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Quasi-Homeomorphisms, Goldspectral Spaces
and Jacspectral Spaces.

OTHMAN ECHI

Sunto. – In questo lavoro vengono studiati i quasi-omeomorfismi tra spazi spettrali, lo
spettro primo di Goldman e lo spettro primo di Jacobson di un anello commutati-
vo. Proviamo che, se g : YKX è un quasi-omeomorfismo, Z uno spazio sobrio ed
f : YKZ una mappa continua, allora esiste un’unica mappa continua F : XKZ
tale che F i g4f. Sia X uno T0-spazio, q : XKsX l’iniezione di X nella sua sobrifi-
cazione sX , allora mostriamo che q( Gold (X) ) 4Gold (sX), dove Gold (X) è l’insieme
di tutti punti localmente chiusi di X. Di tali risultati vengono date alcune applica-
zioni. Lo spettro primo di Jacobson di un anello commutativo R è l’insieme di tutti
gli ideali primi di R che si ottengono come intersezione di ideali massimali di R.
Uno dei risultati principali di questo lavoro fornisce una risposta, per vari aspetti
sorprendente, al problema delle unioni disgiunte di insiemi jacspettrali (insiemi
ordinati che sono isomorfi come insiemi ordinati allo spettro primo di Jacobson di
un qualche anello commutativo). Sia ](Xl , Gl ) : l�L( una famiglia di insiemi or-
dinati disgiunti e sia X4 0

l�L
Xl . Introduciamo su X una relazione d’ordine di-

chiarando xGy se esiste l�L tale che x , y�Xl e xGl y. Allora, le affermazioni se-
guenti sono tra loro equivalenti:
(i) (X , G) è jacspettrale.
(ii) (Xl , Gl ) è jacspettrale, per ogni l�L.

Summary. – In this paper, we deal with the study of quasi-homeomorphisms, the Gold-
man prime spectrum and the Jacobson prime spectrum of a commutative ring. We
prove that, if g : YKX is a quasi-homeomorphism, Z a sober space and f : YKZ a
continuous map, then there exists a unique continuous map F : XKZ such that
F i g4 f. Let X be a T0-space, q : XKsX the injection of X onto its sobrification sX.
It is shown, here, that q( Gold (X) ) 4Gold (sX), where Gold (X) is the set of all locally
closed points of X. Some applications are also indicated. The Jacobson prime spec-
trum of a commutative ring R is the set of all prime ideals of R which are intersec-
tions of some maximal ideals of R. One of our main results is a surprising answer
to the problem of ordered disjoint union of jacspectral sets (ordered sets which are
isomorphic to the Jacobson prime spectrum of some ring): Let ](Xl , Gl ) : l�L( be
a collection of ordered disjoint sets and X4 0

l�L
Xl . Partially order X by declaring

xGy to mean that there exists l�L such that x , y�Xl and xGl y. Then the follow-
ing statements are equivalent:
(i) (X , G) is jacspectral.
(ii) (Xl , Gl ) is jacspectral, for each l�L.
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Introduction.

We start this introduction by pointing out that it is essential to know what we
are talking about, that is, to understand definitions of the terms we are using.

A continuous map q : XKY is said to be a quasi-homeomorphism [13] if
for each open subset U of X there exists a unique open subset V of Y such that
U4q 21 (V) (equivalently, for each closed subset F of X, there exists a unique
closed subset G of Y such that F4q 21 (G)).

A subset S of a topological space X is said to be strongly dense in X, if S
meets every nonempty locally closed subset of X. Thus a subset S of X is
strongly dense if and only if the canonical injection S %KX is a quasi-homeo-
morphism. It is well known that a continuous map q : XKY is a quasi-homeo-
morphism if and only if the topology of X is the inverse image by q of that of Y
and the subset q(X) is strongly dense in Y [13].

The notion of quasi-homeomorphism is used in algebraic geometry. It is re-
cently shown that this notion arise naturally in the theory of some foliations
associated to closed connected manifolds (see our papers written jointly with
E. Bouacida and E. Salhi [4], [5], [6]). It is worth noting that quasi-homeomor-
phisms are also linked with sober spaces. Recall that a topological space X is
said to be sober if any nonempty irreducible closed subset of X has a unique
generic point. Let X be a topological space and sX the set of all irreducible
closed subsets of X [13]. Let U be an open subset of X, set UA 4 ]F�sX : UO
Fc¯(, then the collection (UA, U is an open subset of X) gives a topology on sX
and the following properties hold:

(i) The map q : XKsX defined by: x O ]x( is a quasi-homeomor-
phism.

(ii) sX is a sober space.

(iii) Moreover, q is injective if and only if X is T0 and is a homeomor-
phism when X is sober. The topological space sX is called the sobrification of
X , the assignment XKsX defines a functor [13, 0.2.9].

Jacobson topological spaces are also used in algebraic geometry and are
linked with quasi-homeomorphisms. A topological space X is called a Jacobson
space if the set X0 of its closed points is strongly dense in X. If X is a
topological space, we denote by Jac (X) the set ]x�X : ]x( 4 ]x(OX0(. It is
obviously seen that Jac (X) is a Jacobson space; we call it the Jacobson sub-
space of X.

Let R be a ring and Spec (R) its prime spectrum equipped with the Zariski
topology. We denote Jac (R) the Jacobson subspace of Spec (R). Following Pi-
cavet [23], [24], a prime ideal p of R lies in Jac (R), if and only if p is the inter-
section of some maximal ideals of R.

