Bollettino

 Unione Matematica Italiana
M. Balzano, T. Durante
 The p-Laplacian in domains with small random holes

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 6-B (2003), n.2, p. 435-458.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2003_8_6B_2_435_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2003.

The p-Laplacian in Domains with Small Random Holes.

M. Balzano - T. Durante

Sunto. - Attraverso un metodo variazionale, si studia un processo di omogeneizzazione relativo al p-Laplaciano in regioni perforate in maniera stocastica. Per particolari distribuzioni aleatorie dei «buchi» si caratterizza pienamente il problema limite.

Summary. - We investigate sequences of nonlinear Dirichlet problems of the form $\left(P_{h}\right) \quad\left\{\begin{array}{l}-\operatorname{div}\left(\left|D u_{h}\right|^{p-2} D u_{h}\right)=g \quad \text { in } D \backslash E_{h} \\ u_{h} \in H_{0}^{1, p}\left(D \backslash E_{h}\right) .\end{array}\right.$
where $2 \leqslant p \leqslant n$ and E_{h} are random subsets of a bounded open set D of $\boldsymbol{R}^{n}(n \geqslant 2)$. By means of a variational approach, we study the asymptotic behaviour of solutions of $\left(P_{h}\right)$, characterizing the limit problem for suitable sequences of random sets.

1. - Introduction.

A variational framework has been proposed in [2], for studying the asymptotic behaviour of sequences of nonlinear Dirichlet problems in randomly perforated domains of the form

$$
\min _{u \in H_{0}^{1, p}\left(D \backslash E_{h}\right)} \int_{D \backslash E_{h}} f(x, D u) d x+\int_{D \backslash E_{h}} g u d x,
$$

where $\left(E_{h}\right)$ is a sequence of closed random subsets of a bounded open set $D \subseteq \boldsymbol{R}^{n}, n \geqslant 2,1<p \leqslant n$ and $g \in L^{q}(D)$, with $\frac{1}{p}+\frac{1}{q}=1$.

In this paper, by using the abstract setting established in [2], we analyze the p-Laplacian operator

$$
\Delta_{p} u=\operatorname{div}\left(|D u|^{p-2} D u\right)
$$

in domains with randomly distributed small holes, when p takes values in the interval [2,n]. More specifically, we deal with sequences of problems of the form

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{h}=g \quad \text { in } D \backslash E_{h} \tag{1.1}\\
u_{h} \in H_{0}^{1, p}\left(D \backslash E_{h}\right)
\end{array}\right.
$$

The problem (1.1) is the Euler equation of the minimization problem

$$
\min _{u \in H_{0}^{1, p}\left(D \backslash E_{h}\right)} \int_{D \backslash E_{h}}|D u|^{p} d x-p \int_{D \backslash E_{h}} g u d x .
$$

The probabilistic problem that we are going to consider can be rigorously stated as follows. Let β be a nonnegative finite Radon measure on D such that $\beta \in H^{-1, q}(D)$ and define

$$
\mathscr{E}_{\beta}^{p}(U)= \begin{cases}\iint_{U \times U} \frac{d \beta(x) d \beta(y)}{|x-y|^{n-p}} & \text { if } \quad 2 \leqslant p<n \tag{1.2}\\ \iint_{U \times U} \ln \frac{1}{|x-y|} d \beta(x) d \beta(y) & \text { if } \quad n=p\end{cases}
$$

for every open set U of D.
We assume that there exists a strictly monotone and continuous function $f: R^{+} \rightarrow R$ with $f(0)=0$ such that

$$
\mathscr{E}_{\beta}^{p}(U) \leqslant f(\operatorname{diam} U) \beta(U)
$$

for every open set U of D. For every $h \in \boldsymbol{N}$, let

$$
x_{i}^{h}: \Omega \rightarrow D, \quad 1 \leqslant i \leqslant h
$$

be a family of independent, identically distributed random variables defined on a probability space (Ω, Σ, P), whose distributions are given by

$$
P\left\{\omega \in \Omega: x_{i}^{h} \in B\right\}=\beta(B), \quad 1 \leqslant i \leqslant h
$$

for every Borel set $B \subseteq D$. Furthermore, we consider a sequence of positive numbers $\left(\varrho_{h}\right)$ such that

$$
l= \begin{cases}\lim _{h \rightarrow+\infty} h \varrho_{h}^{n-p} & \text { if } 2 \leqslant p<n \tag{1.3}\\ \lim _{h \rightarrow+\infty} h\left(-\ln \varrho_{h}\right)^{1-n} & \text { if } p=n\end{cases}
$$

is finite and strictly positive. Finally, we define

$$
E_{h}=\bigcup_{i=1}^{h}\left(x_{i}^{h}+\varrho_{h} F\right)
$$

where F is an arbitrary closed subset contained in the unit ball, such that the interior of F is not empty. We prove that the sequence $\left(u_{h}\right)$ of weak solutions of (1.1) converges (strongly in $L^{p}(D)$) in probability to the solution of the relaxed Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta_{p} U+c l \beta|U|^{p-2} U=g \quad \text { in } D \\
U \in H_{0}^{1, p}(D)
\end{array}\right.
$$

where

$$
c=\left\{\begin{aligned}
\min \left\{\int_{\boldsymbol{R}^{n}}|D u|^{p} d x: u \in H^{1, p}\left(\boldsymbol{R}^{n}\right), u \geqslant 1 p \text {-q.e. on } F\right\} & \text { if } 2 \leqslant p<n \\
\omega_{n-1} & \text { if } p=n
\end{aligned}\right.
$$

