
BOLLETTINO
UNIONE MATEMATICA ITALIANA

Manfred Kronz

Quasimonotone systems of higher order

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 6-B (2003),
n.2, p. 459–480.
Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2003_8_6B_2_459_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per
motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=BUMI_2003_8_6B_2_459_0
http://www.bdim.eu/


Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2003.



Bollettino U. M. I.
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Quasimonotone Systems of Higher Order.

MANFRED KRONZ

Sunto. – Consideriamo sistemi nonlineari quasimonotoni di tipo di divergenza di or-
dine alto con crescenza di ordine p , pF2 e coefficienti di Dini continui. Usando la
tecnica dell’approssimazione armonica, diamo una dimostrazione diretta per la
regolarità parziale di soluzioni deboli.

Summary. – We consider higher order quasimonotone nonlinear systems of divergence
type with growth of order p , pF2, and Dini continuous coefficients. Using the
technique of harmonic approximation we give a direct partial regularity proof for
weak solutions.

1. – Introduction.

In this paper we are concerned with the regularity of weak solutions to
quasimonotone nonlinear systems of higher order in divergence form of the
type

s
V

A(x , D m u) D m W d L n 40 ,(1)

where V is a bounded domain in Rn , u is a function in the Sobolev space
W m , p (V , RN ), mF1, pF2, L n is the Lebesgue measure and A : V3

Um (Rn , RN ) KHom(Um (Rn , RN ), R), (x , Q) O A(x , Q), is Dini continuous
with respect to x , strictly quasimonotone and C 1 with respect to Q. Here

Um (Rn , RN ) `R
N gn1m21

m h denotes the vectorspace of symmetric m-linear RN-
valued functions on Rn.

In the case of weak solutions u�W m , 2 (V , RN ) to inhomogeneous nonlin-
ear elliptic systems of the type

(2) s
V

A(x , du , D m u) D m W d L n 4

s
V

a(x , du) D m W d L n 1 !
k40

m21

bk (x , du , D m u) D k W d L n
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of higher order in divergence form (here du4 (u , Du , R , D m21 u)), it has
been proved by Giaquinta and Modica [GM1], assuming natural hypotheses on
the regularity and the growth of A 4 A(x , q , Q) with respect to Q , Hölder
continuity with respect to x and q and suitable growth and continuity assump-
tions on the inhomogenities and regularity assumptions on u (i.e. u�
W m21, Q (V , RN )), that u has Hölder continuous m th-order derivatives outside
a singular set of Lebesgue measure 0 for some positive Hölder exponent. Re-
cently, Duzaar, Gastel and Grotowski [DGG] gave a partial regularity proof
for the homogeneous elliptic system (2), which yields, using the technique of
harmonic approximation, the optimal partial regularity result (with respect
to the Hölder exponent). Partial regularity results for minimizers of the
functional

F(u) 4s
V

f (Du) d L n(3)

of second order, whose integrand satisfies a quasiconvexity condition in the
sense of Morrey were first proved by Evans [E], using an indirect blow-up ar-
gument. A direct proof, using higher integrability arguments, for minimizers
of quasiconvex variational integrals s

V
f (x , u , Du) d L n was supplied by Gia-

quinta and Modica [GM2]. In [K] the current author obtained a partial regu-
larity result for minimizers of quasiconvex functionals s

V
f (D m u) d L n of higher

order with the technique of harmonic approximation. Guidorzi [Gu] proves the
same result with an indirect blow-up argument. In attempting to extend Evans’
partial regularity result for minimizers of the variational integral (3) to weak
solutions of second order nonlinear systems of type (1), Hamburger [H] re-
placed the quasiconvexity condition on the integrand in (3) by a quasimono-
tonicity condition on A. This corresponds to the fact that quasiconvexity of a
function is implied by quasimonotonicity of its gradient. Moreover he assumes
Hölder continuity of A with respect to x with Hölder exponent a and proves
partial C m , a-regularity of u. (For the concept of quasimonotonicity and rela-
tions to monotonicity, convexity and quasiconvexity see Hamburger [H] and
also Fuchs [F] and Zhang [Z].)

In this paper we extend Hamburger’s result on weak solutions of quasi-
monotone systems of second order to those of quasimonotone systems of arbit-
rary order. To prove partial regularity results for weak solutions of system (1)
we assume that A is uniformly strictly quasimonotone, which means that for
all balls Br (x0 ) %%V , any Q�Um (Rn , RN ) and all test functions W�
C Q

0 (Br (x0 ), RN ) there holds

s
Br (x0 )

A(x0 , Q1D m W) D m W d Ln Fl s
Br (x0 )

(ND m WN2 1ND m WNp) d L n .



QUASIMONOTONE SYSTEMS OF HIGHER ORDER 461

Moreover we assume, that A is Dini continuous with respect to x. This means
that there exists a modulus of continuity v : RF0 KRF0 with W (r) »4

s
0

r
v(s)

s
dsEQ for some rD0 such that for all x1 , x2 �V and Q�Um (Rn , RN )

there holds

N A(x1 , Q)2 A(x2 , Q)NGv(Nx1 2x2N)(11NQNp21 ) .

Our main result can be stated as follows: Assuming the additional standard
hypothesis NDQ A(x , Q)NGL(11NQNp22 ), a weak solution u�W m , p (V , RN ),
pF2, is C m outside a (relatively) closed singular set S of Lebesgue measure 0
and D m u has the modulus of continuity rO W (r) in a neighborhood of every
point x0 in the regular set V0S.

As in the case of second order systems, the uniformly quasimonotonicity
condition for A implies that DQ A is elliptic in the sense of Legendre-
Hadamard. With regard to regularity theory, the uniform strict quasimono-
tonicity permits the proof of a Caccioppoli inequality for weak solutions of (1).
Both allow us to apply the technique of harmonic approximations and to give a
direct proof of our partial regularity result.