A jacspectral space is defined to be a topological space homeomorphic to
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the Jacobson subspace of Spec (R), for some ring R. A nice topological charac-
terization has been given by Bouacida et al [6]: «Jacspectral spaces are exact-
ly the quasi-compact Jacobson sober spaces».

A topology R on a set X is defined to be spectral (and (X , R) is called a
spectral space) if the following conditions hold:

(i) R is sober.

(ii) the quasi-compact open subsets of X form a basis of R.

(iii) the family of quasi-compact open subsets of X is closed under fi-
nite intersections.

In a remarkable paper, M. Hochster has proved that a topological space is
homeomorphic to the prime spectrum of some ring if and only if it is a spectral
space [15]. Two years later, M. Hochster gave a topological characterization of
the minimal prime spectrum of a ring [16].

Goldman ideals are important objects of investigation in algebra mostly be-
cause their role in the study of graded rings and some applications to algebra-
ic geometry. Thus it is important to pay attention to the Goldman prime spec-
trum of a ring. Recall that a prime ideal of a commutative ring R is said to be a
Goldman ideal (G-ideal) if there exists a maximal ideal M of R[X] such that
p4MOR. If R is an integral domain and (0) is a G-ideal, R is called a
G-domain.

Over the years, mathematicians have focused attention on G-domains; for
instance, O. Goldman and W. Krull used G-ideals for a short inductive proof of
the Nullstellensatz [14], [20]. The set of all G-ideals of a commutative ring R is
denoted by Gold (R) and called the Goldman prime spectrum of that
ring.

In [8], A. Conte has proved that Spec (R) is a TD-space if and only if every
prime ideal of R is a G-ideal. He has also proved that if Spec (R) is Noetherian,
then Spec (R) is a TD-space if and only if it is finite.

M. Fontana and P. Maroscia [12] have also established, by topological
methods, several properties of the set of the G-ideals of a commutative ring.
They also discussed in detail a topological approach to a classification of the
class of the commutative rings in which every prime ideal is a G-ideal.

Note also that rings in which every prime ideal is a G-ideal has been stud-
ied by G. Picavet in [24].

By a goldspectral space, we mean a topological space which is homeomor-
phic to some Gold (R). Using the notion of sobrification, we have given an in-
trinsic topological characterization of the Goldman prime spectrum of a com-
mutative ring [10].

In this paper, we are aiming to give some results on quasi-homeomor-
phisms, goldspectral spaces and jacspectral spaces.
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In Section 1, we are interested in finding results on quasi-homeomor-
phisms in a more general setting. We prove that, if g : YKX is a quasi-homeo-
morphism, Z a sober space and f : YKZ a continuous map, then there exists a
unique continuous map F : XKZ such that F i g4 f.

We prove, also, that quasi-homeomorphisms and homeomorphisms are
linked by the following fact: «Let q : XKY be a continuous map. Then q is a
quasi-homeomorphism if and only if sq : sXKsY is a homeomorphism»,
where sq is the map defined by sq(C) 4 q(C), for each irreducible closed subset
C of X. Some applications are also indicated.

Section 2 is intended to motivate our investigation of the Goldman prime
spectrum of a commutative ring. We prove that if X is a T0-space and q : XKsX
is the injection of X onto its sobrification sX, then Gold (sX) 4q( Gold (X) ),
where Gold (X) is the set of all locally closed points of X. We then derive that,
if X is a TD-space [2] (that is, Gold (X) 4X), then X is homeomorphic to
Gold (sX) and thus X is goldspectral if and only if X is a TD-space and sX is
spectral.

If an ordered set (X , G) is the disjoint union of ordered sets ](Xl , Gl ), l�
L(, we shall say that X is the ordered disjoint union of the Xl’s if xGy if and
only if there is an l such that x , y�Xl and xGl y. Theorem 4.1 of [22] says
that if (Xl , Gl ) is spectral for each l�L, then (X , G) is spectral. However,
Lewis and Ohm have not been able to establish the converse of the previous
theorem and they raise the following question «If (X , G) is the ordered dis-
joint union of posets (Xl , Gl ), l�L , and if (X , G) is spectral, then are the
(Xl , Gl ) also spectral?».

Ordered disjoint union of dimension G1 is also discussed by A. Bouvier
and M. Fontana in [7].

Section 1 is closed by giving an analogous result to that of Lewis and Ohm
for an ordered disjoint union [22, Theorem 4.1].

Section 3 deals with the Jacobson prime spectrum of a commutative ring.
Let X be a T0-space. We prove that X is a quasi-compact Jacobson space if and
only if sX is jacspectral. Many constructions are given showing the limits of
the results established.

Theorem 3.20 gives a surprising result about the problem of ordered dis-
joint union of jacspectral sets (ordered sets isomorphic to the Jacobson prime
spectrum of a commutative ring): Let ]Xl : l�L( be a collection of ordered
disjoint sets and X4 0

l�L
Xl . Partially order X by declaring xGy to mean that

there exists l�L such that x , y�Xl and xGl y. Then the following state-
ments are equivalent:

(i) (X , G) is jacspectral.

( ii ) (Xl , Gl ) is jacspectral, for each l�L.
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1. – Quasi-homeomorphisms.

