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Pronormal and Subnormal Subgroups and Permutability.

JAMES BEIDLEMAN (*) - HERMANN HEINEKEN

Dedicated to Professor G. Zacher on the occasion of his seventy-fifth birthday.

Sunto. – Trattiamo gruppi finiti che soddisfano una delle condizioni seguenti: (1) I
sottogruppi massimali permutano con i sottogruppi subnormali, (2) I sottogruppi
massimali ed i p-sottogruppi di Sylow (pE7) permutano con i sottogruppi
subnormali.

Summary. – We describe the finite groups satisfying one of the following conditions: all
maximal subgroups permute with all subnormal subgroups, (2) all maximal sub-
groups and all Sylow p-subgroups for pE7 permute with all subnormal sub-
groups.

1. – Introduction and statement of results.

The subnormal subgroups and the pronormal subgroups of a group are in
some sense opposite families of subgroups. Only normal subgroups are both
pronormal and subnormal, and both embedding properties are inherited to
quotient groups and subgroups. In finite groups prominent examples of
pronormal groups include Sylow p-subgroups, their normalizers, and maximal
subgroups. Permutability of subnormal subgroups with certain classes of
pronormal subgroups in finite groups has been the subject of many publica-
tions, we mention here only Agrawal [1] for Sylow subgroups, and the authors
[5] for the Carter subgroups of a soluble group, together with permutability of
subnormal subgroups with every subgroup (see Zacher [17] and Beidleman,
Brewster and Robinson [4]).

As a first case of pronormal subgroups we will consider here the maximal
subgroups, they are always pronormal, no restriction on the structure of the
group is needed. R. Maier has considered subgroups that are permutable with
all maximal subgroups in finite groups and developed a supersolubility criteri-
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on (see [12]). Our first aim will be to characterize the finite groups in which all
maximal subgroups and all subnormal subgroups permute with each other. As
was to be expected, this leads to a characterization of the Frattini quotient
group. In fact, we obtain the following

THEOREM A. – Let G be a finite group. Then the following statements are
equivalent:

(i) All subnormal subgroups of G permute with all maximal subgroups
of G;

(ii) all chief factors of the Frattini quotient group G/F(G) are simple;

(iiia) All soluble quotient groups of G are supersoluble,

(iiib) all perfect subnormal subgroups of G are normal,

(iiic) G/F(G) is an extension of a direct product of non-abelian simple
groups by a supersoluble group.

Notice that there is, for example, a non-split extension of an elementary
abelian group of order 16 by A5 , it is therefore difficult to say something about
the Frattini subgroup. In cases of solubility, however, we can characterize the
whole group.

COROLLARY A. – All subnormal subgroups of the polycyclic group G per-
mute with all maximal subgroups if and only if G is supersoluble.

In certain other cases the maximal subgroups alone do not suffice to deter-
mine the structure of G below F(G). We add permutability with certain Sylow
subgroups.

THEOREM B. – Let G be a finite group. Then the following statements are
equivalent:

(i) All subnormal subgroups of G permute with all maximal subgroups
and with all Sylow p-subgroups of G , where pE7;

(iia) All chief factors of G are simple groups, the product of all perfect
subgroups is a central extension of a direct product of simple groups,

(iib) If N is a normal subgroup of G and F/N the Fitting subgroup of
G/N , then every subgroup of F/N is permutable with every Sylow-p-subgroup
of G/N , for pE7.

2. – Permutability with maximal subgroups.

PROOF OF THEOREM A. – Assume first that all subnormal subgroups per-
mute with all maximal subgroups of G and let M be a maximal subgroup of G .
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There is a minimal normal subgroup T/MG of G/MG , where MG is the intersec-
tion of all conjugates of M . If T/MG is abelian, we know that TOM4MG .
Every subgroup U satisfying MG ’U’T is subnormal, for UcMG we have in
addition UM4MU(4G) and so U4T . This shows that T/MG is cyclic of order
some prime p and G/T , being isomorphic to some subgroup of Aut(T/MG ), is
cyclic. If T/MG is nonabelian, it is a direct product of simple nonabelian groups
Si /MG which are all isomorphic. Assume that there are at least two such direct
factors, S1 /MG and S2 /MG . We look for a new maximal subgroup N of G in the
following way. Let V/MG c1 be a Sylow p-subgroup of T/MG and K be the nor-
malizer of V . By the Frattini argument, KT4G , and by construction MG ’K .
Both statements remain true if K is substituted with a maximal subgroup N
containing K , in particular, NG 4MG . Also NOSi cMG for each Si . By maxi-
mality of N we have G4NS1 4NS2 and by the modular law T4 (TON)S1 4