The point of this technique is the fact, that for a bilinear form B on
Um (Rn , RN ) which is elliptic in the sense of Legendre-Hadamard, an «ap-
proximately (B, m)-harmonic» function v — that means s

V
B(D m v , D m W) d L n

is sufficiently small for all test function W — lies L 2-close to some function h
with s

V
B(D m h , D m W) d L n 40. Then, standard a priori sestimates for h lead

to estimates for excess terms.
In this paper we deal with the bilinear form B 4DQ A(x0 , D m Px0 , r ), where

x0 �V and Px0 , r is a special polynomial of degree at most m which is associated
to a weak solution of system (1) on a ball Br (x0 ). Applying the technique of
harmonic approximation we derive decay estimates for our excess term

C(x0 , r , Px0 , r ) 4

gr22 s–
Br (x0 )

ND m21 (u2Px0 , r )N2 d L n 1r2p s–
Br (x0 )

ND m21 (u2Px0 , r )Np d L nh1/2

in points x0 �V where C(x0 , r , Px0 , r ) is sufficiently small. Iterating this ex-
cess term, we derive an estimate for s

Br (x)
ND m21 (u2Px , r )N2 d L n which is valid

for all 0 ErGr and all x in a sufficiently small neighborhood of x0 and which
implies our partial regularity result. Here, even in the case pc2 of non-linear
growth of A, we only use L 2-estimates, i.e. standard a priori estimates for sol-
utions of constant coefficient elliptic systems.
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2. – Hypotheses and statements of results.

Assume that A in (1) fulfills the following conditions:

(H1) The function A is C 1 with respect to Q and strictly quasimonotone, i.e.
there exist an exponent pF2 and a constant lD0 such that for all balls
Br (x0 ) %%V , Q�Um (Rn , RN ) and W�C Q

0 (Br (x0 ), RN ) there holds

s
Br (x0 )

A(x0 , Q1D m W) D m W d Ln Fl s
Br (x0 )

(ND m WN2 1ND m WNp) d L n ;

(H2) there exists a nondecreasing concave function v : RF0 KRF0 with
v(0) 40 such that for all x1 , x2 �V and Q�Um (Rn , RN ) there
holds

N A(x1 , Q)2 A(x2 , Q)NGv(Nx1 2x2 N) (11NQNp21 ) ;

moreover we assume that sOs 2b v(s) is nonincreasing for some expo-
nent b�]0 , 1[ and that v fulfills Dini’s condition

W(r) »4s
0

r

v(s)

s
dsEQ for some rD0 ;

(H3) there exists LD0 such that for all x�V , and Q�Um (Rn , RN ) there
holds

NDQ A(x , Q)NGL(11NQNp22 ) .

REMARK 1. – (1) Notice that the conditions (H2) and (H3) imply that there
exists kD0 such that

(4) N A(x , Q)NGN A(x , Q)2 A(x0 , Q)N1

N A(x0 , 0 )N1Ns
0

1

DQ A(x0 , tQ) dtNNNQNGk (11NQNp21 )

for all x�V and Q�Um (Rn , RN ). From this we infer that hypothesis (H1) is
valid for all W�W m , p

0 (Br (x), RN ).
(2) From (H3) we infer the existence of a continuous, non-negative func-

tion n(t , s), for fixed s monotone increasing in t and vice versa, concave in s
with n(t , 0 ) 40 and

NDQ A(x1 , Q1 )2DQ A(x2 , Q2 )NG

(11NQ1N
p22 1NQ2N

p22 ) n(NQ1N , Nx1 2x2N1NQ1 2Q2N)
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for all x1 , x2 �V and Q1 , Q2 �Um (Rn , RN ). This implies that there exists a
monotone increasing and concave function n M : RF0 KRF0 with n M (0) 40
and

(5) NDQ A(x1 , Q1 )2DQ A(x2 , Q2 )NG

(11M p22 1NQ2N
p22 ) n M (Nx1 2x2 N1NQ1 2Q2 N)

for all x1 , x2 �V and Q1 , Q2 �Um (Rn , RN ) with NQ1 NGM.
(3) In view of hypotheses (H1) and (H3) we see that for given W�

W m , p
0 (Br (x0 ), RN )

s
Br (x0 )

A(x0 , Q1D m W) D m W d L n4 s
Br (x0 )

(A(x0 , Q1D m W)2A(x0 , Q)) D m W d L n4

s
Br(x0)

s
0

1

DQ A(x0, Q1t D mW)(D mW, D mW) dt dL nFl s
Br (x0)

(ND mWN21ND mWNp) dL n.

Rescaling W to eW and letting e70, we obtain that (H1)-(H3) imply

s
Br (x0 )

DQ A(x0 , Q)(D m W , D m W) d L n Fl s
Br (x0 )

ND m WN2 d L n(6)

for all balls Br (x0 ) %%V , Q�Um (Rn , RN ) and W�W m , p
0 (Br (x0 ), RN ). This in-

tegral condition is — as in the case m41 — equivalent to the Legendre-
Hadamard condition

DQ A(x0 , Q)(z m 7h , z m 7h) F
l

m!
NzN2m NhN2

for all x0 �V , Q�Um (Rn , RN ), z�Rn and h�RN , see [M], Theorem 7. Here
z m 4z7R7z.