In this section we will look more closely at quasi-homeomorphisms. Some
results may be considered as consequence of that proved in [13] by
Grothendieck and Dieudonné (for instance Lemma 1.1, Lemma 1.2, and Lem-
ma 1.3). However, our main results Theorem 1.5, Theorem 1.6 and Theorem 1.8
are new. The proofs have been divided into a sequence of lemmata.

First, observe that, combining [4, Proposition 2.3] and [4, Proposition 2.9],
we get the following.

LEMMA 1.1. – Let q : XKY be a continuous surjective map. Then the fol-
lowing statements are equivalent:

(i) q is a quasi-homeomorphism.
(ii) q is open and for each open subset U of X , q 21 (q(U) ) 4U.
(iii) q is closed and for each closed subset C of X , q 21 (q(C) ) 4C.

The proof of the following is straightforward.

LEMMA 1.2. – Let X be a topological space and Y a subset of X. Then the fol-
lowing statements are equivalent:

(i) Y is strongly dense in X.
( ii ) For each x�X , x� ]x(OY.

LEMMA 1.3. – Let g : YKX be a quasi-homeomorphism, f : YKZ a contin-
uous map. Suppose that there exists a continuous map F : XKZ such that
F i g4 f. Then the following properties hold:

(1) f is a quasi-homeomorphism if and only if so is F.

(2) If f is open (resp. closed), then so is F.

PROOF. – (1) Straightforward.
(2) l We observe that a continuous map W : XKZ is open if and only if

W21 (V ) 4 W21 (V), for every subset V of Z [13].
l Let us prove that F is open when f is open. Let V be an open subset of Z;

we have f 21 (V ) 4 f 21 (V). It follows that g 21 (F 21 (V ) ) 4 g 21 (F 21 (V) ). Let
g1 : YKg(Y) be the map induced by g, then following Lemma 1.1, g1 is an open
quasi-homeomorphism. For this reason

g 21 (F 21 (V) ) 4g1
21 (F 21 (V)Og(Y ) ) 4g1

21 (F 21 (V)g(Y) ) 4

g1
21 (F 21 (V) ) 4 g 21 (F 21 (V) ).

Hence g 21 (F 21 (V ) ) 4g 21 (F 21 (V)). From the fact that g is a quasi-homeo-
morphism, we conclude that F 21 (V ) 4 F 21 (V). Thus F is an open map.
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Now, let us prove that F is closed when f is closed. Let C be a closed sub-
set of X, we need only show that F(C) 4 f ( g 21 (C) ). We have f ( g 21 (C) ) 4

F(COg(Y) ). Let x�C. Since g(Y) is strongly dense in X, ]x( 4 ]x(Og(Y)
(see Lemma 1.2). On the other hand, the continuity of F yields ]F(S)( 4 F(S ),

for every subset S of X. Thus ]F(x)( 4 F(]x(Og(Y)) 4 F(]x(Og(Y) ). Hence
F(x) � F(COg(Y) ) 4 f (g 21 (C) ) 4 f (g 21 (C) ) 4F(COg(Y) ). Therefore F(C) 4

F(COg(Y) ) 4 f (g 21 (C) ), and F is a closed map. r

LEMMA 1.4. – Let g : YKX be a quasi-homeomorphism, f : YKZ a contin-
uous map. Suppose that Z is a T0-space, then there exists at most one contin-
uous map F : XKZ , such that F i g4 f.

PROOF. – Assume that there exist two distinct continuous maps F , G : XK

Z such that F i g4G i g4 f. Let x�X with F(x) cG(x). There exists an open
subset W of Z such that F(x) �W and G(x) �W. Consider the two open subsets
U4F 21 (W) and V4G 21 (W) of X. We thus get g 21 (U) 4g 21 (V); conse-
quently U4V, a contradiction. r

THEOREM 1.5 (The first continuous extension theorem). – Under the same
assumptions of Lemma 1.3, if moreover, g is surjective, then there exists one
and only one continuous map F : XKZ , such that F i g4 f.

PROOF. – Let x�X, then there exists y�Y such that x4g(y). Suppose that
there exists y1 �Y such that x4g(y) 4g(y1 ), then ] g(y)( 4 ] g(y1 )(; and since
g is closed (see Lemma 1.1), we get g(]y() 4g(]y1 (). Using again Lemma 1.1,
we obtain ]y( 4 ]y1 (.

Now, since f is continuous, f (]y() 4 ] f (y)( 4 f (]y1 () 4 ] f (y1 )(. This im-
plies that f (y) 4 f (y1 ) (since Z is a T0-space). Thus providing a map F : XKZ ;
x4g(y) O f (y), with F i g4 f.

It remains to prove that F is continuous. To do so, let V be an open subset
of Z. Then f 21 (V) 4g 21 (F 21 (V) ). Hence F 21 (V) 4g( f 21 (V) ) so that F 21 (V)
is an open subset of X (since g is open (see Lemma 1.1)). We have thus proved
that F is continuous. The uniqueness of that map is obvious. r

THEOREM 1.6 (The second continuous extension theorem). – Let g : YKX
be a quasi-homeomorphism, Z a sober space and f : YKZ a continuous map.
Then there exists one and only one continuous map F : XKZ such that
F i g4 f.