l is given by (1.3) and ω_{n-1} is the area of the unit sphere of \boldsymbol{R}^{n}.
In the linear stochastic case $p=2$, the result is well-known. It has been investigated in [10], [11], [4] by Brownian motion methods, in [12], [7] by Green function methods, in [1], [3] by a variational method. To the best of our knowledge, any result exists on the p-Laplacian operator in randomly perforated domains with Dirichlet boundary conditions. Also the corresponding deterministic case has been analyzed by many authors; we refer, for a wide bibliografy on the subject, to [5]. Our paper is organized as follows. Section 2 provides the necessary preliminaries. In Section 3 we give the formulation of the problem and state the main result (Th. 3.5) of the paper. Section 4 is completely devoted to the proof of Theorem 3.5; some of the results in this section, in particular Lemma 4.2, may be of independent interest. In that Lemma we construct an explicit supersolution relative to the p-Laplacian in a perforated domain.

Aknowledgements. We gratefully aknowledge many fruitful discussions with Gianni Dal Maso and Antonio Corbo Esposito.

2. - Notation and preliminaries.

Let D be a bounded open subset of \boldsymbol{R}^{n} with diameter less than or equal to one. In all that follows we shall assume $n \geqslant 2$. We denote the family of all open sets $U \subseteq D$ by \mathcal{U}, the family of all compact sets $K \subseteq D$ by \mathcal{K} and the family of all closed sets $F \subseteq D$ by \mathfrak{F}. Moreover, we indicate the σ-field of all Borel subsets of
D by \mathscr{B}. For every $x \in \boldsymbol{R}^{n}$ and $r>0$ we set

$$
B_{r}(x)=\left\{y \in \boldsymbol{R}^{n}:|x-y|<r\right\},
$$

and for every Borel set $B \subset \boldsymbol{R}^{n}$ we denote its Lebesgue measure by $|B|$. Moreover, for every set $E \subseteq \boldsymbol{R}^{n}$ and $x \in \boldsymbol{R}^{n}$ we set

$$
x+E=\left\{y \in \boldsymbol{R}^{n}: x-y \in E\right\} .
$$

The symbol \#(I) indicates the number of elements of the set I.
Throughout this paper we shall indicate a real constant such that $2 \leqslant p \leqslant n$ by p. Further, we denote the Sobolev space of all functions in $L^{p}(D)$ with first order distributional derivatives in $L^{p}(D)$ by $H^{1, p}(D)$ and the closure of $C_{0}^{\infty}(D)$ in $H^{1, p}(D)$ by $H_{0}^{1, p}(D)$. For all q such that $\frac{1}{q}+\frac{1}{p}=1$, we denote the dual of $H_{0}^{1, p}(D)$ by $H^{-1, q}(D)$. For every $K \in \mathcal{K}$, we define the p-capacity of K with respect to D by

$$
C_{p}(K, D)=\inf \left\{\int_{D}|D \varphi|^{p} d x: \varphi \in C_{0}^{\infty}(D), \varphi \geqslant 1 \text { on } K\right\} .
$$

The definition is extended to the sets $U \in \mathcal{U}$ by

$$
C_{p}(U, D)=\sup \left\{C_{p}(K) ; K \subseteq U, K \in \mathcal{K}\right\}
$$

and to arbitrary sets $E \subseteq D$ by

$$
C_{p}(E, D)=\inf \left\{C_{p}(U) ; U \supseteq E, U \in \mathcal{U}\right\} .
$$

The basic properties of the variational capacity so defined can be found, for example, in [9], Th. 2.2. We say that a property $P(x)$ holds for p-quasi every $x \in E$ (or p-quasi-everywhere in E) if

$$
C_{p}(\{x \in E: P(x) \text { is not verified }\}, D)=0
$$

Note that the property of being of p-capacity zero is independent of the open set D. It can be proven that there exists one and only one $u \in H_{0}^{1, p}(D)$ such that $u \geqslant 1$ p-quasi-everywhere on E such that

$$
C_{p}(E, D)=\int_{D}|D u|^{p} d x .
$$

We shall call such a u the p-capacitary potential of E with respect to D. The next Lemma is needed in order to identify a class of random sets. The proof can be obtained adapting to the case of the p-capacity that one of Lemma 4.1 in [1].

Lemma 2.1. - Let F be a closed set of \boldsymbol{R}^{n}. For every $K \in \mathcal{X}$ and $h \in \boldsymbol{N}$, the real-valued function

$$
\left(x_{1}, x_{2}, \ldots, x_{h}\right) \rightarrow C_{p}\left(\bigcup_{i=1}^{h}\left(x_{i}+F\right) \cap K, D\right)
$$

is upper semicontinuous in $\left(\boldsymbol{R}^{n}\right)^{h}$.

A nonnegative countably additive set function μ defined on \mathcal{B} and with value in $[0,+\infty]$ such that $\mu(\emptyset)=0$ is called a Borel measure on D. A Borel measure which assigns finite value to every compact subset of D is called a Radon measure.