(4) From hypotheses (H2) we infer s
0

Q

v(w t r) dtG !
j40

Q

v(w jr) G

s
0

Q

v(w t21 r) dt for w�]0 , 1[ and rD0. This implies (using 1 /wD1 and the con-

cavity of v)

2
W (r)

log (w)
G !

j40

Q

v(w jr) G2
W (r)

w log (w)
.(7)

THEOREM 1. – Suppose that A in (1) satisfies (H1), (H2) and (H3) and
u�W m , p (V , RN ) is a weak solution of (1). Then there exists an open subset
U%V with

L n (V0U) 40
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and u�C m
loc (U , RN ). In addition, for 1 DaDb , D m u has the modulus of con-

tinuity sOs a1 W (s) in a neighborhood of x0 �U.
Furthermore V0U%S 1 NS 2 where

S 1 4mx0 �V : lim inf
r70

s–
Br (x0 )

ND m u2 (D m u)x0 , rNp d L n D0n ,

S 2 4mx0 �V : lim sup
r70

N(D m u)x0 , rN4Qn .

3. – Polynomials with good properties.

Let P be a RN-valued polynomial of degree at most m with

P(x) 4!
l40

m 1

l!
D l P(x0 )(x2x0 , R , x2x0

���
l times

) 4: !
l40

m 1

l!
D l P(x0 )(x2x0 )l ,

where D l P(x0 ) �Ul (Rn , RN ). For u�W m , p (Br (x), RN ) let P be a polynomial
satisfying

s
Br (x0 )

D k (u2P) d L n 40 for all 0 GkG l21 (lGm) .(8)

Then a repeated application of Poincaré’s inequality shows the existence of a
constant Cpoin 4Cpoin (n , N , m) such that

g s
Br (x0 )

ND k (u2P)Np d L n (x)h1/p

GCpoin r l2kg s
Br (x0 )

ND l (u2P)Np d L n (x)h1/p

(9)

holds for every 0 GkE lGm. Analogously we derive Sobolev inequalities for
u�W m , p (Br (x0 ), RN ) and polynomials P satisfying (8). If

p *4
.
/
´

np

n2p

p *� [1 , Q[ fixed

if 1 GpEn

if pFn ,

(10)

then there exist a constant Csob 4Csob (n , N , m , p *) such that

(11) g s–
Br(x0)

ND k (u2P)Np *dL n (x)h1/p *

GCsob r l2k g s–
Br (x0 )

ND l (u2P)Np d L n (x)h1/p

holds every 0 GkE lGm.
In this paper we will work with special polynomials Px0 , r of degree Gm ,

associated with u�W m , p (Br (x0 ), RN ), which fulfill condition (8). Hence
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Poincaré’s and Sobolev’s inequality (9), (11) are valid for these polynomials.
They are defined in the following way:

Let px0 , r be the unique polynomial of degree G1 minimizing p O
s

Br(x0)
Nv2pN2 dL n , v�L 2(Br(x0), RM) given, among all polynomials p :Br(x0)K

RM of degree G1. An explicit formula for px0 , r (see [K], § 2) is given by
px0 , r (x) 4qx0 , r1Qx0 , r (x2x0 ), where

qx0 , r4 s–
Br (x0 )

v d L n and Qx0 , r4
n12

r 2
s–

Br (x0 )

v(x)7 (x2x0 ) d L n (x) .(12)

From [K], Lemma 2, we have

LEMMA 1. – Let v�L 2 (Br (x0 ) ), 0 EwG1, qx0 , r , Qx0 , r and Qx0 , wr be as in
(12). Moreover let px0 , r be the polynomial of degree 1 with px0 , r (x) 4qx0 , r1

Qx0 , r (x2x0 ). Then the following estimates hold:

(i) NQx0 , wr2Qx0 , rN2 Gn(n12)(wr)22 ˜
Bwr (x0 )

Nv2px0 , rN2 d L n

(ii) NQx0 , r2 (Dv)x0 , rN2 GCpoin
2 n(n12) ˜

Br (x0 )
NDv2 (Dv)x0 , rN2 d L n

Here we have used the abbreviation (Dv)x0 , r4 ˜
Br (x0 )

Dv d L n. r

A fruitful way, showing that a given L 2-function has a Hölder continuous
representative is Campanato’s integral characterization of Hölder continuous
functions (see [G], Theorem 3.1). Inspecting the proof it is obvious (using Re-
mark 4) that an L 2-function w has the modulus of continuity sO W (s) in a
neighborhood of x0 �V if

g s–
Br (x)

Nw2wx , rN2 d L nh1/2

GCv(r)(13)

holds for all balls Br (x), rGr 0 , with center x in a neighborhood of x0 , where v
and W satisfy hypothesis (H2). It is then straightforward to show (using Lem-
ma 1) that this integral characterization (13) with w4Dv is equivalent to

gr22 s–
Br (x)

Nv(y)2qx , r2Qx , r (y2x)N2 d L n (y)h1/2

GCv(r) .(14)

Hence, if (14) holds for all balls Br (x), rGr 0 , with center x in a neighborhood
of x0 , then Dv is continuous in a neighborhood of x0 with the modulus of conti-
nuity sO W (s) (see also Campanato’s integral characterization for C m , a-func-
tions [C1], [C2]).
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For u�W m , 2 (V , RN ) and a ball Br (x0 ) %%V let Px0 , r be the unique polyno-
mial of degree Gm such that D m21 Px0 , r minimizes

(15) PO s
Br (x0 )

ND m21 (u2P)N2 d L n

and s
Br (x0 )

D k (u2Px0 , r ) d L n 40 for 0 GkGm22.