PROOF. – Let g1 : YKg(Y) be the map induced by g, then g1 is a surjective
quasi-homeomorphism. From the first continuous extension theorem, there
exists a continuous map fA : g(Y) KZ such that fA i g1 4 f. Now, since g(Y) is
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strongly dense in X, using [6, Theorem 2.21], there exists a continuous exten-
sion map F : XKZ of fA, and thus F i g4 f. r

LEMMA 1.7. – Let q : XKY be a quasi-homeomorphism. Then the following
properties hold:

(1) If X is a T0-space, then q is injective.

(2) If X is sober and Y is a T0-space, then q is a homeomorphism.

PROOF. – (1) Let x1 , x2 be two points of X with q(x1 ) 4q(x2 ). Suppose that
x1 cx2 , then there exists an open subset U of X such that x1 �U and x2 �U.
Since there exists an open subset V of Y satisfying q 21(V)4U, we get q(x1 ) �U
and q(x2 ) �U, which is impossible. It follows that q is injective.

(2) l We start with the obvious observation that if S is a closed subset of Y,
then S is irreducible if and only if so is q 21 (S).

l Let us prove that q is surjective. For this end, let y�Y, according to the
above observation, q 21 (]y() is a nonempty irreducible closed subset of X.
Hence q 21 (]y() has a generic point x. Thus we have the containments

]x( ’q 21 (]q(x)() ’q 21 (]y() 4 ]x( .

Then q 21 (]q(x)() 4q 21 (]y(). It follows, from the fact that q is a quasi-homeo-
morphism, that ]q(x)( 4 ]y(. Since Y is a T0-space, we get q(x) 4y. This
proves that q is a surjective map, and thus q is bijective. One may see that bi-
jective quasi-homeomorphisms are homeomorphisms. r

The following indicates the links between quasi-homeomorphisms and
homeomorphisms.

THEOREM 1.8. – Let q : XKY be a continuous map. Then the following
statements are equivalent:

(i) q is a quasi-homeomorphism.

(ii) sq is a homeomorphism.

PROOF. – Remark that the following diagram

is commutative.



OTHMAN ECHI496

(i) ¨ (ii) Since q
Y

i q4sq i q
X

is a quasi-homeomorphism, the map sq is a
quasi-homeomorphism (see Lemma 1.3). Thus, following Lemma 1.7, sq is a
homeomorphism.

(ii) ¨ (i) Since q
X
4 ( (sq)21

i q
Y
) i q and (sq)21

i q
Y

are quasi-homeomor-
phisms, it follows from Lemma 1.3, that q is a quasi-homeomorphism. r

Our next concern will be an application of the «second continuous exten-
sion theorems», it illustrates the fact that the sobrification is a solution of a
universal problem.

PROPOSITION 1.9. – Let X , T be two topological spaces. Then the following
statements are equivalent:

(i) T is homeomorphic to the sobrification sX.

(ii) T is sober and there exists a quasi-homeomorphism q
X
: XKT such

that for each sober space Z and each continuous map f : XKZ , there exists a
unique continuous map F : TKZ with F i q

X
4 f (that is, the following

diagram

is commutative).
(iii) T is sober and there exists a quasi-homeomorphism q

X
: XKT.

PROOF. – (i) ¨ (ii) Let q
X
: XKsX be the quasi-homeomorphism defined

by; x O q
X
(x) 4 ]x(. Since Z is sober, following the « second continuous exten-

sion theorem», there exists a unique continuous map F : sXKZ such that
F i qX 4 f.

(iii) ¨ (i) According to Theorem 1.8, sq
X
: sXKsTAT is a homeomor-

phism. r

2. – The Goldman prime spectrum of a commutative ring.

As mentioned in the introduction, the Goldman prime spectrum of a com-
mutative ring has been studied by several authors ( see for instance, [8], [12],
[23] and [24]). This section is intended to motivate our investigation of the
Goldman prime spectrum. Let us, first, introduce the following terminology.

DEFINITIONS 2.1. – (1) Let X be a topological space, by the Goldman sub-
space of X, we mean the set Gold (X) of all locally closed points of X.
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(2) An ordered set (X , G) is said to be goldspectral if there exists a ring R
such that (X , G) is order isomorphic to (Gold (R , ’) ), where Gold (R) is the set
of G-ideals of R.

(3) We call a topological space X goldspectral if there exists a ring R such
that X is homeomorphic to Gold (R) (equipped with the topology inherited by
that of Zariski on Spec (R)).

Goldspectral spaces has been introduced and studied in [10]. Our main the-
orem, in [10], provides an intrinsic topological characterization of goldspectral
spaces.

THEOREM 2.2 [10]. – Let X be a topological space. Then the following condi-
tions are equivalent:

(1) X is goldspectral.
(2) X satisfies the following properties:

(i) X is quasi-compact and has a basis of quasi-compact open subsets
which is stable under finite intersections.

(ii) X is a TD-space.

A slight change in the proof of the previous result, yields the follow-
ing.

THEOREM 2.3. – (1) Let q : XKY be an injective quasi-homeomorphism,
then Gold (Y) ’q(Gold (X) ).

(2) Let X be a T0-space and q : XKsX be the injection of X onto its sobrifi-
cation sX. Then q(Gold (X) ) 4 Gold (sX).