Definition 2.2. - Let $\beta \in H^{-1, q}(D)$. In the following, we need the set function so defined

$$
\mathscr{E}_{\beta}^{p}(A)= \begin{cases}\iint_{A \times A} \frac{d \beta(x) d \beta(y)}{|x-y|^{n-p}} & \text { if } 2 \leqslant p<n \\ \iint_{A \times A} \ln \frac{1}{|x-y|} d \beta(x) d \beta(y) & \text { if } \quad n=p\end{cases}
$$

for every $A \in \mathcal{U}$.
Remark 2.3. - Let $\beta \in H^{-1, q}(D)$. Defining the measure σ on the Borel family of $D \times D$ by

$$
\sigma(E)= \begin{cases}\iint_{E} \frac{d \beta(x) d \beta(y)}{|x-y|^{n-p}} & \text { if } 2 \leqslant p<n \\ \iint_{E} \ln \frac{1}{|x-y|} d \beta(x) d \beta(y) & \text { if } n=p\end{cases}
$$

we can check (e.g. see Remark 5.1 in [3]) that for every $\varepsilon>0$ there exists $\delta>0$ such that for every $E \subseteq D \times D$ with diam $E<\delta$ we have $\sigma(E)<\varepsilon$.

Let (Ω, Σ, P) be a probability space.

Definition 2.4. - A function $F: \Omega \rightarrow \mathscr{F}$ is called a p-random set if the function

$$
\omega \in \Omega \rightarrow C_{p}(F(\omega) \cap K) \in \boldsymbol{R}
$$

is Σ-measurable for every $K \in \mathcal{K}$.

Example 2.5. - In order to identify a class of random sets according to the previous definition, let us consider a family of vector-random variables, namely a family of Σ-measurable functions $x_{i}^{h}: \Omega \rightarrow D, h \in N, 1 \leqslant i \leqslant h$.

Let F be a closed set of \boldsymbol{R}^{n} such that $F \subseteq B_{1}(0)$ and the interior of F is not empty; for any $h \in \boldsymbol{N}, 1 \leqslant i \leqslant h, \omega \in \Omega$ and $r>0$, we denote by $F_{i, h}^{r}(\omega)$ the following set

$$
F_{i, h}^{r}(\omega)=\left\{x \in D: \frac{1}{r}\left(x-x_{i}^{h}(\omega) \in F\right)\right\}
$$

we note that $F_{i, h}^{r}(\omega) \subseteq B_{r}\left(x_{i}^{h}(\omega)\right)$. Finally, we denote by F_{h}^{r} the random set

$$
F_{h}^{r}=\bigcup_{i=1}^{h} F_{i, h}^{r} .
$$

By Lemma 2.1 the sets F_{h}^{r} are actually random sets in according to the Definition 2.4.

For every Σ-measurable real-valued function X we define the expectation of X by

$$
\boldsymbol{E}[X]=\int_{\Omega} X d P
$$

Let X, Y be two real-valued functions in $L^{2}(\Omega)$. Then the covariance of X and Y is defined by

$$
\operatorname{Cov}[X, Y]=\boldsymbol{E}[X Y]-\boldsymbol{E}[X] \boldsymbol{E}[Y] .
$$

Let $\left(F_{h}\right)$ be a sequence of p-random sets. We shall need the following set functions defined on \mathcal{U}

$$
\begin{align*}
& \alpha^{\prime}(U)=\liminf _{h \rightarrow \infty} \boldsymbol{E}\left[C_{p}\left(F_{h} \cap U\right)\right] \tag{2.1}\\
& \alpha^{\prime \prime}(U)=\limsup _{h \rightarrow \infty} \boldsymbol{E}\left[C_{p}\left(F_{h} \cap U\right)\right] \tag{2.2}
\end{align*}
$$

Next we consider the inner regularizations α^{\prime} and $\alpha^{\prime \prime}$, of the set functions α^{\prime} and $\alpha^{\prime \prime}$, defined for every $U \in \mathcal{U}$ by

$$
\left\{\begin{array}{l}
\alpha_{-}^{\prime}(U)=\sup \left\{\alpha^{\prime}(V): V \in \mathcal{U}, V \subset \subset U\right\}, \tag{2.3}\\
\alpha_{-}^{\prime \prime}(U)=\sup \left\{\alpha^{\prime \prime}(V): V \in \mathcal{U}, V \subset \subset U\right\} .
\end{array}\right.
$$

Then we extend the definitions of $\alpha^{\prime}{ }_{-}$and $\alpha^{\prime \prime}$, to the Borel sets $B \in \mathscr{B}$ by:

$$
\left\{\begin{array}{l}
\alpha_{-}^{\prime}(B)=\inf \left\{\alpha_{-}^{\prime}(U): U \in \mathcal{U}, U \supseteq B\right\}, \tag{2.4}\\
\alpha_{-}^{\prime \prime}(B)=\inf \left\{\alpha_{-}^{\prime \prime}(U): U \in \mathcal{U}, U \supseteq B\right\} .
\end{array}\right.
$$

Finally, we denote by v^{\prime} and $v^{\prime \prime}$ the least superadditive set functions on \mathscr{B} greater than or equal to α_{-}^{\prime} and $\alpha_{-}^{\prime \prime}$, respectively.

3. - Formulation of the problem and statement of the main result.

We are interested in analyzing the asymptotic behaviour of sequences of quasi-linear problems in randomly perforated domains of the form

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{h}=g \quad \text { in } D \backslash E_{h} \tag{3.1}\\
u_{h} \in H_{0}^{1, p}\left(D \backslash E_{h}\right)
\end{array}\right.
$$

where E_{h} is a sequence of random subsets of D and $g \in L^{q}(D)$ with $\frac{1}{p}+\frac{1}{q}=1$ and Δ_{p} is the p-Laplacian operator, that is

$$
\Delta_{p} u=\operatorname{div}\left(|D u|^{p-2} D u\right) .
$$

Problem (3.1) is the Euler equation of the random minimization problem

$$
\begin{equation*}
\min _{u \in H_{0}^{1, p}\left(D \backslash E_{h}\right.} \int_{D \backslash E_{h}}|D u|^{p} d x-p \int_{D \backslash E_{h}} g u d x, \tag{3.2}
\end{equation*}
$$

which is equivalent to the following problem

$$
\begin{equation*}
\min \left\{\int_{D}|D u|^{p}-p \int_{D} g u d x: u \in H_{0}^{1, p}(D), u=0 \text { p-q.e. on } E_{h}\right\} . \tag{3.3}
\end{equation*}
$$

Remark 3.1. - For every $\omega \in \Omega$ there exists a unique $u_{h}(\omega) \in H_{0}^{1, p}(D)$, $u_{h}(\omega)=0$-q.e. on E_{h} solution of problem (3.3).