From (12) we see D m21 Px0 , r (x) 4qx0 , r1Qx0 , r (x2x0 ), where qx0 , r4

(D m21 u)x0 , r and

D m Px0 , r4Qx0 , r4
n12

r 2
s–

Br (x0 )

D m21 u(x)7 (x2x0 ) d L n (x).(16)

This special structure of Px0 , r implies s
Br (x0 )

D m21 (u2Px0 , r ) d L n 40 and Px0 , r

fulfills condition (8) with l4m21. Moreover we can apply Lemma 1 with
D m Px0 , r instead of Qx0 , r , (D m u)x0 , r instead of (Dv)x0 , r and D m u instead of Dv.
This leads to

ND m Px0 , wr2D m Px0 , rN2 Gn(n12)(wr)22 s–
Bwr (x0 )

ND m21 (u2Px0 , r )N2 d L n ,

ND m Px0 , r2 (Du)x0 , r N2 GCpoin
2 n(n12) s–

Br (x0 )

ND m u2 (D m u)x0 , rN2 d L n .

Further we can apply integral characterization (14) with D m21 (u2Px , r ) in-
stead of v2qx , r2Qx , r (y2x).

4. – Caccioppoli inequality.

In this section we prove a Caccioppoli inequality for solutions u�
W m , p (V , RN ) of (1).

First we demonstrate the following technical lemma which is an extension
of Lemma 5.1 in [Gi]:

LEMMA 2. – Let 0 EwE1, Ak F0, a k D0 for k40, 1 , R , l , BF0 and fF0
a bounded function satisfying

f (t) Gwf (s)1 !
k40

l

Ak (s2 t)2a k 1B
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for all 0 ErG tEsGr. Then there exists a constant Ctech 4

Ctech (a 0 , R , a l , w) such that

f (r) GCtechg !
k40

l

Ak (r2r)2a k 1Bh .

PROOF OF LEMMA 2. – For 0 EtE1 satisfying t2a k wE1 for k40, R , l
(i.e. 1 Dt max (a k ) Dw) define the recursive sequence t0 4r and tn11 4 tn 1

(12t) t n (r2r) Gr. We get

f (r) 4 f (t0 ) Gw n f (tn )1 !
j40

n21

w jg !
k40

l

Ak [ (12t) t j(r2r) ]2a k 1Bh

4w n f (tn )1 !
k40

l

Ak [ (12t)(r2r) ]2a k !
j40

n21

(wt2a k ) j1B !
j40

n21

w j .

Define Ctech 4 max g (12t)2a 0

12wt2a 0
, R ,

(12t)2a l

12wt2a l
, 1

12w
h and get the desired esti-

mate letting nKQ. r

For a ball Br (x0 ) %V , u�W m , p (Br (x0 ), RN ) and a polynomial P : Br (x0 ) K

RN of degree Gm we define the quantities

F(x0 , r , P) »4g s–
Br (x0 )

ND m (u2P)N2 d L n1 s–
Br (x0 )

ND m (u2P)Np d L nh1/2

,(17)

(18) C(x0 , r , P) 4

gr22 s–
Br (x0 )

ND m21 (u2P)N2 d L n 1r2p s–
Br (x0 )

ND m21 (u2P)Np d L nh1/2

.

Now we state a Caccioppoli inequality.

LEMMA 3. – Let u�W m , p (V , RN ) be a weak solution of equation (1), where
A satisfies (H1), (H2), (H3) and let MD0. Then there exist constants Ccac 4

Ccac (L , l , p , m , n , N , M) F1 and r 0 4r 0 (v , l , p , M) G1 such that

F 2 (x0 , r/2 , P) GCcac
2 (C 2 (x0 , r , P)1v 2 (r))(19)

holds for all balls Br (x0 ) %%V with rGr 0 and all polynomials P : Br (x0 ) K

RN of degree Gm satisfying ND m PNGM and s
Br (x0 )

D k (u2P) d L n 40 for

0 GkGm22. (Here F(x0 , r/2 , P) and C(x0 , r , P) are as in (17) respecti-
vely (18).)
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PROOF. – Take a polynomial P of degree at most m fulfilling the assump-
tions of the lemma and choose the functions

W4h(u2P) and c4 (12h)(u2P),

where h�C Q
0 (Br (x0 ) ) ) satisfies (0 E tEsGr) 0 GhG1, hf1 on Bt (x0 ), hf0

on V0Bs (x0 ) and ND k hNG (Ch (s2 t))2k
for all 0 GkGm. From the product

formula D(f7g) 4Df7g1 f7Dg for tensor products and our choice of W and
c we get for both ND m WN and ND m cN the estimate

ND m WNGhND m (u2P)N1LOT , ND m cNG (12h)ND m (u2P)N1LOT(20)

where LOT are lower order terms with

LOT4 !
k40

m21gm

k
h (Ch (s2 t) )k2m ND k (u2P)N .(21)

Later we will use the estimates:

LOT2 Gm !
k40

m21gm

k
h2

(Ch (s2 t) )2(k2m) ND k (u2P)N2 ,(22)

LOTp Gm p21 !
k40

m21gm

k
hp

(Ch (s2 t) )p(k2m) ND k (u2P)Np .(23)

Using the quasimonotonicity condition (H1), D m P1D m W4D m u2D m c and
(1) we obtain

(24) l s
Bs(x0)

[ND mWN21ND mWNp] dL n

G s
Bs (x0 )

A(x0 , D m P1D m W) D m W d L n

4 s
Bs (x0 )

(A(x0 , D m u2D m c)2 A(x0 , D m u) ) D m W d L n

1 s
Bs (x0 )

(A(x0 , D m u)2 A(x , D m u) ) D m W d L n

4I1II .

From the estimate

(a1b)p22 G2p22 (a p22 1b p22 )(25)

for a , bF0 and pF2, hypothesis (H3), NcNf0 on Bt (x0 ) and Young’s in-
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equality we now get

(26) IG s
Bs (x0 )

s
0

1

NDQ A(x0 , D m u2tD m c) )NdtND m cNND m WNd L n

G4p22L s
Bs (x0)0 Bt (x0)

(11M p221ND m(u2P)Np221ND mcNp22)ND mcNND mWNdL n

G4p22L(11M p22)y s
Bs (x0)0 Bt(x0)

ND mcNND mWNdL n1 s
Bs (x0)0 Bt (x0)

ND m (u2P)NpdL n

1 s
Bs (x0 )0 Bt (x0 )

(ND m cNND m WN)p/2 d L n 1 s
Bs (x0 )0 Bt (x0 )

ND m cNp21 ND m WNd L nl .

