defined by

$$
\langle f * u, \varphi\rangle=\langle u, \tilde{f} * \varphi\rangle
$$

for any $\varphi \in S\left(\boldsymbol{H}_{n}\right)$, where the function $\tilde{f} \in S\left(\boldsymbol{H}_{n}\right)$ is defined by

$$
\tilde{f}(x)=f\left(x^{-1}\right)
$$

The partial sub-Laplacians $\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n}$ on \boldsymbol{H}_{n} are defined by

$$
\mathfrak{L}_{j}=-\frac{1}{2}\left(Z_{j} \bar{Z}_{j}+\bar{Z}_{j} Z_{j}\right) .
$$

The Kohn-Laplacian on \boldsymbol{H}_{n} is $\mathfrak{L}=\sum_{j=1}^{n} \mathfrak{L}_{j}$. The operators $\mathscr{L}_{1}, \ldots, \mathfrak{L}_{n},-i T$ form a family of commuting self-adjoint operators. Their joint spectrum (see [2]) is the subset $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ of \boldsymbol{R}^{n+1}, where

$$
\Sigma_{1}=\left\{\left(\left(2 k_{1}+1\right)|\lambda|, \ldots,\left(2 k_{n}+1\right)|\lambda|, \lambda\right): k_{1}, \ldots, k_{n} \in \boldsymbol{N}, \lambda \in \boldsymbol{R}^{*}\right\}
$$

and

$$
\Sigma_{2}=\left\{\left(\mu_{1}, \ldots, \mu_{n}, 0\right): \mu_{1}, \ldots, \mu_{n} \in[0,+\infty)\right\}
$$

For any bounded Borel function m on Σ, the multiplier operator $m\left(\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n},-i T\right)$ is bounded on $L^{2}\left(\boldsymbol{H}_{n}\right)$ by the spectral theorem. Such operator commutes with left translations, so by [6, Theorem 3.2] it admits a kernel $M \in S^{\prime}\left(\boldsymbol{H}_{n}\right)$ which satisfies

$$
m\left(\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n},-i T\right) f=f * M
$$

for any $f \in S\left(\boldsymbol{H}_{n}\right)$.

3. - Schwartz functions on \boldsymbol{R}^{d} and tensor products.

Fix $d \in \boldsymbol{Z}_{+}$. Following [4] and by analogy with the definition of the norms (2.5) on $S\left(\boldsymbol{H}_{n}\right)$, we define the following family of norms on $S\left(\boldsymbol{R}^{d}\right)$, which gives the usual topology of the Fréchet space $S\left(\boldsymbol{R}^{d}\right)$:

$$
\begin{equation*}
\|f\|_{\left(N, \boldsymbol{R}^{d}\right)}=\sup _{\substack{|\alpha| \leqslant N \\ x \in \boldsymbol{R}^{d}}}(1+|x|)^{(N+1)(d+1)}\left|D^{\alpha} f(x)\right| \tag{3.7}
\end{equation*}
$$

where $N \in \boldsymbol{N}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \boldsymbol{N}^{d}$ and $D^{\alpha}=\left(\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}}, \ldots, \frac{\partial^{\alpha_{d}}}{\partial x_{d}^{\alpha_{d}}}\right)$. The notion of absolute convergence of a series in $S\left(\boldsymbol{R}^{d}\right)$ is the same as in $S\left(\boldsymbol{H}_{n}\right)$.

Fix $m, n \in \boldsymbol{Z}_{+}$. If $f \in S\left(\boldsymbol{R}^{m}\right)$ and $g \in S\left(\boldsymbol{R}^{n}\right)$, their tensor product is the function $f \otimes g \in S\left(\boldsymbol{R}^{m+n}\right)$ defined by the formula

$$
(f \otimes g)\left(x_{1}, \ldots, x_{m+n}\right)=f\left(x_{1}, \ldots, x_{m}\right) g\left(x_{m+1}, \ldots, x_{m+n}\right) .
$$