Let β be a Borel measure on \mathscr{B}. For a weak solution of the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} U+\beta|U|^{p-2} U=g \quad \text { in } D \tag{3.4}\\
U \in H_{0}^{1, p}(D) .
\end{array}\right.
$$

we mean the unique solution of the minimum problem

$$
\begin{equation*}
\min _{u \in H_{0}^{1, p}(D)} \int_{D}|D u|^{p} d x+\int_{D}|u|^{p} d \beta(x)-p \int_{D} g u d x \tag{3.5}
\end{equation*}
$$

Problems of this type have been extensively studied in [6].
In what follows, we want to study the behaviour of the sequence $\left(u_{h}(\omega)\right)$ of solutions of (3.3) as $h \rightarrow+\infty$. In particular we would like to identify the limit problem of the sequence of random minimization problems (3.3).

Theorem 3.2. - Let $\left(E_{h}\right)$ be a sequence of p-random sets, with $2 \leqslant p \leqslant n$. Let α^{\prime} and $\alpha^{\prime \prime}$ be the set functions defined in (2.1), (2.2), and let v^{\prime} and $v^{\prime \prime}$ be
the least superadditive set functions on \mathcal{B} greater than or equal to α^{\prime} _ and $\alpha^{\prime \prime}$, i.e. the set functions defined in (2.3) and (2.4).

Assume that
i)

$$
v^{\prime}(B)=v^{\prime \prime}(B)<\infty \quad \text { for every } \quad B \in \mathscr{B}
$$

and denote by $v(B)$ the common value of $v^{\prime}(B)$ and $v^{\prime \prime}(B)$ for every $B \in \mathscr{B}$; further, there exist $\eta>0$, a continuous function $\xi: \boldsymbol{R} \times \boldsymbol{R} \rightarrow \boldsymbol{R}$ with $\xi(0,0)=0$ and a Radon measure β on \mathfrak{B} such that
ii) $\limsup _{h \rightarrow+\infty}\left|\operatorname{Cov}\left[C_{p}\left(E_{h} \cap U_{1}\right), C_{p}\left(E_{h} \cap U_{2}\right)\right]\right| \leqslant \xi\left(\operatorname{diam} U_{1}\right.$, diam $\left.U_{2}\right) \beta\left(U_{1}\right) \beta\left(U_{2}\right)$
for every $U_{1}, U_{2} \in \mathcal{U}$ with $\bar{U}_{1} \cap \bar{U}_{2}=\emptyset$ and $\operatorname{diam}\left(U_{1}\right)<\eta, \operatorname{diam}\left(U_{2}\right)<\eta$. Let

$$
\begin{equation*}
m_{h}(\omega)=\min _{u \in H_{0}^{1, p}\left(D \backslash E_{h}(\omega)\right)} \int_{D \backslash E_{h}(\omega)}|D u|^{p} d x-p \int_{D \backslash E_{h}(\omega)} g u d x \tag{3.6}
\end{equation*}
$$

for any $g \in L^{q}(D)$, with $\frac{1}{p}+\frac{1}{q}=1$ and $\omega \in \Omega$.
Then v is finite Borel measure on \mathfrak{B} and $\left(m_{h}\right)$ converges in probability, as $h \rightarrow+\infty$, to

$$
\begin{equation*}
m_{0}=\min _{u \in H_{0}^{1, p}(D)} \int_{D}|D u|^{p} d x+\int_{D}|u|^{p} d v-p \int_{D} g u d x \tag{3.7}
\end{equation*}
$$

that is, for any $\varepsilon>0$,

$$
\lim _{h \rightarrow+\infty} P\left\{\omega \in \Omega,\left|m_{h}(\omega)-m_{0}\right|>\varepsilon\right\}=0 .
$$

Moreover, if $U_{h}(\omega)$ is the unique minimum point in $H_{0}^{1, p}\left(D \backslash E_{h}(\omega)\right)$ of problem (3.6) for every $\omega \in \Omega$, and U_{0} is the unique minimum point in $H_{0}^{1, p}(D)$ of problem (3.5), we also have, for any $\varepsilon>0$,

$$
\lim _{h \rightarrow \infty} P\left\{\omega \in \Omega:\left\|U_{h}(\omega)-U_{0}\right\|_{L^{p}(D)}>\varepsilon\right\}=0
$$

Proof. - The proof can be deduced,by means minor changes, from Proposition 3.3, Theorem 4.10 and Corollary 4.11 in [2]. An inspection of those proofs, in particular, that one of Proposition 3.3, shows that the more general assumption (ii) above is sufficient to get the result.

Remark. - 3.3. - We could interpret the assumption (ii) as a sort of «asymptotic weak correlation» of the random variables $C_{p}\left(E_{h} \cap U_{1}\right)$ and $C_{p}\left(E_{h} \cap U_{2}\right)$ on disjoint sets U_{1}, U_{2} in \mathcal{U}.