(TON)S2 . Let a be an element of S1 0MG . Then there is an element b�S2

such that Nb 21 4Na and so ba�TON . Now [ba , (NOS1 ) ]MG 4 [a , (NO
S1 ) ] MG ’S1 , and since a is arbitrary in the nonabelian simple group S1 and
NOS1 c1, we obtain S1 ’ (NOS1 ) and T’N , a contradiction. So T/MG is sim-
ple as stated. So (ii) follows from (i).

Assume now that G satisfies (ii) and consider a soluble quotient group G/L .
Then all non-Frattini chief factors of G/L are of prime order and so all maxi-
mal subgroups of G/L have index a prime. This is known to be equivalent to be-
ing supersoluble (see Huppert [10]. This shows (iiia).

If D/E is a nonabelian chief factor of G , there is a maximal subgroup M of G
such that MG 4E and consequently MD4G , and D/E must be simple. If X is a
perfect subnormal subgroup of G possessing only one maximal normal sub-
group, Y say, then X G /Y G is a nonabelian chief factor of G , and by its simplic-
ity we have that X is a normal subgroup. This shows (iiib).

The construction of all finite simple groups has shown as well that the
Schreier conjecture is true: If Z is a finite simple group, then Aut(Z) /Inn(Z) is
soluble (for this see Gorenstein [9], Theorem 1.46). So if D/E is a nonabelian
chief factor of G , then (G/E) /CG/E (D/E) is soluble. Consequently, if D/E is a
chief factor which is supplemented, i. e. G possesses a maximal subgroup M
such that DM = G and E’MG , then G/DMG is isomorphic to a subgroup of
Aut(D/E) and hence soluble. We obtain that all chief factors belonging to the
soluble radical of the maximal perfect subgroup of G are not supplemented,
and (iiic) follows.

Assume now that (iiia),(iiib), and (iiic) are satisfied for the group G . We
consider any subnormal subgroup S of G and consider a maximal subgroup
M*O S . If the minimal normal subgroup T/MG of G/MG is abelian, it is the only
minimal normal subgroup of this quotient group, and it is self-centralizing and
of order a prime p . The subnormal subgroup SMG /MG possesses a p-subgroup
K/MG as minimal normal subgroup, otherwise T/MG can not be self-centraliz-
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ing. Again since T/MG is self-centralizing, it is the maximal normal p-subgroup
of G/MG and so T/MG 4TK/MG , further T’SMG . Now MS4MMG S4MT4

TM4SMG M4SM . This in particular clears the soluble case. If, on the other
hand, T/MG is nonabelian, then arguing as before we see that SMG /MG pos-
sesses a normal subgroup K/MG isomorphic to the quotient group T/MG . By
condition (iiib), K/MG is a normal subgroup of G/MG . T/MG need not be the
only minimal normal subgroup of G/MG , but there is obviously no proper nor-
mal subgroup of G/MG which is contained in M/MG . So SM4SMG M4KM4

MK4MMG S4MS . This shows (i).

PROOF OF COROLLARY A. – Finite soluble groups H are supersoluble if and
only if all subnormal subgroups permute with all maximal subgroups of H , by
Theorem A. Now by a theorem of Baer (see Satz 3.2 of [3]) polycyclic groups G
are supersoluble if and only if all finite quotient groups are. This proves Corol-
lary A.

REMARK 1. – We now consider three classes of groups which are very much
related to Theorems A and B. A subgroup H of G is said to be Sylow or S-per-
mutable, if HP4PH for all Sylow subgroups P of G . Kegel [11] proved that S-
permutable subgroups of G are subnormal. Therefore, S-permutability is tran-
sitive in G if and only if every subnormal subgroup of G is S-permutable.
Groups of this type are called PST-groups (see [1, 2, 5, 16,]). Two related class-
es of groups are the classes of PT- and T-groups. A group G is called a PT (re-
sp. T)-group provided that every subnormal subgroup of G is permutable (re-
sp. normal) (see [4, 5, 7, 13, 14, 15, 16, 17]).

