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A Chain Rule Formula for the Composition
of a Vector-Valued Function

by a Piecewise Smooth Function.

FRANÇOIS MURAT - CRISTINA TROMBETTI

Sunto. – Si enuncia e si dimostra una formula di derivazione per funzioni T(u) otte-
nute componendo una funzione a valori vettoriali u�W 1, r (V ; RM ) con una fun-
zione T globalmente lipschitziana e C 1 a tratti. Si dimostra inoltre che l’applicazio-
ne uKT(u) è continua da W 1, r (V ; RM ) in W 1, r (V) rispetto alle topologie forti di
questi spazi.

Summary. – We state and prove a chain rule formula for the composition T(u) of a vec-
tor-valued function u�W 1, r (V ; RM ) by a globally Lipschitz-continuous, piecewise
C 1 function T . We also prove that the map uKT(u) is continuous from
W 1, r (V ; RM ) into W 1, r (V) for the strong topologies of these spaces.

1. – Introduction.

The prototype of the result that we will prove in the present paper is the
following:

PROPOSITION 1.1. – Let V be an open set of RN , NF1, and let r be a real
number with 1 GrE1Q. Let u1 and u2 be two functions of W 1, r (V), and let
S : R2 KR be the supremum defined by

(1.1)
.
/
´

S(y1 , y2 )4 sup (y1 , y2 )

4x ]y1Ey2( y2 1x ]y1Dy2( y1 1x ]y14y2( y1

4x ]y1Ey2( y2 1x ]y1Dy2( y1 1x ]y14y2( y2 ((y1 , y2 ) �R2 .
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Then the function v4S(u1 , u2 ) 4 sup (u1 , u2 ) belongs to W 1, r (V) and its gra-
dient is given by

.
/
´

Dv4x ]u1Eu2( Du2 1x ]u1Du2( Du1 1x ]u14u2( Du1

4x ]u1Eu2( Du2 1x ]u1Du2( Du1 1x ]u14u2( Du2 a.e. in V .
(1.2)

Moreover the map uKS(u) is sequentially continuous from W 1, r (V ; R2 )
into W 1, r (V) for the weak topologies of these spaces, and continuous for the
strong topologies of these spaces.

In this statement, as well as in the whole of the present paper, Df and f 8 de-
note the derivative of the function f , while x E denotes the characteristic func-
tion of the set E and ] fEg( the set ]z : f (z) Eg(z)(.

Observe that formula (1.2) is very simple, and that there is a strong analo-
gy between this formula and the formula (1.1) which defines the function S.

Observe also that formula (1.2) implies that

Du1 (x) 4Du2 (x) a.e. x� ]x�V : u1 (x) 4u2 (x)(.(1.3)

We will actually prove a general result (see Theorem 2.1 below) where the
pair (u1 , u2 ) is replaced by a vector-valued function u4 (um )1 GmGM of
W 1, r (V ; RM ), and where the supremum S(y1 , y2 ) 4 sup (y1 , y2 ) : R2 KR is re-
placed by a globally Lipschitz-continuous, piecewise affine (or even piecewise
C 1) function T : RM KR.

The proof of Proposition 1.1 easily follows from the classical result (see e.g.
[KS] or [S]) which asserts that

if w�W 1, r (V), then Dw(x) 40 a.e. x� ]x�V : w(x) 40( .(1.4)

Indeed from the first line of formula (1.1), one deduces that

v4x ]u1Eu2( u2 1x ]u1Fu2( u1 a.e. in V ,

which implies that

.
/
´

]x�V : u1 (x) Eu2 (x)( % ]x�V : v(x) 4u2 (x)( ,

]x�V : u1 (x) Fu2 (x)( % ]x�V : v(x) 4u1 (x)( .
(1.5)

Once one knows that v belongs to W 1, r (V), property (1.4) implies that

D(v2u2 )(x) 40 a.e. x� ]x�V : v(x)2u2 (x) 40( ,

D(v2u1 )(x) 40 a.e. x� ]x�V : v(x)2u1 (x) 40( ,
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which together with (1.5) implies that

Dv(x) 4Du2 (x) a.e. x� ]x�V : u1 (x) Eu2 (x)( ,

Dv(x) 4Du1 (x) a.e. x� ]x�V : u1 (x) Fu2 (x)(.