By straight-forward calculations involving the norms (3.7), it is easy to verify that for every $N \in \boldsymbol{N}$ the following inequality holds:

$$
\begin{equation*}
\|f\|_{\left(N, \boldsymbol{R}^{m}\right)}\|g\|_{\left(N, \boldsymbol{R}^{n}\right)} \leqslant\|f \otimes g\|_{\left(2 N+1, \boldsymbol{R}^{m+n}\right)} . \tag{3.8}
\end{equation*}
$$

Moreover, combining Theorems 45.1 and 51.6 in [8], we have the following
Theorem 3.1. - For every $h \in S\left(\boldsymbol{R}^{m+n}\right)$ there exist $f_{k} \in S\left(\boldsymbol{R}^{m}\right)$ and $g_{k} \in$ $\mathcal{S}\left(\boldsymbol{R}^{n}\right)(k \in \boldsymbol{N})$ such that the series $\sum_{k=0}^{+\infty}\left(f_{k} \otimes g_{k}\right)$ converges absolutely to h in
$S\left(\boldsymbol{R}^{m+n}\right)$ $S\left(\boldsymbol{R}^{m+n}\right)$.

4. - Proof of Theorem 1.1.

In order to avoid confusion, since we have to deal with Heisenberg groups of different dimensions, in this section $\mathfrak{L}_{j}^{\boldsymbol{H}_{n}}, \mathfrak{L}^{\boldsymbol{H}_{n}}$ and ${ }^{*} \boldsymbol{H}_{n}$ will denote the j-th sub-Laplacian, the Kohn-Laplacian and convolution on \boldsymbol{H}_{n}, respectively. Moreover, $*_{\boldsymbol{R}}$ will denote convolution on \boldsymbol{R} and \mathfrak{F} the Fourier transform on \boldsymbol{R} defined by

$$
\mathscr{F} f(\xi)=\int_{\boldsymbol{R}} f(x) e^{-i x \xi} d x
$$

for every $f \in L^{1}(\boldsymbol{R})$ and $\xi \in \boldsymbol{R}$.
Fix $f \in S\left(\boldsymbol{H}_{n}\right), j \in\{1, \ldots, n\}$ and $(z, t) \in \boldsymbol{H}_{n}$. It is immediate to verify that

$$
\left(\mathfrak{L}_{j}^{\boldsymbol{H}_{n}} f\right)(z, t)=\left(\mathfrak{L}^{\boldsymbol{H}_{1}} f\left(z_{1}, \ldots, z_{j-1}, \cdot, z_{j+1}, \ldots, z_{n}, \cdot\right)\right)\left(z_{j}, t\right) .
$$

So, if γ is a bounded Borel function on [0, $+\infty$) and $\Gamma \in S^{\prime}\left(\boldsymbol{H}_{1}\right)$ is the kernel of the operator $\gamma\left(\mathfrak{L}^{\boldsymbol{H}_{1}}\right)$, we have

$$
\left(\gamma\left(\mathfrak{L}_{j}^{\boldsymbol{H}_{n}}\right) f\right)(z, t)=\left(f\left(z_{1}, \ldots, z_{j-1}, \cdot, z_{j+1}, \ldots, z_{n}, \cdot\right) *_{\boldsymbol{H}_{1}} \Gamma\right)\left(z_{j}, t\right) .
$$

Moreover, for $n \geqslant 2$, if β is a bounded Borel function on \boldsymbol{R}^{n-1} and $B \in$ $S^{\prime}\left(\boldsymbol{H}_{n-1}\right)$ is the kernel of the operator $\beta\left(\mathfrak{L}_{1}^{\boldsymbol{H}_{n-1}}, \ldots, \mathfrak{L}_{n-1}^{\boldsymbol{H}_{n-1}}\right)$, we have

$$
\begin{equation*}
\left(\beta\left(\mathfrak{L}_{1}^{\boldsymbol{H}_{n}}, \ldots, \mathfrak{L}_{n-1}^{\boldsymbol{H}_{n}}\right) f\right)(z, t)=\left(f\left(\cdot, \ldots, \cdot, z_{n}, \cdot\right) *_{\boldsymbol{H}_{n-1}} B\right)\left(z_{1}, \ldots, z_{n-1}, t\right) . \tag{4.10}
\end{equation*}
$$