Using (20) and Hölder’s inequality we see

s
Bs(x0)0Bt(x0)

ND mcNND mWNdL nG2g s
Bs(x0)0 Bt(x0)

ND m (u2P)N2dL n1 s
Bs(x0)0 Bt(x0)

LOT2dL nh .

Similiary we obtain

s
Bs (x0 )0 Bt (x0 )

(ND m cNND m WN)p/2 d L n 1 s
Bs (x0 )0 Bt (x0 )

ND m cNp21 ND m WNd L n

G2pg s
Bs (x0 )0Bt (x0 )

ND p (u2P)Np d L n 1 s
Bs (x0 )0Bt (x0 )

LOTp d L nh .

Inserted in (26) this yields the estimate

IGCIg s
Bs (x0 )0 Bt (x0 )

[ND m (u2P)N21ND m (u2P)Np] d L n1 s
Bs (x0 )

[LOT21LOTp] d Lnh
where CI 4CI (p , L , M) 44p22 L (11M p22 )(2p 11).

Next we estimate II, using (H2), (21), Hölder’s and Young’s inequality for
eD0 arbitary:

IIG s
Bs (x0 )

v(Nx2x0N) (11ND m uNp21 )ND m WNd L n

G2p22 (11M p21 ) v(s) s
Bs (x0 )

(ND m (u2P)Np21 ND m WN1ND m WN) d L n

G2p22 (11M p21 ) v(s)k s
Bs (x0 )

ND m (u2P)Np d L n
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1 s
Bs (x0 )

ND m (u2P)Np21 QLOT d L n 1 s
Bs (x0 )

[ND m (u2P)N1LOT] d L nl

GCII (v(s)1e)k s
Bs(x0)

[ND m (u2P)N21ND m (u2P)Np] dL n1 s
Bs(x0)

[LOT21LOTp] dL nl
1

CII

e
v 2 (s) a n s n ,

where CII 4CII (p , M) 42p21 (11M p21 ) and a n is the volume of the unit ball
in Rn. Since D m W4D m (u2P) on Bt (x0 ) we find by (24), sGr and the esti-
mates on I and II:

l s
Bt (x0 )

[ND m (u2P)N2 1ND m (u2P)Np] d L n G

CI s
Bs (x0 )0 Bt (x0 )

[ND m (u2P)N2 1ND m (u2P)Np] d L n 1

CII (v(s)1e)k s
Bs (x0 )

[ND m (u2P)N2 1ND m (u2P)Np] d L nl1

(CI 1CII (v(s)1e) s
Bs (x0 )

[LOT2 1LOTp] d L n 1
CII

e
a n r n v 2 (r).

«Filling the hole» on the right-hand side and choosing r and e sufficiently
small with CII v(r) Gl/4 and CII e4l/4 — this fixes r 0 4r 0 (v , l , p , M) — we
derive

s
Bt (x0 )

[ND m (u2P)N2 1ND m (u2P)Np] d Ln G

CI 1l/2

CI 1l
s

Bs (x0 )

(ND m (u2P)N2 1ND m (u2P)Np ) d L n 1

CI 1l/2

CI 1l
s

Bs (x0 )

[LOT2 1LOTp] d Ln 1
CII a n

e(CI 1l)
r n v 2 (r).

Using (22) and (23), Lemma 2 and Poincaré’s inequality (9) we obtain the de-
sired result after taking integral mean values. The dependence of Ccac on
L , l , p , m , n , N and M follows from (22), (23), the dependences of CI , CII ,

Cpoin in (9), and Ctech in Lemma 2 on w4
CI 1l/2

CI 1l
. Note, that MKQ implies

wK1 and Ctech KQ. r
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5. – The harmonic approximation lemma.

The result of this section, the (B, m)-harmonic approximation lemma, is
central to our technique. In the case m41 the result was given in [DS] Lem-
ma 3.3 (cf. [S], Section 1.6 for the case of Laplace’s equation and harmonic ap-
proximation). The point of this technique is to show that for a bilinear form B,
which is elliptic in the sense of Legendre-Hadamard (compare Remark 1 (3)),
a function v which is «approximately (B, m)-harmonic» — that means
s

V
B(D m v , D m W) d L n is sufficiently small for all test function W — lies

W m21, 2-close to some (B, m)-harmonic function h — that means a function h
with s

V
B(D m h , D m W) d L n 40 for all test functions.

LEMMA 4 ((B, m)-harmonic approximation lemma). – For any given eD0
there exists d4d(n , N , l , L , m , e) �]0 , 1 ] with the following property: for
any given B �U2 (Um (Rn , RN ), R) satisfying

s
V

B(D m w , D m w) d L n Fls
V

ND m wN2 d L n for all w�W m , 2
0 (V , RN )(27)

and

B(A , B) GLNANNBN for all A , B�Um (Rn , RN ),(28)

and for any v�W m , 2 (Br (x0 ), RN ) satisfying ˜
Br (x0 )

ND m vN2 G1 and

N s–
Br (x0 )

B(D m v , D m W) d LnN Gd sup
Br (x0 )

ND m WN for all W�C Q
0 (Br (x0 ), RN ),

there exists a function h�W m , 2 (Br (x0 ), RN ) such that ˜
Br (x0 )

ND m hN2 d L n G1,

˜
Br (x0 )

B(D m h , D m W) d L n 40 for all W�C0
m (Br (x0 ), RN ) and

r22 s–
Br (x0 )

!
g40

m21

ND g (h2v)N2 d L n Ge . r

For the proof of this Lemma 4 we refer to [K], Lemma 6. The next result is a stan-
dard estimate for solutions of systems with constant coefficients (see [C3], [C4]).