This proves the first line of formula (1.2). The proof of the second one is
similar.

Therefore the result of the present paper could be considered as «well
known». We nevertheless decided to write it for four reasons.

The first one is that we never saw in the literature the chain rule formula
for the composition T(u) of a vector-valued function u by a globally Lipschitz-
continuous, piecewise C 1 function T written as in (1.2), or more in general as in
(2.4) below, except in the special case of truncations in [L p. 29], even if gene-
ralizations have been proposed e.g. in [AD p. 701], [B p. 79] and [MM1 p. 298
and 315] for general Lipschitz-continuous functions T.

The second one is that in the scalar-valued case (M41), one very often
sees the following formulation (see e.g. [BM p. 554], [KS p. 54], [MM2
p. 353], [S p. 15]):

PROPOSITION 1.2. – Let V be an open set of RN , and let T : RKR be a Lip-
schitz-continuous, piecewise C 1 function with T(0) 40. By piecewise C 1 , we
mean that there exist ca�R , 1 GaGP , with 2Q4c0 Ec1 Ec2 EREcP21 E

EcP EcP11 41Q such that on the interval ]caGyGca11 (, 0 GaGP , the
function T coincides with a function Ta : RKR which is Lipschitz-conti-
nuous and C 1 on the whole of R. Then for every u�W 1, r (V), with 1 GrE1

Q , the function T(u) belongs to W 1, r (V) and one has

(DT(u) )(x) 4T 8 (u(x) ) Du(x) a.e. x�V ,(1.6)

where the following abuse of notation is made: the function T 8 (u) Du is de-
fined to be equal to 0 on the set E4 0

1 GaGP
]x�V : u(x) 4ca( (which is the set

where the function T 8 (u) is not defined).

The above abuse of notation is «justified» by the fact that Du40 almost
everywhere on the set E , a fact which follows from (1.4). This abuse of notation
can be avoided by writing, in place of formula (1.6),

.
/
´

(DT(u) )(x)4 !
0 GaGP

x ]caEyEca11( (u(x) ) T 8a (u(x) ) Du(x)1

1 !
1 GaGP

x ]y4ca( (u(x) ) 0 a.e. x�V ,
(1.7)

in which every function x ]caEy 8Eca11( (y) T 8a (y) and x ]y 84ca( (y) is now defined
for every y�R. But while formula (1.7) does not suffer any ambiguity, and can
be generalized in the vector-valued case in formula (1.2) or in formula (2.4) be-
low, formula (1.6) does not have a clear generalization even in the simple case
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where T(y1 , y2 ) 4S(y1 , y2 ) 4 sup (y1 , y2 ): indeed in this case the analogue of
formula (1.6) would read as

(1.8)
.
/
´

(DS(u1 , u2 ) )(x) 4

4g ¯S

¯y1
h (u1 (x), u2 (x) ) Du1 (x)1g ¯S

¯y2
h (u1 (x), u2 (x) ) Du2 (x) ,

but when, for example, u1 4u2 on the whole of V , the derivatives

g ¯S

¯y1
h (u1 (x), u2 (x) ) and g ¯S

¯y2
h (u1 (x), u2 (x) ) are not defined in any point x�

V , and since Du1 (x) 4Du2 (x) is not zero in general, it is not clear how formula
(1.8) should be understood.