We prove part (a) of Theorem 1.1 by induction on n. We know that for $n=1$ it is verified (see [5, Theorem 2.4]), so we take $n \geqslant 2$ and suppose that the statement holds for any integer up to $n-1$. Fix $h \in S\left(\boldsymbol{R}^{n}\right)$. By Theorem 3.1 there exist $\varphi_{k} \in S\left(\boldsymbol{R}^{n-1}\right)$ and $\psi_{k} \in S(\boldsymbol{R}) \quad(k \in \boldsymbol{N})$ such that the series $\sum_{k=0}^{+\infty}\left(\varphi_{k} \otimes \psi_{k}\right)$ converges absolutely to h in $S\left(\boldsymbol{R}^{n}\right)$. We denote by Φ_{k}, Ψ_{k} and H_{k} the kernels of the operators $\varphi_{k}\left(\mathfrak{L}_{1}^{\boldsymbol{H}_{n-1}}, \ldots, \mathfrak{L}_{n-1}^{\boldsymbol{H}_{n-1}}\right), \psi_{k}\left(\mathfrak{L}^{\boldsymbol{H}_{1}}\right)$ and $\left(\varphi_{k} \otimes \psi_{k}\right)\left(\mathfrak{L}_{1}^{\boldsymbol{H}_{n}}, \ldots, \mathfrak{L}_{n}^{\boldsymbol{H}_{n}}\right)$, respectively. By the inductive hypothesis $\Phi_{k} \in$ $S\left(\boldsymbol{H}_{n-1}\right)$ and $\Psi_{k} \in S\left(\boldsymbol{H}_{1}\right)$. Fix $f \in S\left(\boldsymbol{H}_{n}\right)$ and $(z, t) \in \boldsymbol{H}_{n}$. By (4.10) and (2.4) we have

$$
\begin{aligned}
& \left(\varphi_{k}\left(\mathfrak{L}_{1}^{\boldsymbol{H}_{n}}, \ldots, \mathfrak{L}_{n-1}^{\boldsymbol{H}_{n}}\right) f\right)(z, t) \\
& =\left(f\left(\cdot, \ldots, \cdot, z_{n}, \cdot\right) *_{\boldsymbol{H}_{n-1}} \Phi_{k}\right)\left(z_{1}, \ldots, z_{n-1}, t\right) \\
& =\int_{\boldsymbol{H}_{n-1}} f\left(z_{1}-\zeta_{1}, \ldots, z_{n-1}-\zeta_{n-1}, z_{n}, t-\tau-2 \operatorname{Im}\left(\sum_{j=1}^{n-1} z_{j} \bar{\xi}_{j}\right)\right) \\
& \quad \cdot \Phi_{k}\left(\zeta_{1}, \ldots, \zeta_{n-1}, \tau\right) d \zeta_{1} \ldots d \zeta_{n-1} d \tau
\end{aligned}
$$

Then, by applying also (4.9), we obtain

$$
\begin{aligned}
\left(f *_{\boldsymbol{H}_{n}} H_{k}\right)(z, t)= & \left(\psi_{k}\left(\mathfrak{L}_{n}^{\boldsymbol{H}_{n}}\right) \varphi_{k}\left(\mathfrak{L}_{1}^{\boldsymbol{H}_{n}}, \ldots, \mathfrak{L}_{n-1}^{\boldsymbol{H}_{n}}\right) f\right)(z, t) \\
= & \left(\left(\varphi_{k}\left(\mathfrak{L}_{1}^{\boldsymbol{H}_{n}}, \ldots, \mathfrak{L}_{n-1}^{\boldsymbol{H}_{n}}\right) f\right)\left(z_{1}, \ldots, z_{n-1}, \cdot, \cdot\right) *_{\boldsymbol{H}_{1}} \Psi_{k}\right)\left(z_{n}, t\right) \\
= & \int_{\boldsymbol{H}_{1}}\left(\int_{\boldsymbol{H}_{n-1}} f\left(z_{1}-\zeta_{1}, \ldots, z_{n}-\zeta_{n}, t-\vartheta-\tau-2 \operatorname{Im}\left(\sum_{j=1}^{n} z_{j} \bar{\zeta}_{j}\right)\right)\right. \\
& \left.\cdot \boldsymbol{\Phi}_{k}\left(\zeta_{1}, \ldots, \zeta_{n-1}, \tau\right) d \zeta_{1} \ldots d \zeta_{n-1} d \tau\right) \Psi_{k}\left(\zeta_{n}, \vartheta\right) d \zeta_{n} d \vartheta .
\end{aligned}
$$