PROOF. – (1) Straightforward.
(2) According to (1), it remains to prove that q(Gold (X) ) ’ Gold (sX). Let

x� Gold (X), there exists an open subset U of X such that ]x( 4 ]x(OU. We
claim that UAO]q(x)( 4 ]q(x)(. It is easily seen that ]q(x)( ’ ]q(x)(OUA. Let
C� ]q(x)(OUA, then COUc¯. We must prove that C4q(x). Let y�COU
and V be an open subset of X containing y, then C� VA. On the other hand, C�
]q(x)(, thus q(x) � VA and then x�V. It follows that y� ]x(. Thus we have y�
]x(OU4 ]x(, so that y4x. Hence x�C and ]x( 4q(x) ’C.

For the inverse containment, consider y�C and V an open subset of X con-
taining y; we have C� VA whence q(x) � VA (since C� ]q(x)(). We thus get
]x(OVc¯ and x�V . This yields y� ]x( 4q(x). Hence C4q(x). Therefore,
we get UAO]q(x)( 4 ]q(x)(, proving that q(x) � Gold (sX). r

REMARKS 2.4. – (1) Let q : XKY be a quasi-homeomorphism and S an open
subset of Y. Then the following properties hold:
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(a) S is quasi-compact if and only if q 21 (S) is quasi-compact.
(b) X is quasi-compact with a basis of quasi-compact open subsets, stable

under finite intersections if and only if so is Y.
(2) The above remark (1) and Theorem 2.3 show that, if X is a topological

space, then X is goldspectral if and only if X is a TD-space and sX is a spectral
space.

(3) Let q : XKY be a quasi-homeomorphism. If X is goldspectral, then sY
is spectral; this follows immediately from the above remark (2) and Theorem
1.8.

REMARK 2.5. – It is easy to check that an ordered set (X , G) is goldspectral
if and only if there exists a goldspectral topology on X which is compatible
with the ordering G.

EXAMPLES 2.6. – (1) Every finite ordered set is goldspectral.
(2) A totally ordered set is goldspectral if and only if it has a greatest ele-

ment. For this end, consider (X , G) a totally ordered set with a maximal ele-
ment, we equip X with the left topology; thus providing a goldspectral topolo-
gy on X which is compatible with the ordering G. Therefore (X , G) is a gold-
spectral set. Conversely, let (X , G) be a goldspectral totally ordered set. Then
there exists a ring R such that (X , G) is order-isomorphic to (Gold (R), ’).
Since Max (R) ’ Gold (R), Max (R) is a one point set and thus (X , G) has a
greatest element.

An ordered set is said to be spectral if it is order-isomorphic to the prime
spectrum of some ring. Such spectral sets are of interest not only in (topologi-
cal) ring and lattice theory, but also in computer science, in particular in do-
main theory (see for example [17], [18], [25]). In order that an ordered set
(X , G) be spectral it is necessary but not sufficient (see [22]) that it satisfies
two conditions:

(K1 ): Each nonempty totally eroded subset of (X , G) has a supremum and
an infimum (X is up-complete and down-complete).

(K2 ): For each aEb in X, there exist two adjacent element a1 Eb1 such
that aGa1 Eb1 Gb (X is weakly atomic).

These properties were noted for a ring spectrum by Kaplansky (see [19,
Theorems 9 and 11]), and then are called respectively the first condition and
the second condition of Kaplansky.

According to Hochster [15, Proposition 8], if (X , G) is spectral, then so is
(X , F).

It is worth noting that if (X , G) is goldspectral, then it does not satisfy nec-
essarily the conditions (K1 ) and (K2 ), and also (X , F) is not necessarily gold-
spectral, as the following example shows.
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EXAMPLE 2.7. – An ordered set (X , G) satisfying the following proper-
ties:

(i) (X , G) is goldspectral.

(ii) (X , F) is not goldspectral.

(iii) (X , G) does not satisfy the conditions (K1 ) and (K2 ).

It suffices to consider R24 ]x�R : xG0( equipped with the natural or-
der. Examples 2.6(2) show that (R2 , G) is a goldspectral set, but it does not
satisfy neither the condition (K1 ) nor the condition (K2 ). Moreover, the or-
dered set (R2 , F) is not goldspectral, since it has no greatest element.

Kaplansky has observed that if (pi , i�I) is a totally ordered set of prime
ideals of a ring R, then 0

i�I
pi and 1

i�I
pi are also prime ideals. It is not the case

for G-ideals, as the following example shows.

EXAMPLE 2.8. – We consider R22 ]21( equipped with the natural order.
The ordered set (R22 ]21(, G) is goldspectral (see Examples 2.6(2)). Let
(pi , iE21) be the family of G-ideals of a ring R corresponding to the ele-
ments iE21 in (R22 ]21(, G). It is easily seen that both 0

iE21
pi and 1

iE21
pi

are not G-ideals.
Particular goldspectral sets may be obtained when the left topology asso-

ciated to the ordering is goldspectral (L-goldspectral for short).
The following result may be proved in much the same way as [9, Théorème

1] or [3, Théorème 3.10].

PROPOSITION 2.9. – Let (X , G) be an ordered set, then the following condi-
tions are equivalent:

(i) (X , G) is L-goldspectral.
(ii) X satisfies the following properties.

(a) There exist finitely many elements x1 , x2 , R , xn �X , such that

X4 0
i41

n

(Ixi ).

(b) For all x , y�X , if (Ix)O (Iy) c¯ , then there exist finitely many

elements z1 , R , zk �X , such that (Ix)O (Iy) 4 0
i41

(Izi ), where (Ix) 4

]y�X : yGx(.