Our aim is to characterize, by applying the previous result, a class of problems, concerning the p-Laplacian operator in randomly perforated domains,
for which the measure appearing in the limit problem can be explicitely computed.

Assumptions 3.4. - Let us assume the following hypotheses:
i_{1}) let $\beta \in H^{-1, q}(D)$ such that $\beta(D)=1$. Furthermore, there exists a continuous function $f: R^{+} \rightarrow R$ with $f(0)=0$, strictly monotone in a neighbor$\operatorname{hood} \mathcal{O}$ of $\mathrm{t}=0$, such that

$$
\mathscr{E}_{\beta}^{p}(U) \leqslant f(\operatorname{diam} U) \beta(U)
$$

for every $U \in \mathcal{U}$;
i_{2}) for every $h \in \boldsymbol{N}$ we set $I_{h}=1, \ldots, h$ and we consider h measurable functions $x_{i}^{h}: \Omega \rightarrow D, i \in I_{h}$, such that $\left(x_{i}^{h}\right)_{i \in I_{h}}$ is a family of independent, identically distributed random variables with probability distribution β, that is

$$
P\left\{\omega \in \Omega: x_{i}^{h} \in B\right\}=\beta(B), \quad i \in I_{h}
$$

for every Borel set $B \in \mathscr{B}$;
i_{3}) let ϱ_{h} be a sequence of positive numbers such that $0<\varrho_{h}<1$ and the limit

$$
l= \begin{cases}\lim _{h \rightarrow+\infty} h \varrho_{h}^{n-p} & \text { if } 2 \leqslant p<n \\ \lim _{h \rightarrow+\infty} h\left(-\ln \varrho_{h}\right)^{1-n} & \text { if } p=n\end{cases}
$$

is finite and strictly positive.

REmark 3.5. - In this remark some significant examples of measures satisfying hypothesis i_{1}) of Assumptions 3.4 are given.
(a) Let M be a smooth, compact manifold in D (with or without boundary), whose dimension is equal to $n-1$. We denote the $(n-1)$-dimensional Hausdorff measure by \mathcal{C}^{n-1}. Let us consider a non-negative function $V \in L^{r}\left(M, \mathcal{C}^{n-1}\right)$, such that $\int_{M} V(x) d \mathcal{C}^{n-1}(x)=1$, with $r>\frac{n-1}{p-1}$ and $2 \leqslant p<n$. Let us define the measure on D

$$
\beta(B)=\int_{B \cap M} V(x) d \mathscr{H}^{n-1}(x),
$$

for every $B \in \mathscr{B}$.

If we set $t=\operatorname{diam} U$, with $U \in \mathcal{U}$, we have

$$
\begin{aligned}
\mathscr{E}_{\beta}^{p}(U) & =\iint_{U \times U} \frac{d \beta(x) d \beta(y)}{|x-y|^{n-p}} \leqslant \\
& \leqslant \int_{U \cap M}\left(\int_{B(x, t) \cap M} \frac{V(y)}{|x-y|^{n-p}} d \mathscr{H}^{n-1}(y)\right) V(x) d \mathscr{H}^{n-1}(x) .
\end{aligned}
$$

Moreover, by Hölder's inequality, we obtain
$\int_{B(x, t) \cap M} \frac{V(y)}{|x-y|^{n-p}} d \mathcal{C}^{n-1}(y) \leqslant$

$$
\leqslant\|V\|_{L^{r}\left(M, \mathscr{H}^{n-1}\right)}\left[\int_{B(x, t) \cap M} \frac{1}{|x-y|^{\frac{(n-p) r}{r-1}}} d \mathscr{H}^{n-1}(y)\right]^{\frac{r-1}{r}} .
$$

By using the elementary formula
$\int_{B(x, t) \cap M} \frac{1}{|x-y|^{\alpha}} d \mathscr{C}^{n-1}(y)=$

$$
=\alpha \int_{0}^{t} \frac{\mathcal{C}^{n-1}(B(x, \varrho) \cap M)}{\varrho^{\alpha+1}} d \varrho+\frac{\mathcal{C}^{n-1}(B(x, \varrho) \cap M)}{t^{\alpha}}
$$

with $\alpha=\frac{(n-p) r}{r-1}$, and by noticing that, for any $x \in M$ and $\varrho>0$,

$$
\mathcal{S}^{n-1}(B(x, \varrho) \cap M) \leqslant C \varrho^{n-1}
$$

where C is a constant independent of x and ϱ, it is easy to get

$$
f(t)=k\left[C \frac{n-1}{n-\alpha-1}\right]^{\frac{r-1}{r}} t^{(n-\alpha-1) \frac{r-1}{r}}
$$

where $k=\|V\|_{L^{r}\left(M, \mathscr{M}^{n-1}\right)}$.
(b) Consider a measure defined, for every $B \in \mathcal{B}$, as

$$
\beta(B)=\int_{B} V(x) d x,
$$

where $V(x)$ is a non-negative function such that $\int_{D} V(x) d x=1$.
If $V(x)$ is a continuous function of compact support in D, an easy computa-
tion gives

$$
f(t)= \begin{cases}k \frac{\omega_{n-1}}{p} t^{p} & \text { if } 2 \leqslant p<n \\ k \frac{\omega_{n-1}}{n} t^{n}\left(\frac{1}{n}-\ln t\right) & \text { if } p=n\end{cases}
$$

where $k=\max \{V(x): x \in D\}$.
If $V \in L^{r}(D)$, with $r>\frac{n}{p}$ in the case $2 \leqslant p<n$ or $r>1$ in the case $p=n$, with a computation similar to that developed in (a), we obtain

