BOLLETTINO UNIONE MATEMATICA ITALIANA

B. YOUSEFI, S. JAHEDI

Composition operators on Banach spaces of formal power series

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **6-B** (2003), n.2, p. 481–487.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2003_8_6B_2_481_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2003.

Composition Operators on Banach Spaces of Formal Power Series.

B. Yousefi - S. Jahedi

dedicated to the memory of Karim Seddighi

Sunto. – Supponiamo che $\{\beta(n)\}_{n=0}^{\infty}$ sia una successione di numeri positivi e $1 \leq p < \infty$. Consideriamo lo spazio $H^p(\beta)$ di tutte le serie di potenze $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$, tali che $\sum_{n=0}^{\infty} |\widehat{f}(n)|^p \beta(n)^p < \infty$. Supponiamo che $\frac{1}{p} + \frac{1}{q} = 1$ e $\sum_{n=1}^{\infty} \frac{n^{qj}}{\beta(n)^q} = \infty$ per un intero non-negativo j. Dimostriamo che se C_{ϕ} è compatto su $H^p(\beta)$, allora il limite non-tangenziale di $\phi^{(j+1)}$ ha modulo maggiore di uno, in ogni punto della frontiera del disco unitario aperto. Dimostriamo anche che se C_{ϕ} è di Fredholm su $H^p(\beta)$, allora q deve essere un automorfismo del disco unitario aperto.

Summary. – Let $\{\beta(n)\}_{n=0}^{\infty}$ be a sequence of positive numbers and $1 \leq p < \infty$. We consider the space $H^p(\beta)$ of all power series $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$ such that $\sum_{n=0}^{\infty} |\widehat{f}(n)|^p \beta(n)^p < \infty$. Suppose that $\frac{1}{p} + \frac{1}{q} = 1$ and $\sum_{n=1}^{\infty} \frac{n^{qj}}{\beta(n)^q} = \infty$ for some nonnegative integer j. We show that if C_{φ} is compact on $H^p(\beta)$, then the non-tangential limit of $\varphi^{(j+1)}$ has modulus greater than one at each boundary point of the open unit disc. Also we show that if C_{φ} is Fredholm on $H^p(\beta)$, then φ must be an automorphism of the open unit disc.

Introduction.

First in the following, we generalize the definitons coming in [5].

Let $\{\beta(n)\}\$ be a sequence of positive numbers with $\beta(0)=1$ and $1 \le p < \infty$. We consider the space of sequences $f = \{\widehat{f}(n)\}_{n=0}^{\infty}$ such that

$$||f||^p = ||f||^p_\beta = \sum_{n=0}^{\infty} |\widehat{f}(n)|^p \beta(n)^p < \infty.$$

The notation $f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n$ shall be used whether or not the series converges for any value of z. These are called formal power series. Let $H^p(\beta)$ denotes the space of such formal power series. These are reflexive Banach spaces with the norm $\|\cdot\|_{\beta}$ ([4]) and the dual of $H^p(\beta)$ is $H^q(\beta^{p/q})$ where $\frac{1}{p}$ +

 $\begin{array}{l} \frac{1}{q}=1 \ \text{and} \ \beta^{p/q}=\{\beta(n)^{p/q}\}_n \ ([6]). \ \text{Also if} \ g(z)=\sum\limits_{n=0}^{\infty}\widehat{g}(n) \ z^n \in H^q(\beta^{p/q}), \ \text{then} \\ \|g\|^q=\sum\limits_{n=0}^{\infty}|\widehat{g}(n)|^q\beta(n)^p. \ \text{The Hardy, Bergman and Dirichlet spaces can be} \\ \text{viewed in this way when } p=2 \ \text{and respectively} \ \beta(n)=1, \ \beta(n)=(n+1)^{-1/2} \\ \text{and} \ \beta(n)=(n+1)^{1/2}. \ \text{If} \ \lim\limits_n \frac{\beta(n+1)}{\beta(n)}=1 \ \text{or} \ \lim\limits_n \inf \beta(n)^{1/n}=1, \ \text{then} \ H^p(\beta) \ \text{consists of functions analytic on the open unit disc } U. \ \text{It is convenient and helpful to introduce the notation} \ \langle f, g \rangle \ \text{to stand for} \ g(f) \ \text{where} \ f \in H^p(\beta) \ \text{and} \ g \in H^p(\beta)^*. \ \text{Note that} \ \langle f, g \rangle = \sum\limits_{n=0}^{\infty}\widehat{f}(n)\widehat{g(n)}\beta(n)^p. \ \text{Let} \ \widehat{f}_k(n) = \delta_k(n). \ \text{So} \ f_k(z) = z^k \\ \text{and then} \ \{f_k\}_k \ \text{is a basis such that} \ \|f_k\| = \beta(k). \ \text{Clearly} \ M_z, \ \text{the operator of multiplication by } z \ \text{on} \ H^p(\beta) \ \text{shifts the basis} \ \{f_k\}_k. \end{array}$