Lewis and Ohm have proved in [22] that an ordered disjoint union of spec-
tral sets is spectral. Moreover, Bouacida et al [3, Théorème 3.8] have proved
this result in a more general setting using elementary topological facts.

By using the same type of proof that was used for [3, Théorème 3.8], we can
state the following.
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PROPOSITION 2.10. – Let ](Xl , Gl ) : l�L( be a collection of ordered dis-
joint sets. Let X4 0

l�L
X equipped with the ordering G defined by: xGy if

and only if there exists l�L such that: x , y�Xl and xGl y. If, for each l�L ,
(Xl , Gl ) is goldspectral, then so is (X, G).

PROOF. – The proof consists in the construction of a goldspectral topology
on X which is compatible with the ordering G. To do this, take Rl a goldspec-
tral topology on Xl which is compatible with Gl and choose m�Xl 0

. Consider
the topology R on X, where the open sets are the subsets U of X such
that;

– if m�U, UOXl is an open subset of (Xl , Rl ) for finitely many l�L and
UOXl4Xl , otherwise

– if m�U, UOXl is an open subset of (Xl , Rl ) for each l�L.
One may check that R is compatible with G, (X , R) is quasi-compact and

has a basis of quasi-compact open subsets which is stable under finite intersec-
tions (see the proof of [3, Théorème 3.8]).

To prove that (X , R) is a TD-space, it suffices to observe that Xl is a clopen
subset of X, for each lcl 0 and Xl 0

is a closed subset of X which is not
open. r

QUESTION 2.11. – An analogous question of that of Lewis and Ohm [22,
Question 4.4] is the following: «If X4 0

l�L
Xl is an ordered disjoint union

such that X is goldspectral, then are the Xl also goldspectral?».

3. – The Jacobson prime spectrum of a commutative ring.

Recall that a topological space X is said to be a Jacobson space if the set X0

of its closed points is strongly dense in X [13, 0. Proposition 2.8.1].
The proofs of the following two propositions are straightforward.

PROPOSITION 3.1. – Let X be a topological space and Y a subset of X con-
taining X0 . Consider the subset Jac (X) 4 ]x�X : ]x( 4 ]x(OX0(. If X0 is a
strongly dense subset of Y , then Y’ Jac (X).

PROPOSITION 3.2. – Let X be a topological space, then the following proper-
ties hold:

(1) X0 is strongly dense in Jac (X).
(2) (Jac (X) )0 4X0 , consequently, Jac (X) is a Jacobson space.

COROLLARY 3.3. – Jac (X) is the largest subset of X in which X0 is strongly
dense.
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DEFINITION 3.4. – When X is a topological space, Jac (X) is called the Ja-
cobson subspace of X. An element of Jac (X) is called a Jacobson point (or J-
point for short).

PROPOSITION 3.5. – Let X be a T0-space which has a basis of quasi-compact
open subsets. Then the following statements are equivalent:

(i) X is a Jacobson space.

(ii) Gold (X) 4X0 .

PROOF. – (i) ¨ (ii) On account of [6, Proposition 1.6], Gold (X) is the small-
est strongly dense subset of X. On the other hand, X0 is strongly dense in X,
then Gold (X) ’X0 . We thus get Gold (X) 4X0 .

(ii) ¨ (i) Follows immediately from the fact that Gold (X) is strongly
dense in X [6, Proposition 1.6]. r

PROPOSITION 3.6. – Let X be a topological space. Then Gold (X)OJac (X)4X0 .

PROOF. – Let x� Gold (X)OJac (X). Then ]x(OX0 4 ]x( and there exists
an open subset U of X such that ]x( 4 ]x(OU. Hence ]x( 4 ]x(OX0 OU.
Consequently, ]x(OX0 OUc¯. Therefore x�X0 . We conclude that
Gold (X)OJac (X) 4X0 . r

Let R be a ring, we denote by Jac (R) the Jacobson subspace of Spec (R).
Following [24], a prime ideal of R lies in Jac (R) if and only if it is the intersec-
tion of some maximal ideals of R. By a jacspectral space, we mean a topological
space homeomorphic to the Jacobson subspace of Spec (R) for some ring R.
Jacspectral spaces have been introduced and studied in [6], some examples of
such spaces have been given by using foliation theory [6, Proposition 2.30].
The following is a complete characterization of jacspectral spaces.

THEOREM 3.7 [6, Theorem 2.29]. – Let X be a topological space. Then the
following statements are equivalent:

(i) X is a jacspectral space.

(ii) X is a quasi-compact Jacobson sober space.

The proof of Theorem 3.7 is an important consequence of a weak version of
the «second continuous extension theorem».

TERMINOLOGIES 3.8. – (1) Each prime ideal in Jac (R) is called a Jacobson
prime ideal (or J-ideal for short).

(2) An ordered set (X , G) is said to be jacspectral if there exists a ring R
such that (X , G) is order isomorphic to (Jac (R), ’). Obviously, (X , G) is jac-
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spectral if and only if there exists a jacspectral topology on X which is compati-
ble with the ordering G.

It is easy to check that, if p is a nonmaximal J-ideal of a ring R, then p is
contained in infinitely many maximal ideals. An analogous fact may be proved,
easily, for any J-point in a topological space.