Next we consider certain localizations of PST, PT and T-groups. For the
prime p we introduce the classes Np , Mp and Lp as follows: Np is the class of all
groups G such that if N is a normal subgroup of G , then every subgroup of
Op (G/N) permutes with all the Sylow subgroups of G/N;

Mp is the class of all groups G such that if N is a normal subgroup of G ,
then every subgroup of Op (G/N) is a permutable subgroup of G/N;

Lp is the class of all finite groups G such that if N is a normal subgroup of
G , then every subgroup of Op (G/N) is a normal subgroup of G/N .

From Theorem A of [5] and the proofs of Theorems 3.1 and 3.2 of Robinson
[16] the following two theorems can be proven.

THEOREM 1. – Let G be a finite group and let D be the limit of the derived
series of G. Then

(i) G is a PST-group if and only if G is an Np-group for all primes p
and D/Z(D) is a direct product of G-invariant simple groups;

(ii) G is a PT-group if and only if G is a PST-group and an Mp-group
for all primes p;
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(iii) G is a T-group if and only if G is a PST-group and an Lp-group for
all primes p.

THEOREM 2. – Let G be a finite group. Then G is a PST-group if and
only if its non-abelian chief factors are simple and it is an Np-group for all
primes p.

As a consequence of Theorem A and part (i) of Theorem 1 we obtain

COROLLARY 1. – Let G be a finite PST-group. Then all the subnormal sub-
groups of G permute with all the maximal subgroups of G.

3. – Additional permutability: Sylow subgroups.

PROOF OF THEOREM B. – Assume that statement (i) holds for the group G .
Then all chief factors of G/F(G) are simple groups by Theorem A. Choose
some chief factor H/K of G where K’F(G). The subgroups S satisfying K’S’
H are subnormal subgroups of G . If H/K is of odd order, the permutability of
all these subgroups S with all Sylow-2-subgroups of G yields that all S are nor-
malized by all Sylow-2-subgroups of G and especially by the Sylow 2-sub-
groups of the maximal perfect subgroup D of G . So every element of a Sylow
2-subgroup of D , and every element of D itself, induces a power automorphism
in H/K . So H/K’Z(D/K) if H/K is of odd order. If, on the other hand, H/K is of
order a power of 2 , we have D4D1 D2 where D1 is the maximal perfect sub-
group of D that is generated by its Sylow-3-subgroups and D2 is the maximal
perfect subgroup of D that is generated by its Sylow 5-subgroups. In analogy
to the argument in the beginning we find that the elements of all Sylow 3-sub-
groups and of all Sylow 5-subgroups of G/K and consequently the elements of
all Sylow 3-subgroups of D1 K/K and of all Sylow 5-subgroups of D2 K/K induce
power automorphisms in H/K . By perfectness of D1 K/K and of D2 K/K we have
(D1 K/K)(D2 K/K) ’C(H/K) and H/K’Z(D/K). We deduce that DOF(G) is
contained in the hypercenter of D , and since D is perfect, we have that the hy-
percenter and the center of D coincide; so D/Z(D) is a direct product of simple
normal subgroups of G/Z(D).

For the remaining statement we have to use the detailed information given
by the Atlas [6]. Consider now a minimal perfect normal subgroup P of G . By
the preceding we know that Z(P) is the only maximal normal subgroup of P , in
other words, Z(P) is a quotient group of the Schur multiplier of P/Z(P). Let
H/K be a chief factor of G where H’Z(P). Considering Table 1 (page viii) of
the Atlas [6] for the sporadic groups and Table 5 (page xvi) for the Chevalley
groups and finally Gorenstein [9; p. 302], we find that elementary abelian quo-
tients of the Schur multiplier are cyclic or isomorphic to C2 3C2 or C3 3C3 . In
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the first noncyclic case the permutability property with Sylow 3-subgroups
yields that a chief factor of G of this form does not appear, likewise the per-
mutability property with Sylow 2-subgroups leads to the fact that chief factors
isomorphic to C3 3C3 do not appear. So all G-chief factors H/K with H’Z(P)
are cyclic. Since the maximal perfect subgroup D of G is the product of all min-
imal perfect normal subgroups P , we obtain as well that all G-chief factors
H/K with H’Z(D) are cyclic. We have shown (iia).