LEMMA 5. – Consider B �U2 (Um (Rn , RN ), R) satisfying (27) and
(28) and h�W m , 2 (Br (x0 ), RN ) with s

Br (x0 )
B(D m h , D m W) d L n 40 for all

W�C Q
0 (Br(x0 ), RN). Then there exists a constant Charm4Charm(n, N, m, l, L)

such that the following estimate holds:

r22 sup
Br/2 (x0 )

ND m hN2 1 sup
Br/2 (x0 )

ND m11 hN2 GC 2
harm r22 s–

Br (x0 )

ND m hN2 d L n . r
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The last lemma in this section is required in order to be able to apply the
(B, m)-harmonic approximation technique. In the proof of Theorem 1, an ap-
plication of this lemma will show that a in terms of Caccioppoli’s inequality
rescaled solution of (1) is approximately harmonic in the sense of Lemma 4.
Then, the standard a priori estimates Lemma 5 will be used to derive esti-
mates for an excess-decay term.

LEMMA 6. – Let MD0 be a constant and let A satisfy hypotheses (H2) and
(H3). Then there exists a constant Ceu 4Ceu (p , L , M) F1 such that the fol-
lowing holds: If u�W m , p (V , RN ) is a weak solution of equation (1) and if P
is a polynomial of degree at most m fullfilling ˜

Br (x0 )
D l (u2P) d L n 40 for

l40, R , m21, F(x0 , r , P) G1 and ND m PNGM , then (1)

N s–
Br (x0 )

DQ A(x0 , D m P)(D m (u2P), D m W) d L nN G

Ceu(n M (F(x0 , r , P) )1/p F(x0 , r , P)1v(r)) sup
Br (x0 )

ND m WN

for all Br (x0 ) %%V and W�C Q
0 (Br (x0 ), RN ). (The constant L is from hypothe-

sis (H3) and n M is from Remark 1 (2). F(x0 , r , P) is defined in (17).)

PROOF. – We may assume sup
Br (x0 )

ND m WNG1 and abbreviate F4F(x0 , r , P).

Since u is a weak solution of equation (1) and given the fact that
s

Br (x0 )
A(x0 , D m P) D m W d L n 40 we infer

s–
Br (x0 )

DQ A(x0 , D m P) (D m (u2P), D m W) d L n

4 s–
Br (x0)

s
0

1

[DQA(x0, D mP)2DQA(x0, D mP1t D m (u2P))] dt(D m (u2P), D m W) dL n

1 s–
Br (x0 )

[A(x0 , D m u)2 A(x , D m u)] D m W d L n

4I1II .

(1) Here we use the notation DQ A(x0 , D m P)(A , B) »4DQ A(x0 , D m P) A QB , where

«Q» is the dot product in Um (Rn , RN ) `R
N gn1m21

m h
, which regards DQ A(x0 , D m P) as a

symmetric bilinar form on Um (Rn , RN ).



QUASIMONOTONE SYSTEMS OF HIGHER ORDER 473

For 0 G tG1, using in turn (H3), (25) and ND m PNGM , we see

NDQ A(x0 , D m P)2DQ A(x0 , D m P1 t D m (u2P) )NG

2p21 L(11M p22 1ND m (u2P)Np22)

as well as, via (5), (25) and ND m PNGM ,

NDQ A(x0 , D m P)2DQ A(x0 , D m P1 t D m (u2P) )NG

2p21 (11M p22 1ND m (u2P)Np22) n M (ND m (u2P)N).

This gives the estimate

IG2p21 L
p21

p (11M p22 ) s–
Br (x0 )

n M (ND m (u2P)N)1/p Q

(ND m (u2P)N1ND m (u2P)Np21) d Ln .

Therefore Hölder’s, Jensen’s and Minkowski’s inequalities together with
p

p21
G2 and FG1 imply

IG2p L
p21

p (11M p22 ) n M (F)1/p F .(29)

Next we estimate II using (H2), ND m PNGM , Hölder’s inequality and
FG1:

IIG s–
Br (x0 )

Nv(Nx2x0N)(11ND m uNp21 )Nd L n30)

G2p22 (11M p21 ) v(r)(11F)

G2p21 (11M p21 ) v(r).

Combining (29), (30) we obtain the desired estimate with Ceu 4

max (2p L
p21

p (11M p22 ), 2p21 (11M p21 ) ). r

6. – Proof of the theorem.

Let u�W m , p (V , RN ) be a weak solution of (1), where A satisfies hypothe-
ses (H1), (H2) and (H3). For a given Ball Br (x0 ) choose the unique polynomial
Px0 , r of degree at most m specified in (15). Let F(r/2 ) »4F(x0 , r/2 , Px0 , r ) and
C(r) »4C(x0 , r , Px0 , r ) where F and C are defined in (17) respectively (18).
First we prove the following decay estimate:
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LEMMA 7. – Let MD0 fixed. For any w�]0 , 1 /4] there exist constants d4

d(n , N , l , L , m , w), q4q(n , p) and Cdec (M) 4Cdec (n , N , l , L , m , M , p)

such that if n M (F(r/2 ))1/p
Gd/2 , C 2 (r)1

4v 2 (r)

d 2
Gw q , ND m Px0 , rNGM and

rGr 0 (M) then

C 2 (wr) GC 2
dec (M) w 2gC 2 (r)1

4v 2 (r)

d 2 h .

Here n , N , l , L , m are as in hypotheses (H1) and (H3), v is as in (H2), n M

is the modulus of continuity for DQ A from Remark 1 (2). The constant
r 0 (M) 4r 0 (v , l , p , M) G1 is the constant from Lemma 3.