$$
f(t)= \begin{cases}k\left(\omega_{n-1} \frac{r-1}{r p-n}\right)^{\frac{r-1}{r}} t^{\frac{r p-n}{r}} & \text { if } 2 \leqslant p<n \\ k \omega_{n-1} \frac{r-1}{r}\left(\int_{0}^{t}\left(\ln \frac{1}{\varrho}\right)^{\frac{r}{r-1}} \varrho^{n-1} d \varrho\right)^{\frac{r-1}{r}} & \text { if } p=n\end{cases}
$$

where $k=\|V\|_{L^{r}(D)}$.
From now on we shall consider the sequence of random sets $\left(F_{h}\right)$ defined in Example 2.5, with $r=\varrho_{h}$, that is, by setting

$$
F_{i}^{h}(\omega)=\left\{x \in D: \frac{1}{\varrho_{h}}\left(x-x_{i}^{h}(\omega) \in F\right)\right\}
$$

we define

$$
\begin{equation*}
F_{h}(\omega)=\bigcup_{i \in I_{h}} F_{i}^{h}(\omega) \tag{3.8}
\end{equation*}
$$

Finally, denoting by ω_{n-1} the area of the unit sphere of \boldsymbol{R}^{n}, we set

The next theorem is the main result of the paper.

Theorem 3.6. - Let $\left(E_{h}\right)$ be the sequence of random sets, as defined in (3.8). Assume that the hypotheses $\left(i_{1}\right),\left(i_{2}\right)$ and $\left(i_{3}\right)$ hold. Moreover, suppose that
$2 \leqslant p \leqslant n$. For every $h \in \boldsymbol{N}$ and $\omega \in \Omega$, let $U_{h}(\omega)$ be the weak solution of the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} U_{h}=g \quad \text { in } D \backslash E_{h}(\omega) \\
U_{h} \in H_{0}^{1, p}\left(D \backslash E_{h}(\omega)\right)
\end{array}\right.
$$

where $g \in L^{q}(D)$ and $\frac{1}{p}+\frac{1}{q}=1$. Then, for every $\varepsilon>0$,

$$
\lim _{h \rightarrow \infty} P\left\{\omega \in \Omega:\left\|U_{h}(\omega)-U_{0}\right\|_{L^{p}(D)}>\varepsilon\right\}=0
$$

where U_{0} is the unique weak solution of the relaxed Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta_{p} U+c l \beta|U|^{p-2} U=g \quad \text { in } D \\
U \in H_{0}^{1, p}(D)
\end{array}\right.
$$

where c is the constant defined in (3.9).

4. - Proof of the main result.

By Theorem 3.2, Theorem 3.6 is an immediate consequence of the following proposition.

Proposition 4.1. - Let $\left(F_{h}\right)$ be the sequence of random sets, as defined in (3.8). Let α^{\prime} and $\alpha^{\prime \prime}$ be the set functions defined in (2.1), (2.2), and let v^{\prime} and $v^{\prime \prime}$ be the least superadditive set functions on \mathfrak{B} greater than or equal to α^{\prime}, and $\alpha^{\prime \prime}$, i.e. the set functions defined in (2.3) and (2.4). If hypotheses $\left(i_{1}\right),\left(i_{2}\right)$ and (i_{3}) are satisfied and $2 \leqslant p \leqslant n$, we have:

$$
\begin{equation*}
v^{\prime}(B)=v^{\prime \prime}(B)=\operatorname{cl} \beta(B) \quad \text { for } \text { every } B \in \mathscr{B} \tag{1}
\end{equation*}
$$

where c is defined in (3.9).
Moreover, there exist $\eta>0$, a continuous function $\xi: \boldsymbol{R} \times \boldsymbol{R} \rightarrow \boldsymbol{R}$ with $\xi(0,0)=0$ and a Radon measure β_{1} on \mathfrak{B} such that
$\left.t_{2}\right) \quad \limsup _{h \rightarrow+\infty}\left|\operatorname{Cov}\left[C_{p}\left(E_{h} \cap U_{1}\right), C_{p}\left(E_{h} \cap U_{2}\right)\right]\right| \leqslant$

$$
\leqslant \xi\left(\operatorname{diam} U_{1}, \operatorname{diam} U_{2}\right) \beta_{1}\left(U_{1}\right) \beta_{1}\left(U_{2}\right)
$$

for every $U_{1}, U_{2} \in \mathcal{U}$ with $\bar{U}_{1} \cap \bar{U}_{2}=\emptyset$ and $\operatorname{diam}\left(U_{1}\right)<\eta$, $\operatorname{diam}\left(U_{2}\right)<\eta$.
The next two lemmas will be essential in the proof of Proposition 4.1. In the first one, we identify a suitable supersolution of the p-Laplacian (for a definition see, for example, [8]) in perforated domains; in the second one, we give a result which allows us to estimate from below the p-capacity of the union of a family $\left(E_{i}\right)_{i \in I}$ by means of the sum of p-capacities of the sets E_{i}.