Remember that a complex number λ is said to be a bounded point evaluation on $H^p(\beta)$ if the functional of point evaluation at λ , e_{λ} , is bounded. The functional of evaluation of the *j*-th derivative at λ is denoted by $e_{\lambda}^{(j)}$.

The function φ in $H^p(\beta)$ that maps the unit disc U into itself induces a composition operator C_{φ} on $H^p(\beta)$ defined by $C_{\varphi}f = f \circ \varphi$. The operator C_{φ} is Fredholm, if it is invertible modulo the compact operators. If C_{φ} is a bounded invertible operator, then φ must be an automorphism of U, that is a one to one map of U onto U.

We say an analytic self-map φ of U has an angular derivative at $w \in \partial U$, if for some $\eta \in \partial U$ the non-tangential limit of $\frac{\varphi(z) - \eta}{z - w}$ when $z \to w$, exists and is finite. We call this limit the angular derivative of φ at w and denoted it by $\varphi'(w)$.

Main results.

We suppose that $H^{p}(\beta)$ consists of functions analytic on the open unit disc U. We study the Fredholm composition operator C_{φ} and investigate the compactness and essential norm of C_{φ} acting on the Banach space $H^{p}(\beta)$.

LEMMA 1. – Let X be a Banach space of analytic functions on a domain Ω in C. If there exists a sequence of functions g_k in the dual space X^* such that $||g_k|| = 1$ and $g_k \to 0$ weakly with $||C_{\varphi}^*(g_k)|| \to 0$, then C_{φ} is not Fredholm on X.

PROOF. – Suppose *S* is any bounded operator on X^* . Then by the hypothesis $||SC_{\varphi}^*(g_k)|| \leq ||S|| ||C_{\varphi}^*(g_k)|| \to 0$ as $k \to \infty$. Now let *Q* be an arbitrary compact operator on X^* . Since *Q* is necessarily completely continuous, then we have $||Q(g_k)|| \to 0$ ([2, p. 177, Proposition 3.3]). Thus $||(I + Q) g_k|| \to 1$ for every compact operator *Q* on X^* . This implies that $SC_{\varphi}^* - I$ can not be compact, since else it should be $||(I + (SC_{\varphi}^* - I))g_k|| \to 1$ that is a contradiction. Thus C_{φ}^* , and hence C_{φ} , is not Fredholm.

In the following we use the fact that $e_w \in H^q(\beta^{p/q})$ and $||e_w||^q = \sum_{n=0}^{\infty} \frac{|w|^{nq}}{\beta^{(n)^q}} < \infty$ for all w in U ([6]).

THEOREM 2. – Let $\frac{1}{p} + \frac{1}{q} = 1$ and $\sum_{n=0}^{\infty} \frac{n^{q^{j}}}{\beta(n)^{q}} = \infty$ for some non-negative integer j. If C_{φ} is Fredholm on $H^{p}(\beta)$, then φ is an automorphism of the disc.

PROOF. – It is well known that if C_{φ} is Fredholm, then φ is univalent since else the kernel of C_{φ}^* will contain an infinite linearly independent set whose elements are differences of evaluation functionals. This is a contradiction, since dim ker $C_{\varphi}^* < \infty$. So we need only show that φ maps U onto U. If not, there exists $v \in \partial \varphi(U) \cap U$ and $z_k \in U$ such that $\varphi(z_k) \to v$. By the Open Mapping Theorem it should be $|z_k| \to 1$.