The change of variable $\sigma=\tau+\vartheta$ in the inner integral leads to

$$
\begin{aligned}
\left(f *_{\boldsymbol{H}_{n}} H_{k}\right)(z, t)= & \int_{\boldsymbol{H}_{1}}\left(\int_{\boldsymbol{H}_{n-1}} f\left(z_{1}-\zeta_{1}, \ldots, z_{n}-\zeta_{n}, t-\sigma-2 \operatorname{Im}\left(\sum_{j=1}^{n} z_{j} \xi_{j}\right)\right)\right. \\
& \left.\cdot \Phi_{k}\left(\zeta_{1}, \ldots, \zeta_{n-1}, \sigma-\vartheta\right) d \zeta_{1} \ldots d \zeta_{n-1} d \sigma\right) \Psi_{k}\left(\zeta_{n}, \vartheta\right) d \zeta_{n} d \vartheta \\
= & \int_{\boldsymbol{H}_{n}} f(z-\zeta, t-\sigma-2 \operatorname{Im}\langle z, \zeta\rangle) \\
& \cdot\left(\int_{\boldsymbol{R}} \Phi_{k}\left(\zeta_{1}, \ldots, \zeta_{n-1}, \sigma-\vartheta\right) \Psi_{k}\left(\zeta_{n}, \vartheta\right) d \vartheta\right) d \zeta d \sigma
\end{aligned}
$$

Therefore, the kernel H_{k} is the Schwartz function on \boldsymbol{H}_{n} defined by

$$
H_{k}(z, t)=\int_{\boldsymbol{R}} \Phi_{k}\left(z_{1}, \ldots, z_{n-1}, t-\tau\right) \Psi_{k}\left(z_{n}, \tau\right) d \tau
$$

Fix $I=\left(i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}, l\right) \in N^{2 n+1}$. By (2.6), (2.1) and (2.2) we have that $X^{I}=V U$ where $U=Z_{1}^{i_{1}} \ldots Z_{n-1}^{i_{n-1}} \bar{Z}_{1}^{j_{1}} \ldots \bar{Z}_{n-1}^{j_{n-1}}$ and $V=Z_{n}^{i_{n}} \bar{Z}_{n}^{j_{n}} T^{l}$. For every $k \in \boldsymbol{N}$ and $(z, t) \in \boldsymbol{H}_{n}$ we have

$$
\begin{aligned}
U H_{k}(z, t) & =\int_{\boldsymbol{R}} U \Phi_{k}\left(z_{1}, \ldots, z_{n-1}, t-\tau\right) \Psi_{k}\left(z_{n}, \tau\right) d \tau \\
& =\int_{\boldsymbol{R}} U \Phi_{k}\left(z_{1}, \ldots, z_{n-1}, \tau\right) \Psi_{k}\left(z_{n}, t-\tau\right) d \tau
\end{aligned}
$$

and hence

$$
\begin{align*}
X^{I} H_{k}(z, t) & =\int_{\boldsymbol{R}} U \Phi_{k}\left(z_{1}, \ldots, z_{n-1}, \tau\right) V \Psi_{k}\left(z_{n}, t-\tau\right) d \tau \tag{4.11}\\
& =\int_{\boldsymbol{R}} U \Phi_{k}\left(z_{1}, \ldots, z_{n-1}, t-\tau\right) V \Psi_{k}\left(z_{n}, \tau\right) d \tau
\end{align*}
$$