The third reason is that the result of Proposition 1.1 is not trivial, since it is
not so straightforward even when u1 and u2 belong to C 1 (V): indeed in such a
case, the set ]x�V : u1 (x) Eu2 (x)( is open, and it is clear that Dv(x) 4

Du2 (x) on this set; but the set ]x�V : u1 (x) 4u2 (x)( can be a very nasty
closed set, and to prove that Du1 (x) 4Du2 (x) almost everywhere on this set
requires some effort (actually the same effort as in the W 1, r (V) case). Observe
moreover that when u1 and u2 belong to C 1 (V), the right hand side of (1.2) is
defined for every point x�V , while the left hand side is the gradient of a Lip-
schitz-continuous function, which is therefore defined only almost every-
where, and that (1.2) only holds for almost every point x�V.

The fourth reason is that formula (2.4) below, which generalizes formula
(1.2), allows us to prove that the map uKT(u) is continuous from
W 1, r (V ; RM ) into W 1, r (V) for the strong topologies of these spaces, when T is
a globally Lipschitz-continuous, piecewise C 1 function. This result is new, as
far as we know.

2. – Statement of the result.

In the present paper, V is an arbitrary open set of RN , with NF1 (no
smoothness is assumed on ¯V , and V is not assumed to be bounded), and r is a
real number with 1 GrE1Q .

We consider a vector-valued function u4 (um )1 GmGM �W 1, r (V ; RM ), and
a function T : RM KR which is globally Lipschitz-continuous on RM , and which
is piecewise C 1 in the sense that we describe now.

The model example.

The prototype example consists in the case where M42 (but where N is
arbitrary) and where T is a globally Lipschitz-continuous, piecewise affine
function defined as follows.
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First the space RM 4R2 is decomposed into

RM 4R2 4 0
a�I

P a , I finite , with P aOP b4¯ if acb ,

i.e. as a union of a finite number of disjoints sets P a (the pieces) which are ei-
ther polygons, possibly unbounded, or edges, which are one-dimensional seg-
ments, possibly unbounded, or finally vertices, which are points. The pieces
can be either open, or closed, or neither open nor closed subsets of RN (see an
example below).

The function T is then defined on RM 4R2 as a globally Lipschitz-conti-
nuous function which coincides on each piece P a with some affine function T a

defined on the whole of RM 4R2 , which means that for every superscript
a�I , there exists an affine function T a defined on the whole of RM 4R2 (and
not only on the corresponding piece P a) such that

T(y) 4T a (y) (y�P a .

For example in the case considered in Proposition 1.1 one can take

R2 4P 2 NP 1 NP 0 ,

with

P 2 4 ]y�R2 : y1 Ey2 (, P 1 4 ]y�R2 : y1 Dy2 (, P 0 4 ]y�R2 : y1 4y2 ( ,

T 2 (y) 4y2 , T 1 (y) 4y1 , T 0 (y) 4y1 .

Note that different choices can be made as far as T 0 is concerned, namely
T 0 (y) 4 ty1 1 (12 t) y2 with t�R , but also as far as the decomposition of R2 is
concerned: indeed one can take R2 4P 2 NP 3 , with P 3 defined by P 3 4P 1 N
P 0 , or make some stranger choices, like R2 4P 2 NP 1 NP 4 NP 5 , with

P 4 4 ]y�R2 : y1 4y2 D0(, P 5 4 ]y�R2 : y1 4y2 G0( ,

or even R2 4P 6 NP 7 , with P 6 and P 7 defined by P 6 4P 2 NP 4 and P 7 4P 1 N
P 5 (the latest pieces are neither open nor closed). This example clearly shows
that the definition of the pieces P a and of the functions T a is not unique when
a globally Lipschitz-continuous, piecewise C 1 function T is given.

The general setting.

We now describe the general setting which is a natural generalization of
the model example.
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The space RM is decomposed into a finite union of disjoint Borel sets P a

(the pieces), i.e.,

(2.1) RM4 0
a�I

P a, I finite, P a Borel subset of RM, P aOP b4¯ ( acb .