PROPOSITION 3.9. – Let X be a topological space and x a non closed point of
X. Suppose that x is a J-point, then ]x( contains infinitely many closed
points of X.

REMARKS 3.10. – (1) According to the previous proposition, we claim that if
(X , G) is a jacspectral set, then (X , F) needs not be jacspectral. It suffices to
take a Hilbert domain R with Krull dimension greater than or equal to 1, then
(Spec (R), ’) is jacspectral, however, (Spec (R), *) is not (since it has a unique
maximal element).

(2) According to Examples 2.6(1) and Proposition 3.6, finite jacspectral or-
dered sets are exactly finite ordered sets with Krull dimension 0.

Our next concern will be the construction of jacspectral spaces from Jacob-
son quasi-compact spaces. First, we need some preliminary results.

PROPOSITION 3.11. – (1) Let q : XKY be an injective quasi-homeomor-
phism, then Y0 ’q(X0 ).

(2) Let X be a T0-space. Then q(X0 ) 4 (sX)0 , where q : XKsX is the injec-
tion of X onto its sobrification sX.

(3) Let q : XKY be a quasi-homeomorphism and S a subset of X. Then
the following statements are equivalent:

(i) S is strongly dense in X.
(ii) q(S) is strongly dense in Y.

PROOF. – (1) Straightforward.
(2) Following (1), the proof will be complete, if we show that q(X0 ) ’

(sX)0 .
Let x�X0 , we claim that ]q(x)( 4 ]q(x)(:
Let F� ]q(x)(, we must prove that F4q(x) 4 ]x( 4 ]x(.
l First, we observe that x�F. To see this, suppose that x�F, then F� UA,

where U4X2 ]x(. Since F� ]q(x)(; q(x) � UA; hence q(x)OUc¯. This
yields x�U, a contradiction. It follows that x�F.

l Let y�F. Suppose that ycx, then FOUc¯, where U4X2 ]x(. The
rest of the proof runs as before, proving that y4x. Therefore q(x) �
(sX)0 .

(3) Straightforward. r

Next, we derive a useful tool for constructing jacspectral spaces.
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COROLLARY 3.12. – Let X be a T0-space. Then the following statements are
equivalent:

(i) X is a quasi-compact Jacobson space.
(ii) sX is a jacspectral space.

PROOF. – Let us start by the following two observations:
l Let q : XKsX be the injection of X onto its sobrification sX. Following

Proposition 3.11(2), (3), X is a Jacobson space if and only if so is sX.
l The equivalence; X is quasi-compact if and only if so is sX, follows imme-

diately from the fact that q : XKsX is a quasi-homeomorphism.
Therefore, if X is a quasi-compact Jacobson space, then sX is a sober quasi-

compact Jacobson space; and according to Theorem 3.7, sX is a jacspectral
space. Conversely, if sX is jacspectral, then it is a quasi-compact Jacobson
space and the above observations imply that so is X. r

COROLLARY 3.13. – Let X be a Noetherian T0-space. Then s (Jac (X) ) is a
jacspectral space.

Combining Theorem 1.8 and Corollary 3.12, we get the two following
corollaries.

COROLLARY 3.14. – Let X , Y be two T0-spaces and q : XKY a quasi-homeo-
morphism. Then X is a quasi-compact Jacobson space if and only if so is Y.

COROLLARY 3.15. – Let X be a T0-space. Then the following statements are
equivalent:

(i) X is a quasi-compact Jacobson space.
(ii) X is injected by a quasi-homeomorphism in a jacspectral space.

REMARK 3.16. – The condition «T0-space» is essential in Corollary 3.14 and
Proposition 3.11(2). It suffices to consider a set X4 ]x , y( with cardinality 2
and Y4 ]a( a one point set. Equip X and Y with the trivial topologies OX 4

]¯ , X( and OY 4 ]¯ , Y(. Consider the map q : XKY defined by q(x) 4q(y) 4

a. Then q is easily seen to be a quasi-homeomorphism. However, Y is Jacobson
and X is not. We observe also that X0 4¯ and qX (X0 ) c (sX)0 , where qX : XKsX
is defined by qX (t) 4 ]t(.

For the necessity of the condition «T0-space» in Corollary 3.12, we are aim-
ing to give a «good example».

EXAMPLE 3.17. – A topological space X such that sX is jacspectral and X
is not Jacobson.

Let Y4 Spec (Z) equipped with the Zariski topology. Since Z is a Hilbert
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domain, Y is jacspectral. Now consider the set X4 ](0 , 0 )(N ](1 , n) : n�
N(N ](2 , n) : n�N( equipped with the topology R, where the closed sets are
¯ , X and 0

n�S
N](1 , n), (2 , n)(, the S are finite subsets of N. Then (X , R) is

easily seen to be a Noetherian non T0-space and X0 4¯. Thus (X , R) is not a
Jacobson space. It remains to prove that sX is jacspectral. It will be sufficient
to construct a quasi-homeomorphism q : XKY4 Spec (Z), and then use Theo-
rem 1.8.

Let (pn , n�N) be the increasing sequence of all nonnegative prime inte-
gers. Then Spec (Z) 4 ](0)(N ]pn Z : n�N(. Consider the map q : XKY de-
fined by: q(0 , 0 ) 4 (0), q(1 , n) 4q(2 , n) 4pn Z.