Fix $N_{0} \in \boldsymbol{N}$. By the inductive hypothesis there exist $C>0$ and $L \in \boldsymbol{N}$, which do not depend on k, such that

$$
\begin{equation*}
\left|U \Phi_{k}(u)\right| \leqslant C\left(1+|u|_{\boldsymbol{H}_{n-1}}\right)^{-\left(N_{0}+3\right)}\left\|\varphi_{k}\right\|_{\left(L, \boldsymbol{R}^{n-1}\right)} \tag{4.12}
\end{equation*}
$$

for every $u \in \boldsymbol{H}_{n-1}$ and

$$
\begin{equation*}
\left|V \Psi_{k}(v)\right| \leqslant C\left(1+|v|_{\boldsymbol{H}_{1}}\right)^{-\left(N_{0}+3\right)}\left\|\psi_{k}\right\|_{(L, \boldsymbol{R})} \tag{4.13}
\end{equation*}
$$

for every $v \in \boldsymbol{H}_{1}$. Fix $x=(z, t) \in \boldsymbol{H}_{n}$, put $u=\left(z_{1}, \ldots, z_{n-1}, t\right) \in \boldsymbol{H}_{n-1}$ and define the function $P: \boldsymbol{R} \ni \tau \mapsto(0, \ldots, 0, \tau) \in \boldsymbol{H}_{n-1}$. Note that

$$
\left(z_{1}, \ldots, z_{n-1}, t-\tau\right)=u \cdot P(\tau)^{-1}
$$

for every $\tau \in \boldsymbol{R}$. Moreover, by (2.3) we observe that

$$
\left|\left(z_{n}, \tau\right)\right|_{\boldsymbol{H}_{1}} \simeq\left|z_{n}\right|+|\tau|^{1 / 2}=\left|z_{n}\right|+|P(\tau)|_{\boldsymbol{H}_{n-1}}
$$

for every $\tau \in \boldsymbol{R}$. Then, by applying (4.11), (4.12) and (4.13), we have

$$
\begin{aligned}
\left|X^{I} H_{k}(x)\right| \leqslant C\left\|\varphi_{k}\right\|_{\left(L, \boldsymbol{R}^{n-1}\right)}\left\|\psi_{k}\right\|_{(L, \boldsymbol{R})} \int_{\boldsymbol{R}}(1+ & \left.\left|u \cdot P(\tau)^{-1}\right|_{\boldsymbol{H}_{n-1}}\right)^{-\left(N_{0}+3\right)} \\
& \left(1+\left|z_{n}\right|+|P(\tau)|_{\boldsymbol{H}_{n-1}}\right)^{-\left(N_{0}+3\right)} d \tau
\end{aligned}
$$

But Lemma 2.1, applied in \boldsymbol{H}_{n-1} with $v=P(\tau)$ and $a=1+\left|z_{n}\right|$, yields

$$
\begin{aligned}
\left(1+\left|z_{n}\right|+|P(\tau)|_{\boldsymbol{H}_{n-1}}\right)^{-N_{0}} & \leqslant\left(1+\left|z_{n}\right|+|u|_{\boldsymbol{H}_{n-1}}\right)^{-N_{0}}\left(1+\left|u \cdot P(\tau)^{-1}\right|_{\boldsymbol{H}_{n-1}}\right)^{N_{0}} \\
& \simeq\left(1+|x|_{\boldsymbol{H}_{n}}\right)^{-N_{0}}\left(1+\left|u \cdot P(\tau)^{-1}\right|_{\boldsymbol{H}_{n-1}}\right)^{N_{0}}
\end{aligned}
$$

for every $\tau \in \boldsymbol{R}$. By this inequality and (3.8) we have

$$
\begin{aligned}
& \left|X^{I} H_{k}(x)\right| \leqslant C\left\|\varphi_{k} \otimes \psi_{k}\right\|_{\left(2 L+1, \boldsymbol{R}^{n}\right)}\left(1+|x|_{\boldsymbol{H}_{n}}\right)^{-N_{0}} . \\
& \quad \int_{\boldsymbol{R}}\left(1+\left|u \cdot P(\tau)^{-1}\right|_{\boldsymbol{H}_{n-1}}\right)^{-3}\left(1+\left|z_{n}\right|+|\tau|^{1 / 2}\right)^{-3} d \tau .
\end{aligned}
$$