Let us emphasize that the pieces P a are only assumed (*) to be Borel subsets
of RM ; however in the applications, the pieces will usually be smooth open or
closed subsets of smooth manifolds of dimension M , M21, R , 2 , 1 , or 0 .

The function T : RM KR is then defined as a Lipschitz-continuous function
defined on the whole of RM (which is therefore defined in every point, and not
only almost everywhere), which coincides on each piece P a with some given
function T a : RM KR (which is defined on the whole of RM and not only on the
piece P a) which is globally Lipschitz-continuous and C 1 , i.e.

.
/
´

T : RM KR

T a : RM KR

T(y) 4T a (y)

Lipschitz-continuous ,

Lipschitz-continuous and C 1 (RM ) ( a�I ,

( y�P a ( a�I .

(2.2)

In other terms

T(y) 4 !
a�I

x P a (y) T a (y) .(2.3)

As already said in the case of the model example, for a given function T ,
the pieces P a and the functions T a are not defined in a unique way. This im-
plies in particular that «compatibility relations» hold (see Remark 2.3
below).

THEOREM 2.1. – Let T : RM KR be a globally Lipschitz-continuous, piece-
wise C 1 function in the sense defined by (2.1) and (2.2), which satisfies
T(0) 40. Then for every u�W 1, r (V ; RM ), the function T(u) belongs to
W 1, r (V) and one has

(DT(u) )(x) 4 !
a�I

x P a (u(x) ) (DT a )(u(x) ) Du(x) a.e. x�V .(2.4)

Moreover T(u) belongs to W 1, r
0 (V) when u belongs to W 1, r

0 (V ; RM ).
Finally the map uKT(u) is sequentially continuous from W 1, r (V ; RM )

into W 1, r (V) for the weak topologies of these spaces, and continuous for the
strong topologies of these spaces.

(*) The fact that Theorem 2.1 and Proposition 2.2 below hold true under this very
weak assumption on the smoothness of the pieces was pointed out to us by Gianni Dal
Maso and Maria Giovanna Mora.
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As far as we know, the chain rule formula (2.4) and the continuity
in the strong topologies are new results.

Observe that there is a strong analogy between formulas (2.3) and (2.4)
(like it was the case between formulas (1.1) and (1.2)).

REMARK 2.1. – In formula (2.4), DT(u) is a (row) vector of size N , DT a is a
(row) vector of size M , and Du is an M3N matrix, with respective
entries

(DT(u) )n 4
¯T(u)

¯xn

, (DT a )m 4
¯T a

¯ym

, (Du)m , n 4
¯um

¯xn

,

1 GnGN , 1 GmGM ,

and formula (2.4) written in components thus reads as

¯T(u)

¯xn

(x) 4!
a�I

x P a (u(x) ) !
1 GmGM

¯T a

¯ym

(u(x) )
¯um

¯xn

(x) a.e. x�V ,

for every n , 1 GnGN . r

REMARK 2.2. – In Theorem 2.1, we have assumed that

T(0) 40 .

If we do not make this assumption, all the results of Theorem 2.1 continue to
hold true, except the three following ones: when the measure of V is not finite,
the assertion T(u) �W 1, r (V) should be replaced by T(u) �Lloc

r (V) with
DT(u) �L r (V ; RN ); similar changes have to be made as far as the continuity
of the map uKT(u) is concerned; finally, T(u) does not in general belong to
W 1, r

0 (V) when u belongs to W 1, r
0 (V ; RM ) even if the measure of V is

finite. r

PROPOSITION 2.2. – Consider two functions T 1 , T 2 : RM KR which are
globally Lipschitz-continuous and C 1. Then for every u�W 1, r (V ; RM ) one
has

(DT i (u) )(x) 4 (DT i )(u(x) ) Du(x) a.e. x�V ,(2.5)

for i41, 2 , and

.
/
´

(DT 1 )(u(x) ) Du(x)4 (DT 2 )(u(x) ) Du(x)

a.e. x� ]x�V : T 1 (u(x) ) 4T 2 (u(x) )( .
(2.6)
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REMARK 2.3. – If the functions T 1 and T 2 coincide on some piece P a , then
T 1 (u(x) ) 4T 2 (u(x) ) for almost every x�V such that u(x) �P a , and there-
fore, by Proposition 2.2 one has

(2.7)
.
/
´

(DT 1 )(u(x) ) Du(x)4 (DT 2 )(u(x) ) Du(x)

a.e. x�V such that u(x) �P a .