If N is some normal subgroup of G and F/N is the Fitting subgroup of G/N ,
then every subgroup S satisfying N’S’F is subnormal in G , and the per-
mutability with the Sylow p-subgroups, pE7, of G entails the permutability of
S/N with the Sylow p-subgroups of G/N . This shows (iib).

Assume now that (iia) and (iib) hold for a group G . Then all subnormal sub-
groups of G permute with all maximal subgroups of G by Theorem A. It re-
mains to show that all Sylow p-subgroups of G permute with all subnormal
subgroups of G , pE7. Assume now that this is false and that G is a counterex-
ample of smallest order. Consider a subnormal subgroup S , again of smallest
order, which is not permutable with a given Sylow p-subgroup W of G . By min-
imality of G we know that S does not contain a proper normal subgroup of G ,
in particular, there is no subnormal perfect subgroup in S , since such a sub-
group would be normal in G by (iia) and Theorem A. Therefore S is soluble and
even supersoluble. Also, by the minimality of S , there is only one maximal nor-
mal subgroup of S . So S/S 8 is a cyclic r-group for some prime r and S 8 is a su-
persoluble group of order prime to r .

We will show first that rcp: We know that WOS is a Sylow p-subgroup of
S . If r4p , we obtain S4S 8 (WOS) and WS4WS 8 (WOS) 4S 8 W(WOS) 4

S 8 (WOS) W4SW , the desired contradiction.
We may assume now rcp . Let T4 (S 8 )G and U4S G . Then T is an r 8-

group and U/T is an r-group, so U/T is contained in the Fitting subgroup of
G/T . By (iib), the subgroup ST/T of G/T is permutable with WT/T , and since
pcr this means that W normalizes ST . But also S is characteristic in ST , it is
the smallest normal subgroup of ST whose index in ST is prime to r . We de-
duce that W normalizes S , the final contradiction. So (i) follows from (iia), (iib);
the proof is complete.

We now describe the groups of Theorem B in more detail.

PROPOSITION C. – Let G be a finite soluble group. Then all the subnormal
subgroups of G permute with all the maximal subgroups of G and all the Sy-
low p-subgroups for pE7 if and only if the set of primes p dividing the order
of G is partitioned into three (not necessarily non-empty) subsets S 1 , S 2 and
S 3 with the following properties:

(i) G is supersoluble,
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(ii) ]2(Op’S 1 ’ ]2, 3 , 5(,

(iii) ]2, 3 , 5(OS 3 is empty,

(iv) If Hi is a S i-Hall subgroup of G, then

(iva) H2 is a normal abelian subgroup of G and H1 induces power auto-
morphisms by conjugation in H2 ,

(ivb) H1 is nilpotent and [H1 , H3 ] 41,

(ivc) H2 H1 is a normal PST-subgroup of G .

PROOF. – Assume that the subnormal subgroups of G permute with all the
maximal subgroups of G and the Sylow p-subgroups of G , where pE7. By
Theorem A G is supersoluble. Let K4V G be the normal hull of some
]2, 3 , 5(-Hall subgroup V of the supersoluble group G . Since also K is super-
soluble, it is 2-nilpotent. Denote the nilpotent residual of K by L . By definition
of K we have that K/L is a ]2, 3 , 5(-group. Consider a prime pD5 dividing
the order of G and denote by S some Sylow p-subgroup of G . There is a normal
subgroup T (the Hall subgroup for the primes qDp) of G such that SOT41
and ST is normal in G; all subgroup U satisfying T’U’ST are subnormal in G
and are normalized by V , so V induces power automorphisms in ST/T . We have
two possibilities: either [ST , V]T4T or [ST , V]T4ST , in the second case we
have that ST/T`S is abelian and S’L; these primes are defined to belong to
S 2 . The other primes pD5 are defined to belong to S 3 ; also 3 or 5 belong to S 2

if and only if K/L is of order prime to 3 or 5 respectively. Now L4H2 , H1 is
nilpotent and [H1 , H3 ] 41. L4H2 is nilpotent as nilpotent residual of the su-
persoluble group K and abelian since its Sylow subgroups are abelian. That
H2 H1 is a soluble PST-group follows by Theorem 1 of [1].