The preceding integral is bounded by the constant $\int_{\boldsymbol{R}}\left(1+|\tau|^{1 / 2}\right)^{-3} d \tau$. Since I and N_{0} are arbitrary, for every $N \in \boldsymbol{N}$ there exist $C>0$ and $N^{\prime} \in \boldsymbol{N}$ such that

$$
\left\|H_{k}\right\|_{\left(N, \boldsymbol{H}_{n}\right)} \leqslant C\left\|\varphi_{k} \otimes \psi_{k}\right\|_{\left(N^{\prime}, \boldsymbol{R}^{n}\right)}
$$

for every $k \in \boldsymbol{N}$. Therefore, since the series $\sum_{k=0}^{+\infty}\left(\varphi_{k} \otimes \psi_{k}\right)$ converges absolutely to h in $S\left(\boldsymbol{R}^{n}\right)$, the series $\sum_{k=0}^{+\infty} H_{k}$ converges absolutely in $S\left(\boldsymbol{H}_{n}\right)$ to some function F. Then, for a fixed $f \in S\left(\boldsymbol{H}_{n}\right)$, the series $\sum_{k=0}^{+\infty}\left(f{ }_{\boldsymbol{H}_{n}} H_{k}\right)$ converges to $f{ }_{\boldsymbol{H}_{n}} F$ in $S\left(\boldsymbol{H}_{n}\right)$, since convolution is continuous from $S\left(\boldsymbol{H}_{n}\right) \times S\left(\boldsymbol{H}_{n}\right)$ to $S\left(\boldsymbol{H}_{n}\right)$ (see e.g. [4, Proposition 1.47]). On the other hand, the series $\sum_{k=0}^{+\infty}\left(f{ }_{\boldsymbol{H}_{n}} H_{k}\right)$ converges to $f{ }^{*} \boldsymbol{H}_{n} H$ in $L^{2}\left(\boldsymbol{H}_{n}\right)$ by the spectral theorem. Since f is an arbitrary function in $S\left(\boldsymbol{H}_{n}\right)$, we conclude that $H=F \in S\left(\boldsymbol{H}_{n}\right)$. The boundedness of the operator $h \mapsto H$ is an easy consequence of the closed graph theorem.

Now we prove part (b). Fix $m \in S\left(\boldsymbol{R}^{n+1}\right)$. By Theorem 3.1 there exist $h_{k} \in$ $S\left(\boldsymbol{R}^{n}\right)$ and $\gamma_{k} \in S(\boldsymbol{R})(k \in \boldsymbol{N})$ such that the series $\sum_{k=0}^{+\infty}\left(h_{k} \otimes \gamma_{k}\right)$ converges absolutely to m in $S\left(\boldsymbol{R}^{n+1}\right)$. We denote by H_{k} and M_{k} the kernels of the operators $h_{k}\left(\mathfrak{L}_{1}^{\boldsymbol{H}_{n}}, \ldots, \mathfrak{L}_{n}^{\boldsymbol{H}_{n}}\right)$ and $\left(h_{k} \otimes \gamma_{k}\right)\left(\mathfrak{L}_{1}^{\boldsymbol{H}_{n}}, \ldots, \mathfrak{L}_{n}^{\boldsymbol{H}_{n}},-i T\right)$, respectively. Note that $H_{k} \in S\left(\boldsymbol{H}_{n}\right)$ by part (a). Moreover, we denote by Γ_{k} the kernel of the operator $\gamma_{k}\left(-i \frac{d}{d t}\right)$ which acts on $L^{2}(\boldsymbol{R})$. Fix $f \in S\left(\boldsymbol{H}_{n}\right)$ and $(z, t) \in \boldsymbol{H}_{n}$. We observe that $\Gamma_{k}=\mathscr{F}^{-1} \gamma_{k} \in S(\boldsymbol{R})$ and

$$
\left(\gamma_{k}(-i T) f\right)(z, t)=\left(f(z, \cdot) *_{R} \Gamma_{k}\right)(t) .
$$