Let *j* be the least non-negative integer such that the sum $\sum_{n \ge 0} \frac{n^{qj}}{\beta(n)^q} = \infty$. If j = 0, set $e_k = \frac{e_{z_k}}{\|e_{z_k}\|}$. Then $\|e_k\| = 1$. But

$$\lim_k \|e_{z_k}\|^q = \lim_k \sum_{n \geqslant 0} rac{|z_k|^{nq}}{eta(n)^q} = \sum_{n \geqslant 0} rac{1}{eta(n)^q} = \infty$$

and so if p is a polynomial in $H^p(\beta)$, then $\lim_k \langle p, e_k \rangle = \lim_k \frac{p(z_k)}{\|e_{z_k}\|} = 0$. But polynomials are dense in $H^p(\beta)$, thus $e_k \to 0$ weakly as $k \to \infty$. Since v is in U and $\varphi(z_k) \to v$, we have $e_{\varphi}(z_k) \to e_v$. Since we also have $\|e_{z_k}\| \to \infty$, we conclude that $\|C_{\varphi}^* e_{z_k}\| = \|e_{\varphi(z_k)}\|/\|e_{z_k}\|$ tends to zero. So by Lemma 1, C_{φ} is not Fredholm that is a contradiction.

If j > 0, let $e_k = \frac{e_{z_k}^{(j)}}{\|e_{z_k}^{(j)}\|}$ where $e_{z_k}^{(j)}$ is the functional of evaluation of the *j*-th derivative at z_k . Note that $e_w(z) = \sum_{n=0}^{\infty} \frac{1}{\beta(n)^p} \overline{w}^n z^n$ and $e_w^{(j)} = \frac{d^j}{d\overline{w}^j} e_w$. Thus

$$e_{z_k}^{(j)} = \sum_{n=0}^{\infty} n(n-1)(n-2)\dots(n-j+1) \frac{(\bar{z}_k)^{n-j}}{\beta(n)^p} z^n.$$

Since $|z_k| \rightarrow 1$ and $\sum_{n \ge 0} \frac{n^{jq}}{\beta(n)^p} = \infty$, we have

$$\lim_{k} \|e_{z_{k}}^{(j)}\|^{q} = \lim_{k} \sum_{n=0}^{\infty} (n(n-1)\dots(n-j+1))^{q} \frac{|z_{k}|^{(n-j)q}}{\beta(n)^{q}} = \infty.$$

Since polynomials are dense in $H^p(\beta)$, by the same manner as in the previous case, we can see that $e_k \to 0$ weakly as $k \to \infty$. Now we show that $\|C_{\varphi}^* e_k\| \to 0$ as

 $k \rightarrow \infty$. A straightforward computation gives the following equalities:

$$\begin{split} C_{\varphi}^{*} e_{z_{k}}^{(1)} &= \varphi'(z_{k}) e_{\varphi(z_{k})}^{(1)} \\ C_{\varphi}^{*} e_{z_{k}}^{(2)} &= \varphi'(z_{k})^{2} + e_{\varphi(z_{k})}^{(2)} + \varphi''(z_{k}) e_{\varphi(z_{k})}^{(1)} \\ C_{\varphi}^{*} e_{z_{k}}^{(3)} &= \varphi'(z_{k})^{3} e_{\varphi(z)}^{(3)} + \varphi'''(z_{k}) e_{\varphi(z_{k})}^{(1)} + 2\varphi''(z_{k}) e_{\varphi(z_{k})}^{(2)} + \varphi'(z_{k}) \varphi''(z_{k}) e_{\varphi(z_{k})}^{(2)} \\ &\vdots \\ C_{\varphi}^{*} e_{z_{k}}^{(j)} &= \varphi'(z_{k})^{j} e_{\varphi(z_{k})}^{(j)} + \varphi^{(j)}(z_{k}) e_{\varphi(z_{k})}^{(1)} + \text{lower order terms} \end{split}$$

where the lower order terms involves functionals of evaluation of derivatives of order less than j at $\varphi(z_k)$ with coefficients involving products of derivatives of φ at z_k of order less than j. From this it follows that $||C_{\varphi}^* e_k|| \to 0$ as $k \to 0$. To see this first suppose that j = 1. Thus we have

$$C_{\varphi}^{*} e_{k} = rac{arphi '(z_{k}) e_{\varphi(z_{k})}^{(1)}}{\|e_{z_{k}}^{(1)}\|} = \langle arphi, e_{k}
angle e_{\varphi(z_{k})}^{(1)}.$$

But $\varphi(z_k) \to \nu$, where $\nu \in U$. So $\|e_{\varphi(z_k)}^{(1)}\| \to \|e_{\nu}^{(1)}\| < \infty$. Also since $e_k \to 0$ weakly, $\langle \varphi, e_k \rangle \to 0$ as $k \to \infty$. Thus indeed $\|C_{\varphi}^* e_k\| \to 0$ as $k \to \infty$.