In particular, if T 1 4T 2 4T on P a , then, because of (2.5), the common value
in (2.7) is nothing but (DT(u) )(x) for almost every x�V such that u(x) belongs
to P a .

This observation has strong consequences since there are many «compati-
bility relations» between the various functions T a . For example in the piece-
wise affine case described in the model example, when two polygons P a and
P a 8 , corresponding to two functions T a and T a 8 , share a common edge P b ,
corresponding to a function T b , one necessarily has

T a (y) 4T a 8 (y) 4T b (y) 4T(y) (y�P b ;

this implies that

DT a (u(x) ) Du(x) 4DT a 8 (u(x) ) Du(x) 4DT b (u(x) ) Du(x)

a.e. x�V such that u(x) �P b ;

when the two polygons P a and P a 8 and their common edge P b share a common
vertex P g , corresponding to a function T g , one necessarily has

T a (P g ) 4T a 8 (P g ) 4T b (P g ) 4T g (P g ) 4T(P g ) ;

this implies that

DT a (u(x) ) Du(x)4DT a 8 (u(x) ) Du(x)4DT b (u(x) ) Du(x)4DT g (u(x) ) Du(x)

a.e. x�V such that u(x) �P g ;

moreover this common value is 0 , as it easily seen by considering the constant
function T d defined by T d (y) 4T(P g ).

Similar «compatibility relations» hold in the general case. r

3. – Proofs.

First step. In this first step we assume only that the function T : RM KR
satisfies T(0) 40 and is globally Lipschitz-continuous, i.e. satisfies for some
constant C0

NT(y)2T(y 8 )NGC0 Ny2y 8 N ( y , y 8�RM .(3.1)
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Under these hypotheses, it is well known that for every u�W 1, r (V ; RM )
one has T(u) �W 1, r (V), but let us sketch a proof.

For v�Cloc
1 (V ; RM ) and S�C 1 (RM ), one has S(v) �Cloc

1 (V) with the classi-
cal chain rule

(DS(v) )(x) 4 (DS)(v(x) ) Dv(x) (x�V .

We approximate u by a sequence of functions vn �Cloc
1 (V ; RM ) which converge

to u in the strong topology of Wloc
1 , r (V ; RM ), and T by a sequence of functions

Sn �C 1 (RM ) which converge to T uniformly on RM and satisfy

Sn (0) 40, NDSn (y)NGC0 (y�RM ;

convolutions provide such approximate sequences. Since

NSn (vn )(x)2T(u)(x)NGNSn (vn )(x)2Sn (u)(x)N1NSn (u)(x)2T(u)(x)NG

GC0 Nvn (x)2u(x)N1NSn (u)(x)2T(u)(x)N ,

and since the last term converges uniformly to 0 on V , we obtain that Sn (vn )
tends to T(u) strongly in Lloc

r (V).
Therefore DSn (vn ) converges to DT(u) in the sense of distributions. This

convergence, the estimate

NDSn (vn )(x)NGN(DSn )(vn (x) )NNDvn (x)NGC0 NDvn (x)N (x�V ,

and the strong convergence of Dvn to Du in Lloc
r (V ; RN ) allows us to pass to

the limit in

NaDSn (vn ) ), WbNGC0s
V

NDvn (x)NNW(x)Ndx (W�Cc
Q (V ; RN ) ,

obtaining

NaDT(u), WbNGC0s
V

NDu(x)NNW(x)Ndx (W�Cc
Q (V ; RN ).