Conversely, assume that G satisfies (i)-(iv). By (i) and Theorem A the sub-
normal subgroups of G permute with all the maximal subgroup of G .

Assume that G is a finite soluble group of minimal order satisfying condi-
tions (i)-(iv) but G has a subnormal subgroup T which does not permute with
some Sylow p-subgroup, where pE7.

Let P be a Sylow p-subgroup of G where p� ]2, 3, 5(. By (ivc) P is a sub-
group of H2 H1 . Assume that T is a subgroup of H3 . By (iva) and (ivb) H3 normal-
izes each Sylow subgroup of H2 H1 and hence PT4TP . Thus we can assume
that T is not a subgroup of H3 . Since T is a subnormal subgroup of G , it follows
that T4 (TOH2 H1 )(TOH3 ) and L4H2 H1 (TOH3 ) is a proper subgroup of G
which contains T . Notice that L satisfies the conditions (i)-(iv). By the minimal
choice of G , T permutes with P . This contradiction completes the proof.

As a consequence of Proposition C we obtain

COROLLARY C. – Let H be a subgroup of the finite soluble group
G. If all the subnormal subgroups of G permute with the maximal subgroups
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of G and the Sylow p-subgroups of G, where pE7, then the same is
true for H.

Let G be a finite group and let p be a prime. G is said to satisfy condition Kp

if N is a normal subgroup of G , then every subgroup of Op (G/N) permutes with
all the Sylow q-subgroups of G/N , where qE7. By Theorem A and the proof of
Proposition C we obtain

PROPOSITION D. – Let G be a finite soluble group. Then every subnormal
subgroup of G permutes with all the maximal subgroups of G and all the Sy-
low q-subgroups, where qE7, if and only if

(i) G is supersoluble,

(ii) G satisfies condition Kp for all primes p.

For finite not necessarily soluble groups the situation is more complicated.
We can say the following.

PROPOSITION E. – Assume that all subnormal subgroups of the finite
group G are permutable with all maximal subgroups and with all Sylow p-
subgroups for primes pE7. Denote the maximal perfect subgroup of G by D.
Let S 1 and S 3 be the sets of primes defined in Proposition C, here used for
G/D.In addition, denote by J the normal subgroup of G which is minimal
with respect to having index prime to 30.

Then the following is true:

(i) If r is a prime dividing NG 8 /DN , r-chief factors of G are isomorphic as
J-modules.

(ii) The Sylow 2-subgroup of Z(D) belongs to ZQ(G), the hypercenter of G.

(iii) If p�S 3 and p divides NG 8 /DN , then the Sylow p-subgroup of Z(D) is
centralized by J.

PROOF. – We obtain at once that two r-chief factors H1 /K1 and H2 /K2 are
isomorphic as J-modules if either H1 , H2 ’Z(D) or D’K1 , K2 since they are
isomorphic as S-modules where S is any Sylow p-subgroup (pE7). Assume
now that there is an r-chief factor H1 /K1 with H1 ’Z(D) and H2 /K2 with
D’K2 ’H2 ’G 8 . Among the normal subgroups N of G satisfying the relation
H1 ON4K1 we choose a maximal one and call it M . We distinguish two cases:
NMD/DN is divisible by r or prime to r .