Then

$$
\begin{aligned}
& \left(f *{ }_{\boldsymbol{H}_{n}} M_{k}\right)(z, t) \\
& =\left(\left(f *_{\boldsymbol{H}_{n}} H_{k}\right)(z, \cdot) *{ }_{\boldsymbol{R}} \Gamma_{k}\right)(t) \\
& =\int_{\boldsymbol{R}}\left(f *_{\boldsymbol{H}_{n}} H_{k}\right)(z, t-\tau) \Gamma_{k}(\tau) d \tau \\
& =\int_{\boldsymbol{R}}\left(\int_{\boldsymbol{H}_{n}} f(z-\zeta, t-\tau-\vartheta-2 \operatorname{Im}\langle z, \zeta\rangle) H_{k}(\zeta, \vartheta) d \zeta d \vartheta\right) \Gamma_{k}(\tau) d \tau \\
& =\int_{\boldsymbol{R}}\left(\int_{\boldsymbol{H}_{n}} f(z-\zeta, t-\sigma-2 \operatorname{Im}\langle z, \zeta\rangle) H_{k}(\zeta, \sigma-\tau) d \zeta d \sigma\right) \Gamma_{k}(\tau) d \tau \\
& =\int_{\boldsymbol{H}_{n}} f(z-\zeta, t-\sigma-2 \operatorname{Im}\langle z, \zeta\rangle)\left(\int_{\boldsymbol{R}} H_{k}(\zeta, \sigma-\tau) \Gamma_{k}(\tau) d \tau\right) d \zeta d \sigma .
\end{aligned}
$$

Therefore, the kernel M_{k} is the Schwartz function on \boldsymbol{H}_{n} defined by

$$
M_{k}(z, t)=\int_{\boldsymbol{R}} H_{k}(z, t-\tau) \Gamma_{k}(\tau) d \tau
$$

Fix $I \in N^{2 n+1}$ and $N_{0} \in \boldsymbol{N}$. By part (a) and by the continuity of the operator $\mathfrak{F}: S(\boldsymbol{R}) \rightarrow S(\boldsymbol{R})$, there exist $C>0$ and $L \in \boldsymbol{N}$, which do not depend on k, such that

$$
\left|X^{I} H_{k}(x)\right| \leqslant C\left(1+|x|_{\boldsymbol{H}_{n}}\right)^{-N_{0}}\left\|h_{k}\right\|_{\left(L, \boldsymbol{R}^{n}\right)}
$$

for every $x \in \boldsymbol{H}_{n}$ and

$$
\left|\Gamma_{k}(\tau)\right| \leqslant C\left(1+|\tau|^{1 / 2}\right)^{-\left(N_{0}+3\right)}\left\|\gamma_{k}\right\|_{(L, \boldsymbol{R})}
$$