This implies that DT(u) �L r (V ; RN ) and that

NDT(u)(x)NGC0 NDu(x)N a.e. x�V .(3.2)

On the other hand, since T(0) 40, we have

NT(u(x) )NGC0 Nu(x)N a.e. x�V .(3.3)

Therefore T(u) belongs to L r (V) and (3.2) proves that T(u) belongs to
W 1, r (V).

Moreover if u�W 1, r
0 (V ; RM ), we can approximate u in W 1, r

0 (V ; RM ) by a
sequence of functions vn �Cc

Q (V ; RM ) and, since Sn (vn ) then belongs to
Cc

1 (V), the previous proof implies that T(u) belongs to W 1, r
0 (V).
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Second step. Under the assumptions of the first step, we deduce from (3.1)
that for every u and v in Lloc

r (V ; RM ), one has

NT(u)(x)2T(v)(x)NGC0 Nu(x)2v(x)N a.e. x�V .

Therefore the map uKT(u) is continuous (and even Lipschitz-continuous)
from the strong topology of Lloc

r (V ; RM ) into the strong topology of
Lloc

r (V).
On the other hand it is also well known that, under the hypotheses made on

T , the map uKT(u) is sequentially continuous from W 1, r (V ; RM ) into
W 1, r (V) for the weak topologies of these spaces, but let us sketch a
proof.

Consider a sequence un which converges to u in the weak topology of
W 1, r (V ; RM ). This is equivalent to assume that un tends to u weakly in
L r (V ; RM ) and that Dun tends to Du weakly in L r (V ; RM3N ), and in view of
Rellich’s compactness theorem, that un tends to u strongly in Lloc

r (V ; RM ). By
the strong L r continuity we have just proved, we deduce that T(un ) tends to
T(u) strongly in Lloc

r (V). On the other hand, from (3.3) and (3.2) we deduce
that

NT(un )(x)NGC0 Nun (x)N , NDT(un )(x)NGC0 NDun (x)N a.e. x�V .(3.4)

Therefore T(un ) and DT(un ) are bounded in L r (V ; RM ) and in L r (V ; RM3N ),
and the strong convergence of T(un ) to T(u) in Lloc

r (V) implies the desired
weak continuity when 1 ErE1Q . When r41, one further deduces from
(3.4) that NT(un )N and NDT(un )N are equi-integrable in L 1 (V), since this is the
case for Nun N and NDunN; combined with the strong convergence of T(un ) to
T(u) in Lloc

1 (V), this implies the desired weak continuity.

Third step. If further to the assumptions made in the first step, we assume
that T belongs to C 1 (RM ), we can take Sn 4T in the proof of the first step, and
passing to the limit in the classical chain rule for functions of C 1 , namely

(DT(vn ) )(x) 4 (DT)(vn (x) ) Dvn (x) (x�V ,

we deduce the chain rule

(DT(u) )(x) 4 (DT)(u(x) ) Du(x) a.e. x�V ,(3.5)

for every u�W 1, r (V ; RM ) and for every function T : RM KR which is globally
Lipschitz-continuous and C 1 . This proves (2.5).

Fourth step. From now on, we make all the assumptions of Theorem 2.1.
For every a�I we deduce from the first and third steps that T a (u) be-

longs to W 1, r (V) and that

(DT a (u) )(x) 4 (DT a )(u(x) ) Du(x) a.e. x�V .(3.6)
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Let U a be the measurable set defined by

U a4 ]x�V : u(x) �P a( ;(3.7)

here we used the fact that P a is a Borel set. From

T(u)(x) 4T a (u)(x) a.e. x�U a ,(3.8)

we deduce that

(DT(u) )(x) 4 (DT a (u) )(x) a.e. x�U a :(3.9)

indeed we have proved that the function w4T(u)2T a (u) belongs to
W 1, r (V); from property (1.4) one deduces that Dw40 almost everywhere on
the set ]x�V : w(x) 40(, which implies (3.9) since by (3.8) one has U a% ]x�
V : w(x) 40(.