Lemma 4.2. - Let $\left(E_{i}\right)_{i \in I}$ be a family of closed subsets of D and let $E=\bigcup_{i \in I} E_{i}$. Assume that there exist a finite family $\left(x_{i}\right)_{i \in I}$ of points in D and a real number ϱ such that $0<\varrho<1$ and

$$
E_{i} \subseteq B_{\varrho}\left(x_{i}\right) \subseteq D \quad \text { for } i \in I
$$

Further, for every $x \in \boldsymbol{R}^{n}$ and $i \in I$, set

$$
z_{i}(x)= \begin{cases}\left(\frac{\varrho}{\left|x-x_{i}\right|}\right)^{\frac{n-p}{p-1}} \wedge 1 & \text { if } 2 \leqslant p<n \\ (-\ln \varrho)^{-1} \ln \left(\left|x-x_{i}\right|\right)^{-1} \wedge 1 & \text { if } p=n\end{cases}
$$

Finally, let

$$
z(x)=\sum_{i \in I} z_{i}(x) .
$$

Then $z \in H_{\mathrm{loc}}^{1, p}\left(\boldsymbol{R}^{n} \backslash E\right), z \geqslant 0$ on $\partial D, z \geqslant 1$ on E, and it satisfies the following condition

$$
\begin{equation*}
\int_{D \backslash E}|D z|^{p-2} D z D \varphi d x \geqslant 0 \tag{4.1}
\end{equation*}
$$

for every non-negative $\varphi \in C_{0}^{\infty}(D \backslash E)$.
Proof. - We consider the case $2 \leqslant p<n$. The case $p=n$ can be proven in the same way. It is easy to see that the hardest part of the proof is to show that the condition (4.1) holds. Let us set

$$
\gamma=\frac{n-p}{p-1}
$$

First, we establish that, for every $\varepsilon>0$,

$$
\begin{equation*}
\operatorname{div}\left[\left(|D z(x)|^{2}+\varepsilon\right)^{\frac{p-2}{2}} D z(x)\right] \leqslant 0 \tag{4.2}
\end{equation*}
$$

for all $x \in \boldsymbol{R}^{n} \backslash E$.
Let us define, for every $x \in \boldsymbol{R}^{n} \backslash E$ and $\varepsilon>0$, the function

$$
a_{\varepsilon}(x)=\left(|D z(x)|^{2}+\varepsilon\right)^{\frac{p-2}{2}} .
$$

Note that

$$
\begin{equation*}
\operatorname{div}\left(a_{\varepsilon} D z\right)=\left\langle D a_{\varepsilon}, D z\right\rangle+a_{\varepsilon} \Delta z \tag{4.3}
\end{equation*}
$$

where \langle,$\rangle is the scalar product in \boldsymbol{R}^{n}$, and Δ is the Laplace operator in \boldsymbol{R}^{n}.

A simple computation gives

$$
\left\langle D a_{\varepsilon}, D z\right\rangle=(p-2) \frac{a_{\varepsilon}}{|D z|^{2}+\varepsilon} \sum_{i, h=1}^{n} \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial x_{h}} \frac{\partial^{2} z}{\partial x_{i} \partial x_{h}} .
$$

Moreover, we have that

$$
\begin{aligned}
& \sum_{i, h=1}^{n} \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial x_{h}} \frac{\partial^{2} z}{\partial x_{i} \partial x_{h}} \\
= & \left.\varrho^{\gamma} \gamma(\gamma+2)\left\langle\sum_{j \in I}\right| x-\left.x_{j}\right|^{-(\gamma+4)}\left(x-x_{j}\right) \otimes\left(x-x_{j}\right) D z, D z\right\rangle \\
& -\gamma r^{n-p} \sum_{j \in I} \frac{|D z|^{2}}{\left|x-x_{j}\right|^{\gamma+2}} \\
\leqslant & \varrho^{\gamma} \gamma(\gamma+1)|D z|^{2} \sum_{j \in I}\left|x-x_{j}\right|^{-(\gamma+2)} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\left\langle D a_{\varepsilon}, D z\right\rangle & \leqslant(p-2) \gamma(\gamma+1) a_{\varepsilon} \frac{|D z|^{2}}{|D z|^{2}+\varepsilon} \sum_{j \in I}\left|x-x_{j}\right|^{-(\gamma+2)} \tag{4.4}\\
& \leqslant(p-2) \gamma(\gamma+1) a_{\varepsilon} \sum_{j \in I}\left|x-x_{j}\right|^{-(\gamma+2)} .
\end{align*}
$$

It is also straightforward to show that

$$
\begin{equation*}
\Delta z=\varrho^{\gamma} \gamma(\gamma+2-n) \sum_{j \in I}\left|x-x_{j}\right|^{-(\gamma+2)} . \tag{4.5}
\end{equation*}
$$

Thus, by (4.3), (4.4) and (4.5), we get

$$
\begin{align*}
& \operatorname{div}\left[\left(|D z(x)|^{2}+\varepsilon\right)^{\frac{p-2}{2}} D z(x)\right] \leqslant \\
& \left.\gamma \varrho^{\gamma}\left(|D z(x)|^{2}+\varepsilon\right)\right)^{\frac{p-2}{2}} \sum_{j \in I}\left|x-x_{j}\right|^{-(\gamma+2)}[(\gamma+2-n)+(p-2)(\gamma+1)] . \tag{4.6}
\end{align*}
$$

By applying the definition of γ, we see that the quantity in bracket on the right-hand side of (4.6) is equal to zero and so (4.2) is proven.

Now we are in a position to prove condition (4.1). Indeed, from (4.2), integrating by part, we obtain

$$
\begin{equation*}
\int_{D \backslash E}\left(|D z|^{2}+\varepsilon\right)^{\frac{p-2}{2}} D z D \varphi d x \geqslant 0 \tag{4.7}
\end{equation*}
$$

for every non-negative $\varphi \in C_{0}^{\infty}(D \backslash E)$.