PROOF. – For w�]0 , 1 /4] choose e4w n14 and d4d(n , N , l , L , m , e) 4

d(n , N , l , L , m , w) G1 from Lemma 4. We define

G(r) »4oC 2 (r)1
4v 2 (r)

d 2
and set v4

u2Px0 , r

Ccac Ceu G(r)
.

Here the constants Ccac 4Ccac (M) and Ceu 4Ceu (M) are from Lemma 3 and
Lemma 6. The assumption rGr 0 (M) and the choice of P4Px0 , r allows us to
apply Lemma 3, i.e. (19), and Lemma 6. In view of dG1 we get from (19):

F 2 (r/2 ) GCcac
2 (C 2 (r)1v 2 (r) ) GCcac

2 G 2 (r).(31)

This leads to ˜
Br/2 (x0 )

ND m vN2 d Ln GCeu
22 G1 and

N s–
Br/2(x0)

DQ A(x0, D mPx0, r)(D mv, D mW) dL nNG(n M (F(r/2))1/p1d/2) sup
Br/2 (x0)

ND mWN.

By our smallness condition (n M (F(r/2 ) )1/p Gd/2 the assumptions of Lemma 4
are fulfilled. This implies that there exists a (DQ A(x0 , D m Px0 , r N , m)-harmon-
ic function h with

s–
Br/2 (x0 )

DQ A(x0 , D m Px0 , r )(D m h , D m W) d L n 40, s–
Br/2 (x0 )

ND m hN2 d L n G1(32)

and

g r

2
h22

s–
Br/2 (x0 )

ND m21 v2D m21 hN2 d L n Ge4w n14 .(33)

The standard a priori estimate (cf.Lemma 5) for solutions of the linear system
(32) applied to h on Br/2 (x0 ) yields

g r

2
h22

sup
Br/4 (x0 )

ND m hN2 1 sup
Br/4 (x0 )

ND m11 hN2 G

Charm
2 g r

2
h22

s–
Br/2 (x0 )

ND m hN2 d L n GCharm
2 (r/2 )22
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where the last inequality follows from (32). Applying Taylor’s theorem to h on
Bwr (x0 ) we deduce

sup
Bwr (x0 )

ND m21 h(x)2D m21 h(x0 )2D m h(x0 )(x2x0 )N2 G

g (wr)2

2 !
sup

Br/4 (x0 )
ND m11 hNh2

GCharm
2 w 4 r 2 .

Denoting by Px0 , wr the unique polynomial associated to u on Bwr (x0 ), we infer
using the minimal property (15) of Px0 , wr , (33) and the above mentioned a
priori estimate for h:

g s–
Bwr (x0 )

ND m21 (u2Px0 , wr )N2 d L nh1/2

G

g s–
Bwr(x0)

ND m21u2D m21Px0, r2CcacCeuG(r)(D m21h(x0)1D mh(x0)(x2x0))N2dL nh1/2

G

g22
n12

2 1Charm
h w 2 rCcac Ceu G(r)

respectively with C1 4 g22
n12

2 1Charm
h Ccac Ceu

s–
Bwr (x0 )

ND m21 (u2Pwx0 , r )N2 d Ln GC1
2 (w 2 r)2 G 2 (r).(34)

Next we derive an estimate for the second term

s–
Bwr (x0 )

ND m21 (u2Px0 , wr )Np d L n

in the definition of C(wr). For this we let (in the case pD2)

p *4
.
/
´

np

n2p
Dp

p *Dp

the Sobolev conjugateto p in the case 2 EpEn

fixed in the case pFn

with 1

2
D

1

p
D

1

p *
. Therefore we can find t�]0 , 1[ such that

1

p
4 (12 t)

1

2
1 t

1

p *
.(35)
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Using Hölder’s inequality, Sobolev’s inequality (11) and (34) we compute:

(36) s–
Bwr (x0 )

ND m21 (u2Px0 , wr )Np d L n G

g s–
Bwr (x0 )

ND m21 (u2Px0 , wr )N2 d L nh(12 t) p

2 g s–
Bwr (x0 )

ND m21 (u2Px0 , wr )Np * d L nht p

p *

G

(C1
2 (w 2 r)2 G 2 (r))(12 t)p/2

Csob
tp (wr)tpg s

Bwr (x0 )

ND m (u2Px0 , wr )Np d L nht

4

C2
p L n (Bwr (x0 ) )2t (wr)p w (12 t)p G(r)(12 t)pg s

Bwr (x0 )

ND m (u2Px0 , wr )Np d L nht

where C2 4C1
(12 t) Csob

t 4C2 (n , N , l , L , m , M , p , p *). From Lemma 1 (i),
Caccioppoli’s inequality (19) and (31) we deduce

g s
Bwr (x0 )

ND m (u2Px0 , wr )Np d L nh1/p

G

g s
Bwr (x0 )

ND m (u2Px0 , r )Np d L nh1/p

1 L n (Bwr (x0 ) )1/p ND m Px0 , wr2D m Px0 , rNG

(L n (Br/2 (x0)) F 2 (r/2))1/p
1kn(n12)(wr)21g s

Br (x0)

ND m21 (u2Px0, r)NpdL nh1/p

G

L n (Br (x0 ) )1/p w21g(22n Ccac
2 )1/p 1kn(n12)h G(r)2/p .