If NMD/DN is divisible by r , there is an r-chief factor H2 /K2 such that
MOD’K2’H2’M . Now H1 H2 /K1 K2`(H1 /K1 )3(H2 /K2 ), and every element
of a Sylow p-subgroup (pE7) induces a power automorphism in this quotient.
So also H1 /K1 and H2 /K2 are isomorphic as S-modules and as J-modules.
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If NMD/DN is prime to r , then NG/MDN is divisible by r . We have the r-chief
factor H1 /K1 `H1 M/K1 M , and we may consider the situation in G/M . Here
H1 M/M is a minimal normal subgroup; if the minimal perfect normal subgroup
Ei of G is not contained in M , then Ei M/M is a minimal perfect normal sub-
group of G/M . We consider all minimal perfect normal subgroups Ei of G that
are not included in M . Then DM/M is the product of their images Ei M/M , also
CG/M (DM/M) 4Z(D) M/M4OCG/M (Ei M/M). So there is at least one Ej M/M
such that N(G 8 M/M) :(Ej M/M)CG 8 M/M (Ej M/M)N is divisible by r . We deduce
that NZ(Ej )N and NG 8 /Ej CG 8 (Ej )N are divisible by r , so r is a divisor of the or-
ders of the Schur multiplier of Ej /Z(Ej ) and of its outer automorphism group.
We consult the list of finite simple groups to find that Ej /Z(Ej ) can not be a
sporadic group neither can it be an alternating group (for 2-chief factors noth-
ing is to be shown.) We are left with the Chevalley groups and the twisted
Chevalley groups, Consulting Table 2 and Table 5 of [6] we see that we have to
consider only

An (q) 4Ln11 (q) if r divides gcd (n11, q21),

2An (q) 4Un11 (q) if r divides gcd (n11, q11),

E6 (q) if r43 and 3 divides q21,

2E6 (q) if r43 and 3 divides q11.

In all of these cases we obtain the Sylow r-subgroup of Z(Ej ) as a sub-
group of the multiplicative group of some field and the r-subgroup of
(Out(Ej /Z(Ej ) ) )8 as a subgroup of a normal subgroup, which can be considered
isomorphic to a subgroup of the multiplicative group of the same field. On both
r-groups will operate the same field automorphisms, so in fact the r-chief fac-
tors belonging to G 8 C(Ej ) /C(Ej )Ej and to Z(Ej ) are operator isomorphic, and
they are isomorphic as J-modules. This proves (i).

Since all 2-chief factors of G are central, statement (ii) is obvious.
If p�S 3 , then all p-chief factors of G 8 /D and of G/D are trivial J-modules,

and the same applies for the p-chief factors of G contained in Z(D) by (i). Since
J is generated by elements of order dividing 30 and since p does not divide 30 ,
we find that the Sylow p-subgroup W of Z(D) is not only in the hypercenter
but already in the center of JZ(D). This shows (iii) and completes the proof of
Proposition E.

REMARK 2. – There is no general bound for the central height of the
elements mentioned in Proposition E: If r is a prime such that the prime
p� ]2, 3 , 5( divides r21 and m is some power of p , then Lm (r) has a Schur
multiplier of order divisible by p k Fmp and Out(Lm (r) ) possesses a subgroup
which is an extension of a cyclic group of order p k by a cyclic group of order m .
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This leads to a group H with maximal perfect subgroup K such that the Sylow
p-subgroup of Z(K) is contained in Zs (H), but not in Zs21 (H), where
m4p s .

REMARK 3. – Notice that the Sylow theorems are no longer true in poly-
cyclic groups; for instance, the maximal p-subgroups of CwrCp are no longer
pronormal, where C is an infinite cyclic group. A generalization of the results
of this section to certain classes of infinite groups seems therefore to be
difficult.

REMARK 4. – Corollary C only holds for soluble groups. For let G4A12 .
Then A6 wrC2 is a subgroup of G and fails to satisfy (iia) of Theorem B.

4. – Examples.

EXAMPLE 1. – There are finite soluble groups which satisfy the condition of
Proposition C but are not PST-groups. Let M4 aa , bNa 29 4b 29 41 and
[a , b] 41 b, and N4 ac , dNc 2 4d 7 41 and [c , d] 41 b. Let N act on M as fol-
lows. a c 4a 21 , b c 4b 21 , a d 4a 24 and b d 4b 25 . Let G be the semidirect prod-
uct M J N with respect to this action. Let S 1 4 ]2(, S 2 4 ]29( and S 3 4 ]7(.
In Proposition C it follows that H2 4M , H1 4 acb and H3 4 adb. Note that G is
not a PST-group since the elements of adb do not act as power automorphisms
on M (see Theorem 1 of [1]).

EXAMPLE 2. – Let H4G3A5 where G is the group of Example 1. Then H
satisfies the conditions of Theorem B but is not a PST-group since G is not a
PST-group.
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