Clearly, q is a quasi-homeomorphism. We conclude, from Theorem 1.8, that
sX is homeomorphic to s Y, hence sX is homeomorphic to Y, and finally that sX
is jacspectral. r

REMARK 3.18. – An analogous concept to that of L-goldspectral sets for jac-
spectral sets has no interest. For this purpose, let (X , G) be an ordered set;
we say that (X , G) is left jacspectral ( L -jacspectral) if the left topology on
(X , G) is jacspectral. Let (X , G) be an L-jacspectral set. Then (X , G) has
finitely many maximal elements (since the left topology must be quasi-com-
pact). Consequently, Proposition 3.9 shows that (X , G) is reduced to
Max (X , G), that is, the Krull dimension of (X , G) is 0.

Let R be a ring and (pi , i�I) a nonempty totally ordered collection of J-
ideals of R. Then, clearly, the intersection 1

i�I
pi is a J-ideal. However, the

union 0
i�I

pi needs not be a J-ideal as the following construction shows.

EXAMPLE 3.19. – Let X4CNg 0
n�N*

Xnh, where

C4mg0, 12
1

n
h : n�N*nN](0 , 0), (1 , 0)(2 , 0)( and Xn4mgp ,

1

n
h : p�N*n .

We denote x0 4 (0 , 0 ), v4 (0 , 1 ) and v11 4 (0 , 2 ), xn 4g0, 12
1

n
h. Par-

tially order X by declaring that:

l x0 Gx, xGx, xGv, xGv11, for each x�X.

l vGv11

l xn Gxm if and only if nGm.

l For each nEm, xn Ggp , 1

m
h, for each p�N*.
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Then the ordered set (X , G) looks like

Equip (X , G) with the cop-topology R (that is, the topology which has the col-
lection ](xH) : x�X( as a subbase for closed sets [22], where (xH) 4 ]y�
X : xGy(). Hence R is compatible with the ordering and R is easily seen to be
quasi-compact.

Since ]X2 (xH) : x�X( is a subbase of open sets of (X , R), it follows im-
mediately that the collection, B 4 ]¯ , X(N ]Bn : n�N*( (where Bn 4

]x0 , x1 , R , xn21 (N ( (X1 NX2 NRNXn )2An ), with An a finite subset of
X1 NX2 NRNXn) is a basis of quasi-compact open subsets of (X , R) which is
stable under finite intersections.

It is, also, easily seen that each nonempty irreducible closed subset of
(X , R) has a generic point. We conclude that (X , R) is a spectral space.

Clearly, Jac (X) 4 ]x�X : ]x( 4 ]x(OX0( 4X2 ]v(. The increasing se-
quence (xn , n�N) of elements of (X , G) corresponds to an increasing se-
quence of J-ideals (pn , n�N) of some ring R. The element v corresponds to a
prime ideal pv of R such that pv4 0

n�N
pn and pv is not a J-ideal. r

We close this section by pointing out that, since the problem of «ordered
disjoint union of Lewis and Ohm» for a spectral set or a goldspectral set is still
open, we were very surprised at finding the following result.

THEOREM 3.20. – Let ](Xl , Gl ) : l�L( be a collection of ordered disjoint
sets. Let X4 0

l�L
X , equipped with the ordering G defined by: xGy if and

only if there exists l�L such that x , y�Xl and xGl y. Then the following
statements are equivalent.

(i) (X , G) is a jacspectral set.
(ii) For each l�L , (Xl , Gl ) is a jacspectral set.

PROOF. – (i) ¨ (ii) The proof runs as in Proposition 2.10.
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Let Rl be a jacspectral topology on Xl which is compatible with the order-
ing Gl . We consider the topology R on X constructed in the proof of (2.10).
Then R is compatible with the ordering G and (X , R) is quasi-compact. As in
the proof of [3, Théorème 3.8], each nonempty irreducible closed subset of
(X , R) has a generic point. Hence (X , R) is sober. What is left is to show that
(X , R) is a Jacobson space.

The set of closed points of (X , R) is the set of maximal elements of (X , G),
and since X is a disjoint ordered union, Max (X , G) 4 0

l�L
Max (Xl , Gl ). Thus

X0 4 0
l�L

(Xl )0 . To see that X0 is strongly dense in X, it suffices to remark that

every nonempty locally closed subset L of (X , R) is a union of locally closed
subsets Ll of Xl .

(ii) ¨ (i) Let R be a jacspectral topology on X which is compatible with the
ordering G. We define on Xl the topology Rl , where the closed sets are: ¯, Xl

and the closed subsets of (X , R) contained in Xl . Of course, Rl is compatible
with Gl and (Xl , Rl ) is a quasi-compact sober space. The proof will be com-
plete, if we show that (Xl , Rl ) is a Jacobson space.

First, observe that the set of closed points of Xl is X0 OXl . Let LcXl be a
nonempty locally closed subset of Xl; there exist an open subset O of Xl , and a
closed subset C of Xl such that L4OOC. Without loss of generality, we can
suppose that CcXl . Since Xl2O and C are two closed subsets of X contained
in Xl , U4X2 (Xl2O) is an open subset of X and L4OOC4UOC is a
locally closed subset of X. The fact that X0 is strongly dense in X, yields LO
X0 c¯. Therefore LO (XlOX0 ) c¯, that is, LO (Xl )0 c¯, proving that
(Xl , Rl ) is a Jacobson space and that it is jacspectral. r
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