From this estimate, inserted in inequality (36) and Young’s inequality we

obtain, letting C 2
3 4C2

p ((22n Ccac
2 )1/p + kn(n12))tp4C 2

3 (n , N , l , L , m , M , p , p *)

(37) (wr)2p s–
Bwr(x0)

ND m21 (u2Px0, r)NpdL nGC 2
3 w (12t)pG(r)(12t)pw2(n1p)tG(r)2tG

C3
2g (12 t)p

2
w 2 G 2 (r)1

tp

p *
w

2
(n1p)p *

p G(r)2p * /phGC3
2 w 2 G 2 (r),

provided G(r)2(p *2p) /p Gw (n1p)p * /p12. If we choose q4
(n1p) p *12p

p *2p
the de-

sired estimate follows from (34) and (37) with Cdec
2 4 (C1

2 1C3
2 ). Note that

Cdec 4Cdec (M). r



QUASIMONOTONE SYSTEMS OF HIGHER ORDER 477

Given MD0 and 0 EbE1 from hypotheses (H2) we choose 1 DaDb and
fix wG1/4 sufficiently small such that

Cdec (2M)wGwa .

This also fixes e4w n14 and d4d(n , N , l , L , m , w). Then we choose SD0
and RD0 (depending on 2M also) such that n 2M (Ccac (2S1R))1/p

Gd/2 and

4S 2 1
4R 2

d 2
Gw q. Then, by Caccioppoli’s inequality (19), if for some ball

Br (x0 ) %%V the conditions

C(r) G2S , v(r) GR , ND m Px0 , r NG2M and rGr 0 (2M)(38)

are satisfied, we have the decay estimate

C 2 (wr) Gw 2a C 2 (r)1C 2
v (2M) v 2 (r) ,(39)

where Cv4Cv (n , N , l , L , m , 2M , p , a)42wa /d depends on Cdec (2M) and d.

LEMMA 8. – Let MD0 fixed. Suppose C(r) GS , v(r) GR , rGr 0 (2M) and
ND m Px0 , rNGM for some ball Br (x0 ) %%V. Then there exist constants
Cit (2M) 4Cit (n , N , l , L , m , 2M , p , a , b) and CW (2M) 4CW (n , N , l , L , m ,
2M , p , a , b) such that Cit (2M)v(r) GS and CW (2M)(C(r)1 W (r) ) GM
imply

C 2 (w k r) Gw 2ak C 2 (r)1C 2
it (2M) v 2 (w k r)

for all k�N. Here W is from hypothesis (H2).

PROOF. – For k41 this follows from the decay estimate (39). Suppose that
the conditions (38) of the decay estimate (39) are fulfilled on the balls Bw j r (x0 )
for jGk21 �N0 . Firstly, we will show that this implies that these conditions
are also fulfilled on the ball Bwk r (x0 ). Therefore it remains to show that
C(w k r) G2S and ND m Px0 , wk r NG2M. In view of hypotheses (H2) we know
that sOs 2b v(s) is nonincreasing for some bE1 (note also bEaE1).

C 2 (w k r) Gw 2ak C 2 (r)1C 2
v (2M) !

j40

k21

w 2aj v 2 (w (k2 j21) r)(40)

Gw 2ak C 2 (r)1C 2
v (2M) v 2 (w k r) w22b !

j40

k21

w 2(a2b) j

Gw 2ak C 2 (r)1Cit
2 (2M) v 2 (w k r)

where Cit (2M) 4
Cv (2M)

kw 2a2w 2b
. By our assumptions, this implies C(w k r) G

wak C(r)1Cit (2M) v(w k r) G2S .
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From (16), Lemma 1 (i) and (7) we infer

ND m Px0 , wk rNG

G

G

G

M1 !
j40

k21

ND m Px0 , w j11 r2D m Px0 , w j rN

M1kn(n12) w2(n12) /2 !
j40

k21

C(w jr)

M1kn(n12) w2(n12) /2gC(r) !
j40

k21

waj 1Cit (2M) !
j40

k21

v(w jr)h
M1CW (2M)(C(r)1 W (r) ) G2M ,

provided CW (2M)(C(r)1 W (r)) GM. Here

CW (2M) 4kn(n12) w2(n12) /2g 1

12wa
2

Cit (2M)

w log (w)
h .

We have demonstrated that our smallness conditions (38) are fulfilled on the
ball Buk r (x0 ). Hence we conclude that (40) holds with k11 instead of
k. r

For 0 ErEr fix k�N0 with w k11 rErGw k r. Then, if the assumptions of
Lemma 8 are fulfilled, we deduce, using (15) and v(sr) Gsv(r) for sF1

s–
Br(x0)

ND m21 (u2Px0, r)N2dL nG
(w kr)n

r n
(w kr)2C 2 (w kr)

Gw2(n1212a)g r

r
h2a

r 2C 2 (r)1w2(n14)Cit
2 (2M) r 2v(r) .

respectively

r 22 s–
Br (x0 )

ND m21 (u2Px0 , r )N2 d LnGw2(n14)gg r

r
h2a

C 2 (r)1Cit
2 (2M) v 2 (r)h .(41)

To show that the assumptions of Lemma 8 are satisfied locally for all x0 in the
regular set V0(S 1 NS 2 ) we made the following observations: From Lemma 1
(ii), Hölder’s inequality, (15) and (9) we infer

ND mPx0, rNGN(D mu)x0, rN1Cpoinkn(n12)g s–
Br (x0)

ND mu2(D mu)x0, rN
pdL nh1/p

,

r22 s–
Br (x0 )

ND m21 (u2Px0 , r )N2 d L n GCpoin
2 g s–

Br (x0 )

ND m u2 (D m u)x0 , r Np d Lnh2/p

,
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r2p s–
Br (x0 )

ND m21 (u2Px0 , r )Np d Ln G

Cpoin
p (11Cpoin kn(n12))p s–

Br (x0 )

ND m u2 (D m u)x0 , rNp d L n .

Using these estimates it is standard to show that (41) holds locally on the reg-
ular set. This implies the partial regularity statement of Theorem 1 by
(14).
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