If j > 1, remark that for all i < j we have

$$e_{\varphi(z_k)}^{(i)} = \sum_{n=1}^{\infty} \frac{n!}{(n-i)!} \frac{(\overline{\varphi(z_k)})^{n-i}}{\beta(n)^p}$$

and so

$$\begin{split} \|e_{\varphi(z_k)}^{(i)}\|^q &= \sum_{n=i}^{\infty} (n(n-1)\dots(n-i+1))^q \frac{\|v(z_k)\|^{n-i}}{\beta(n)^q} \\ &\leqslant \sum_{n=i}^{\infty} \frac{n^{iq}}{\beta(n)^q} \leqslant \sum_{n=i}^{\infty} \frac{n^{(j-1)q}}{\beta(n)^q} < \infty \,, \end{split}$$

since *j* is the least non-negative integer such that $\sum_{n=0}^{\infty} \frac{n^{jq}}{\beta(n)^q} = \infty$. Thus the limit of the norms of the functionals of evaluation of derivatives at $\varphi(z_k)$ of order less than *j* remain bounded in *U*. Also, by the Principle of Uniform Boundedness Theorem $\sup_k \|e_{z_k}^{(i)}\| < \infty$ for i < j and all derivatives of φ at z_k of order less than *j* are bounded. Note that $\|e_{z_k}^{(j)}\| \to \infty$ and $\varphi(z_k) \to \nu \in U$. Thus we have $\lim_{k \to \infty} \|C_{\varphi}^* e_k\| = 0$ provided that

$$\lim_{k \to \infty} \frac{1}{\|e_{z_k}^{(j)}\|} \|(\varphi'(z_k))^j e_{\varphi(z_k)}^{(j)} + \varphi^{(j)}(z_k) e_{\varphi(z_k)}^{(1)}\| = 0.$$

Clearly

$$(*) \quad \frac{1}{\|e_{z_{k}}^{(j)}\|} \|(\varphi'(z_{k}))^{j} e_{\varphi(z_{k})}^{(j)} + \varphi^{(j)}(z_{k}) e_{\varphi(z_{k})}^{(1)}\| \leq \\ \frac{|\varphi'(z_{k})|^{j}}{\|e_{z_{k}}^{(j)}\|} \|e_{\varphi(z_{k})}^{(j)}\| + \frac{|\varphi^{(j)}(z_{k})|}{\|e_{\varphi(z_{k})}^{(j)}\|} \|e_{\varphi(z_{k})}^{(1)}\| \leq \\ \frac{\|\varphi\|_{H^{p}(\beta)}^{l}\|e_{z_{k}}^{(1)}\|^{j}}{\|e_{z_{k}}^{(j)}\|} \|e_{\varphi(z_{k})}^{(j)}\| + |\langle\varphi, e_{k}\rangle| \cdot \|e_{\varphi(z_{k})}^{(1)}\|.$$

Note that $||e_{z_k}^{(j)}|| \to \infty$ and $\lim_k ||e_{z_k}^{(1)}|| < \infty$, since 1 < j. Also $||e_{\varphi(z_k)}^{(i)}|| \to ||e_{\nu}^{(i)}|| < \infty$ for i = 1, j and $\langle \varphi, e_k \rangle \to 0$, since $e_k \to 0$ weakly. Thus indeed the term in (*) tends to zero as $k \to \infty$ and so $||C_{\varphi}^* e_k|| \to 0$ which by the lemma implies that C_{φ} is not Fredholm that is a contradiction.

Note that by the Julia Caratheodory Theorem ([3]), φ has an angular derivative at $w \in \partial U$ if and only if φ' has non-tangential limit at w, and φ has non-tangential limit of modulus one at w. Consider the open Euclidean disc, Julia disc, $J(\xi, a) = \{z \in U; |\xi - z|^2 < a(1 - |z|^2)\}$ of radius $\frac{a}{1+a}$ and center at $\frac{\xi}{1+a}$, whose boundary is tangant to ∂U at ξ . By the Julia's Lemma ([1]), if $\xi \in \partial U$ and φ is an analytic function such that $B_{\varphi} = \inf_{\xi \in \partial U} |\varphi'(\xi)| < \infty$, then $\varphi(J(\xi, a)) \subseteq J(\varphi(\xi), aB_{\varphi})$.