From (3.9) and (3.6) we deduce that

(DT(u) )(x) 4 (DT a )(u(x) ) Du(x) a.e. x�U a ,(3.10)

which immediately implies (2.4) since

x U a (x) 4x P a (u(x) ) a.e. x�V .

Observe that formula (2.5) has already been proved in the third step and
that formula (2.6) follows from (1.4) applied to w4T 1 (u)2T 2 (u) and from
(2.5). Therefore proposition 2.2 is proved.

Fifth step. It remains to prove that under the assumptions of Theorem 2.1, the
map uKT(u) is continuous from W 1, r (V ; RM ) into W 1, r (V) for the strong
topologies of these spaces. This is the goal of the present and of the next
steps.

Since it is sufficient to prove the sequential continuity in order to prove the
continuity in strong topologies, we consider a sequence of functions un of
W 1, r (V ; RM ) which converges to u strongly in W 1, r (V ; RM ). We will prove
that from any given subsequence of the original sequence ]n( we can extract a
new subsequence along which T(un ) converges to T(u) strongly in W 1, r (V).
This implies that T(un ) converges to T(u) strongly in W 1, r (V) along the whole
sequence ]n(, hence the desired continuity

Extracting from the given subsequence of the original sequence ]n( a new
subsequence, that we still denote by ]n(, we can assume that for this
subsequence

un (x) Ku(x) and Dun (x) KDu(x) a.e. x�V , n� ]n( .(3.11)

From the first continuity result proved in the second step, we know that
T(un ) converges to T(u) in the strong topology of L r (V). We will prove in the
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seventh step below that if (3.11) is satisfied, then one has

(DT(un ) )(x) K (DT(u) )(x) a.e. x�V , n� ]n(.(3.12)

Since by (3.2) we have

NDT(un )(x)NGC0 NDun (x)N a.e. x�V ,

this result and Vitali’s theorem will imply the strong convergence of DT(un ) to
DT(u) in L r (V ; RM3N ) and will complete the proof of Theorem 2.1.

From now on, for every function of L 1 (V), we consider its representative
defined at its Lebesgue’s points (we could as well have done that starting from
the beginning of the proof of Theorem 2.1). The set of the Lebesgue’s points
differs from V by a set of measure zero. Since only a countable number of
functions are involved in the proof below, we are at liberty to consider a unique
set G%V (the «good set») with meas (V0G) 40 such that for every n� ]n(,
the functions un (x), Dun (x), (DT(un ) )(x), as well as u(x), Du(x) and
(DT(u) )(x) are defined for every x�G (and not only for almost every x), such
that (see (3.11))

un (x) Ku(x) and Dun (x) KDu(x) (x�G , n� ]n( ,(3.13)

and such that, according to formula (2.4),

(3.14) (DT(un ) )(x)4 !
g�I

x P g (un (x) ) (DT g )(un (x) ) Dun (x) (x�G (n� ]n(,

(DT(u) )(x) 4 !
a�I

x P a (u(x) ) (DT a )(u(x) ) Du(x) (x�G .(3.15)

Moreover, since we know from (2.6) that for every given a and b in I we
have

.
/
´

(DT a )(u(x) ) Du(x)4 (DT b )(u(x) ) Du(x)

a.e. x� ]x�V : T a (u(x) ) 4T b (u(x) )( ,

we can assume, by removing from G a finite number (remember that I is finite)
of sets of measure zero, that for a new set, that we still denote by G , still with
meas (V0G) 40, we have

.
/
´

(DT a )(u(x) ) Du(x) 4 (DT b )(u(x) ) Du(x)

( x� ]x�G : T a (u(x) ) 4T b (u(x) )(.
(3.16)

Sixth step. At this point, the sequence ]n( and the set G are fixed, with the
properties (3.13), (3.14), (3.15) and (3.16). We will prove that