for every $\tau \in \boldsymbol{R}$. Fix $x=(z, t) \in \boldsymbol{H}_{n}$. Then

$$
\begin{aligned}
\left|X^{I} M_{k}(x)\right|= & \left|\int_{\boldsymbol{R}} X^{I} H_{k}(z, t-\tau) \Gamma_{k}(\tau) d \tau\right| \\
\leqslant & C\left\|h_{k}\right\|_{\left(L, \boldsymbol{R}^{n}\right)}\left\|\gamma_{k}\right\|_{(L, \boldsymbol{R})} \int_{\boldsymbol{R}}\left(1+|(z, t-\tau)|_{\boldsymbol{H}_{n}}\right)^{-N_{0}}\left(1+|\tau|^{1 / 2}\right)^{-\left(N_{0}+3\right)} d \tau \\
= & C\left\|h_{k}\right\|_{\left(L, \boldsymbol{R}^{n}\right)}\left\|\gamma_{k}\right\|_{(L, \boldsymbol{R})} \int_{\boldsymbol{R}}\left(1+\left|(z, t)(0, \tau)^{-1}\right|_{\boldsymbol{H}_{n}}\right)^{-N_{0}} \\
& \cdot\left(1+|(0, \tau)|_{\boldsymbol{H}_{n}}\right)^{-N_{0}}\left(1+|\tau|^{1 / 2}\right)^{-3} d \tau .
\end{aligned}
$$

But Lemma 2.1, applied with $u=(z, t), v=(0, \tau)$ and $a=1$, yields

$$
\left(1+\left|(z, t)(0, \tau)^{-1}\right|_{\boldsymbol{H}_{n}}\right)^{-N_{0}}\left(1+|(0, \tau)|_{\boldsymbol{H}_{n}}\right)^{-N_{0}} \leqslant\left(1+|(z, t)|_{\boldsymbol{H}_{n}}\right)^{-N_{0}}
$$

for every $\tau \in \boldsymbol{R}$. By this inequality and (3.8) we have

$$
\left|X^{I} M_{k}(x)\right| \leqslant C\left\|h_{k} \otimes \gamma_{k}\right\|_{\left(2 L+1, \boldsymbol{R}^{n+1}\right)}\left(1+|x|_{\boldsymbol{H}_{n}}\right)^{-N_{0}} .
$$

Since I and N_{0} are arbitrary, for every $N \in \boldsymbol{N}$ there exist $C>0$ and $N^{\prime} \in \boldsymbol{N}$ such that

$$
\left\|M_{k}\right\|_{\left(N, \boldsymbol{H}_{n}\right)} \leqslant C\left\|h_{k} \otimes \gamma_{k}\right\|_{\left(N^{\prime}, \boldsymbol{R}^{n+1}\right)}
$$

for every $k \in \boldsymbol{N}$. From now on, we only have to apply the argument in the final part of the proof of part (a).

Part (c) is a corollary of part (b). We only need to observe that

$$
g(\mathfrak{L},-i T)=m\left(\mathfrak{L}_{1}, \ldots, \mathfrak{L}_{n},-i T\right)
$$

where m is the function defined by

$$
m\left(x_{1}, \ldots, x_{n+1}\right)=g\left(x_{1}+\ldots+x_{n}, x_{n+1}\right) .
$$

It is easy to verify that if $g \in S\left(\boldsymbol{R}^{2}\right)$ then $m \in S\left(\boldsymbol{R}^{n+1}\right)$ and

$$
\|m\|_{\left(N, \boldsymbol{R}^{n+1}\right)} \leqslant\|g\|_{\left(n(N+1), \boldsymbol{R}^{2}\right)}
$$

for every $N \in \boldsymbol{N}$.

REFERENCES

[1] C. Benson - J. Jenkins - G. Ratcliff, The spherical transform of a Schwartz function on the Heisenberg group, J. Funct. Anal., 154 (1998), 379-423.
[2] C. Benson - J. Jenkins - G. Ratcliff - T. Worku, Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math., 71 (1996), 305-328.
[3] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc., 83 (1981), 69-70.
[4] G. B. Folland - E. M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, Princeton, 1982.
[5] A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math., 78 (1984), 253-266.
[6] A. Korányi - S. Vági - G. V. Welland, Remarks on the Cauchy integral and the conjugate function in generalized half-planes, J. Math. Mech., 19 (1970), 10691081.
[7] G. Mauceri, Maximal operators and Riesz means on stratified groups, Symposia Math., 29 (1987), 47-62.
[8] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967.

Dipartimento di Matematica, Università di Genova
Via Dodecaneso 35, 16146 Genova, Italy
E-mail: veneruso@dima.unige.it