Recall that the essential norm of C_{φ} is denoted by $\|C_{\varphi}\|_{e}$ and is the distance in the operator norm from C_{φ} to the compact operators.

THEOREM 3. – Let $\frac{1}{p} + \frac{1}{q} = 1$ and $\sum_{n=1}^{\infty} \frac{n^{qj}}{\beta(n)^q} = +\infty$ for some non-negative integer j. Also for $0 \le i \le j$ let $\varphi^{(i)}$ be an analytic self map of the unit disc U. If C_{φ} is a bounded operator on $H^p(\beta)$ and $|\varphi^{(j+1)}(\xi)| \le 1$ for some $\xi \in \partial U$, then $||C_{\varphi}||_e \ge 1$ and C_{φ} is not compact.

PROOF. – Let $\{z_k\}$ be any sequence in U with $z_k \to \xi$. Also let j be the least non-negative integer such that the sum $\sum_{n=1}^{\infty} \frac{n^{qj}}{\beta(n)^q} = +\infty$. Set $e_k = \frac{e_{z_k}^{(j)}}{\|e_{z_k}^{(j)}\|}$. Then $\|e_k\| = 1$ and by the same method used in the proof of Theorem 2, $e_k \to 0$ weakly as $k \to \infty$. If K is any compact operator, then K^* is completely continuous and since $e_k \to 0$ weakly, it should be $\|K^* e_k\| \to 0$. By definition $\|C_{q}\|_e = \inf \{\|C_{q} - K\| : K \text{ is compact}\}$ and

$$||C_{\varphi} - K|| = ||(C_{\varphi} - K)^*|| \ge ||(C_{\varphi} - K)^* e_k|| \ge ||C_{\varphi}^* e_k|| - ||K^* e_k||.$$

If $k \to \infty$, then since $||K^*e_k|| \to 0$, we have $||C_{\varphi}||_e \ge \overline{\lim_k} ||C_{\varphi}^*e_k||$. Now we show that

$$\overline{\lim_k} \| C_{\varphi}^* e_k \| = \overline{\lim_k} \frac{\| e_{\varphi(z_k)}^{(j)} \|}{\| e_{z_k}^{(j)} \|} \,.$$

Note that since $|\varphi^{(j+1)}(\xi)| \leq 1$, by the Julia's Caratheodory theorem the nontangential limit of $\varphi^{(i)}(\xi)$ have modulus one for i = 0, 1, ..., j.

If j = 0, then $e_k = \frac{e_{z_k}}{\|e_{z_k}\|}$ and $C_{\varphi}^* e_k = \frac{e_{\varphi(z_k)}}{\|e_{z_k}\|}$. If j = 1, then $e_k = \frac{e_{z_k}^{(1)}}{\|e_{z_k}\|}$ and $C_{\varphi}^* e_k = \varphi'(z_k) \frac{e_{\varphi(z_k)}^{(1)}}{\|e_{z_k}^{(1)}\|}$. But the non-tangential limit of $\varphi'(\xi)$ has modulus one and so $\overline{\lim_{k}} \|C_{\varphi}^* e_k\| = \overline{\lim_{k}} \|e_{\varphi(z_k)}^{(1)}\|/\|e_{z_k}^{(1)}\|$. If j > 1, then $e_k = \frac{e_{z_k}^{(j)}}{\|e_{z_k}^{(j)}\|}$ and

$$C_{\varphi}^{*}e_{k}=rac{1}{\|e_{z_{k}^{(j)}}^{(j)}\|}(arphi^{\,\prime}(z_{k})^{j}e_{arphi(z_{k})}^{(j)}+L_{j,\,k})$$

where $L_{j,k}$ is the sum of lower order terms and involves derivatives of order less than j at $\varphi(z_k)$, i.e., terms of the type $e_{\varphi(z_k)}^{(i)}$ (i < j), with coefficients involving product of derivatives of φ at z_k of order less than or equal to j. Remark that since j is the least non-negative integer such that $\sum_{n=0}^{\infty} \frac{n^{jq}}{\beta(n)^q} = +\infty$, then we have