(DT(un ) )(x) K (DT(u) )(x) (x�G , n� ]n(,(3.17)

which is nothing but (3.12).
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From (3.14), (3.13) and the fact that every function T g belongs to C 1 (RM )
we deduce that

.
/
´

(DT(un ) )(x) 4 !
g�I

x P g (un (x) ) (DT g )(u(x) ) Du(x)1v n (x)

with v n (x) K0 (x�G , n� ]n(;
(3.18)

we define

Yn (x) 4 !
g�I

x P g (un (x) ) (DT g )(u(x) ) Du(x) ( x�G ( n� ]n(.(3.19)

For every x�G and every b�I , we define the set ]m(x , b)( % ]n( as the
set of those indices n� ]n( which are such that un (x) �P b . Therefore for
every fixed x�G the sequence ]n( is the union of the disjoint sets of indices
]m(x , b)( when b runs in I . We define J(x) %I as the set of those b such that
the set of indices ]m(x , b)( is infinite. Since ]n( is infinite, the set J(x) is not
empty. Moreover there exists some n0 (x) such that whenever nDn0 (x), every
index n� ]n( belongs to a (infinite) subsequence ]m(x , b)( for some
b�J(x).
Since for every x�G and for every b�I we have

x P b (un (x) ) 41, x P g (un (x) ) 40 ( gcb , ( n� ]m(x , b)(,

formula (3.19) implies that

Yn (x) 4 (DT b )(u(x) ) Du(x) ( x�G ( b ( n� ]m(x , b)(.(3.20)

Similarly, since (2.3) implies that

T(un (x) ) 4 !
g�I

x P g (un (x) ) T g (un (x) ) ( x�G ( n� ]n(,

we have

T(un (x) ) 4T b (un (x) ) ( x�G ( b ( n� ]m(x , b)(.(3.21)

When b�J(x), by passing to the limit in (3.21) along the (infinite) subse-
quence ]m(x , b)(, we deduce from (3.13) and from the continuity of T and T b

that

T(u(x) ) 4T b (u(x) ) ( x�G ( b�J(x).(3.22)
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For every a�I we define, as in (3.7), the set

U a4 ]x�G : u(x) �P a(,

and for every a , b�I , the set

U a , b4 ]x�G : u(x) �P a , b�J(x)(.

Since T(u(x) ) 4T a (u(x) ) for every x�U a , (3.22) implies that

T a (u(x) ) 4T b (u(x) ) ( x�U a , b .

This implies, in view of (3.16), that for every a , b�I

(DT a )(u(x) ) Du(x) 4 (DT b )(u(x) ) Du(x) ( x�U a , b .

Turning back to (3.20), we have

Yn (x) 4DT a (u(x) ) Du(x) ( x�U a , b ( n� ]m(x , b)( .(3.23)

Passing to the limit in (3.18) along the (infinite) subsequence ]m(x , b)(,
and using (3.23) and the definition (3.19) of Yn , we have proved that for every
a , b�I

(DT(un ) )(x) KDT a (u(x) ) Du(x) ( x�U a , b , n� ]m(x , b)( .(3.24)

But since U a , b%U a , the right hand side of (3.24) coincides with (DT(u) )(x)
because of (3.15) and of the definition of U a , and (3.24) is nothing but

(DT(un ) )(x) K (DT(u) )(x) ( x�U a , b , n� ]m(x , b)(.

Since this holds true for every a�I , we have proved that

(DT(un ) )(x) K (DT(u) )(x) ( x�G ( b�J(x), n� ]m(x , b)(.(3.25)

Fix now x�G , and recall the definition of n0 (x) given above. Since every
nDn0 (x) belongs to a subsequence ]m(x , b)( for some b�J(x), (3.25) is noth-
ing but

(DT(un ) )(x) K (DT(u) )(x) ( x�G , n� ]n(,

i.e. (3.17). This completes the proof of Theorem 2.1. r
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