$$\|e_{\varphi(z_k)}^{(i)}\|^q = \sum_{n=1}^{\infty} (n(n-1)\dots(n-i+1))^q \frac{|\varphi(z_k)|^{n-i}}{\beta(n)^q} \leq \sum_{n=1}^{\infty} \frac{n^{(j-1)q}}{\beta(n)^q} < \infty$$

for i < j. So $\lim_{k \to \infty} \|e_{\varphi(z_k)}^{(i)}\|$ remains bounded for all i less than j. Also since $\|e_{z_k}^{(j)}\| \to \infty$ and $\varphi_{a}^{(i)}(\xi)$ has the non-tangential limit of modulus one for all $i \leq j$, thus indeed $\lim_{k} \frac{\|L_{j,k}\|}{\|e_{z_{k}}^{(j)}\|} = 0.$

Therefore

$$\begin{split} \overline{\lim_{k}} \left\| C_{\varphi}^{*} e_{k} \right\| &= \overline{\lim_{k}} \left| \varphi'(z_{k}) \right|^{j} \frac{\left\| e_{\varphi(z_{k})}^{(j)} \right\|}{\left\| e_{z_{k}}^{(j)} \right\|} \\ &= \overline{\lim_{k}} \frac{\left\| e_{\varphi(z_{k})}^{(j)} \right\|}{\left\| e_{z_{k}}^{(j)} \right\|} \,. \end{split}$$

Now to complete the proof it is sufficient to show that $\overline{\lim_{k}} \frac{\|e_{q(z_{k})}^{(j)}\|}{\|e_{z_{k}}^{(j)}\|} \ge 1$. For this set $z_{k} = \left(1 - \frac{1}{k}\right) \xi$. Then there exists a sequence $\{r_{k}\}$ of non-negative numbers such that z_k is the point on $\partial J(\xi, r_k)$ closest to 0. Therefore by the Julia's Lemma

$$\varphi(z_k) \in \varphi(\partial J(\xi, r_k)) \subseteq \partial \varphi(J(\xi, r_k)) \subseteq \partial J(\varphi(\xi), r_k).$$

It follows that $|\varphi(z_k)| \ge |z_k|$ for all k. Now since $||e_z^{(j)}||^q = \sum_{\substack{n=j \ (n-j)!}}^{\infty} \frac{n!}{\beta(n)^q}$, the norm $||e_z^{(j)}||$ increases with |z|. Thus for all k, $||e_{\varphi(z_k)}^{(j)}||/||e_{z_k}^{(j)}|| \ge 1$ and indeed $||C_{\varphi}||_e \ge 1$. This implies that C_{φ} is not compact and so the proof is complete.

COROLLARY 4. – Let $\frac{1}{p} + \frac{1}{q} = 1$ and $\sum_{n=1}^{\infty} \frac{n^{qj}}{\beta(n)^q} = +\infty$ for some non-negative integer *j*. If C_{φ} is compact on $H^p(\beta)$, then $|\varphi^{(j+1)}(\xi)| > 1$ for all ξ in ∂U such that $\varphi^{(j+1)}(\xi)$ exists.

REFERENCES

- [1] L. Ahlfors, Conformal Invariants, McGraw-Hill, New York, 1973.
- [2] J. B. CONWAY, A Course in Functional Analysis, Springer-Verlag, New York, 1985.
- [3] W. RUDIN, Function Theory in the Unit Ball of Cⁿ, Grundlehren der Mathematischen Wissenschaften, 241, Springer-Verlag, Berlin, 1980.
- [4] K. SEDDIGHI K. HEDAYATIYAN B. YOUSEFI, Operators acting on certain Banach spaces of analytic functions, Internat. J. Math. & Math. Sci., 18, No. 1 (1995), 107-110.
- [5] A. L. SHIELDS, Weighted shift operators and analytic function theory, Math. Survey, A.M.S. Providence, 13 (1974), 49-128.
- [6] B. YOUSEFI, On the space l^p(β), Rendiconti del Circolo Matematico di Palermo Serie II, Tomo XLIX (2000), 115-120.
- B. Yousefi: Dept. of Math., College of Science, Shiraz University, Shiraz 71454, Iran E-mail: yousefi@math.susc.ac.ir
- S. Jahedi: Dept. of Math., College of Science, Shiraz University, Shiraz 71454, Iran

Pervenuta in Redazione il 5 marzo 2002