Finally, by taking the limit for $\varepsilon \rightarrow 0$ in (4.7) and by applying Lebesgue's dominated convergence theorem, we get (4.1) and the proof is accomplished.

Lemma 4.3. - Let $\left(E_{i}\right)_{i \in I}$ be a family of closed subsets of D and let $E=\bigcup_{i \in I} E_{i}$. Assume that there exist a finite family $\left(x_{i}\right)_{i \in I}$ of points in D and two real positive numbers ϱ and R such that

$$
\begin{equation*}
0<\varrho<R<1 \tag{i}
\end{equation*}
$$

(ii)

$$
E_{i} \subseteq B_{\varrho}\left(x_{i}\right) \subseteq B_{R}\left(x_{i}\right) \subseteq D \quad \text { for } i \in I
$$

$$
\begin{equation*}
\left|x_{i}-x_{j}\right| \geqslant 2 R \quad \text { for } i \neq j \text {. } \tag{iii}
\end{equation*}
$$

Define

$$
r= \begin{cases}\varrho^{\frac{1}{p-1}} & \text { if } 2 \leqslant p<n \\ e^{-\left(\ln \frac{1}{\varrho}\right) \frac{1}{\varrho-1}} & \text { if } p=n\end{cases}
$$

Let us set

$$
\delta= \begin{cases}2\left(\frac{r}{R}\right)^{n-p} & \text { if } 2 \leqslant p<n \tag{4.8}\\ 2(-\ln r)^{1-n} \ln R^{-1} & \text { if } p=n\end{cases}
$$

If, in addition, we suppose
(iv) $\begin{cases}\sum_{i \neq j} \frac{r^{n-p}}{\left(\left|x_{i}-x_{j}\right|-R\right)^{n-p}}<\frac{\delta}{2} & \text { if } 2 \leqslant p<n \\ (-\ln r)^{1-n} \sum_{i \neq j} \ln \left(\left|x_{i}-x_{j}\right|-R\right)^{-1}<\frac{\delta}{2} & \text { if } p=n .\end{cases}$
then, for $\delta<1$,

$$
C_{p}(E) \geqslant(1-\delta)^{p} \sum_{i \in I} C_{p}\left(E_{i}, B_{R}\left(x_{i}\right)\right) .
$$

Proof. - Let $u \in H_{0}^{1, p}(D)$ be the capacitary potential of E with respect to D. We claim that the proof is achieved, whenever $u \leqslant \delta$ on $\partial B_{R}\left(x_{i}\right)$ for every $i \in I$. Indeed, if this is the case, let us define the function $v=(1-\delta)^{-1}(u-$ $\delta)^{+}$. By definition of capacitary potential, it is easy to see that $v \in H_{0}^{1, p}(D)$, $v \geqslant 1$ p-q.e. on E and $v=0$ p-q.e. on $\partial B_{R}\left(x_{i}\right)$, for every $i \in I$. Since (ii) holds, we
have

$$
C_{p}\left(E_{i}, B_{R}\left(x_{i}\right)\right) \leqslant \int_{B_{R}\left(x_{i}\right)}|D v|^{p} d x
$$

for every $i \in I$. Hence,

$$
\begin{equation*}
\int_{D}|D v|^{p} d x \geqslant \sum_{i \in I_{B_{R}}\left(x_{i}\right)}|D v|^{p} d x \geqslant \sum_{i \in I} C_{p}\left(E_{i}, B_{R}\left(x_{i}\right)\right) . \tag{4.9}
\end{equation*}
$$

By definition of v, we have also

$$
\begin{align*}
\int_{D}|D v|^{p} d x & =\frac{1}{(1-\delta)^{p}} \int_{D}\left|D(u-\delta)^{+}\right|^{p} d x \tag{4.10}\\
& \leqslant \frac{1}{(1-\delta)^{p}} \int_{D}|D v|^{p} d x=\frac{1}{(1-\delta)^{p}} C_{p}(E) .
\end{align*}
$$

We obtain the assertion by (4.9) and (4.10). Now, it remains to prove that $u \leqslant \delta$ on $\partial B_{R}\left(x_{i}\right)$ for every $i \in I$. We shall give the details only for the case $2<p<n$. The case $p=n$ is obtained in the same way. Consider the function $z(x)$ defined in Lemma 4.2.

The function z is a supersolution relative to the p-Laplacian operator in $D \backslash E$ (see Remark 4.3), such that $z \geqslant 0$ on ∂D and $z \geqslant 1$ on E. Since the capacitary potential u is a weak solution in $D \backslash E$ relative to the p-Laplacian, that is

$$
\int_{D \backslash E}|D u|^{p-2} D u D \varphi d x=0
$$

for every $\varphi \in C_{0}^{\infty}(D \backslash E)$, we can apply the comparison principle for supersolutions relative to the p-Laplacian in $D \backslash E$ (see [9] Lemma 3.18), which gives

$$
\begin{equation*}
u \leqslant z \quad \text { a.e. in } D \backslash E . \tag{4.11}
\end{equation*}
$$

Finally, it is easy to see that, for every $i \in I, z \leqslant \delta$ on $\partial B_{R}\left(x_{i}\right)$. For a fixed $i \in I$,
let $y \in \partial B_{R}\left(x_{i}\right)$. By definition of function z and by assumption (iv) we obtain

$$
\begin{aligned}
z(y) & \leqslant \sum_{j \in I} \frac{r^{n-p}}{\left(\left|y-x_{j}\right|\right)^{\frac{n-p}{p-1}}} \\
& \leqslant\left(\frac{r}{R}\right)^{n-p}+\sum_{i \neq j} \frac{r^{n-p}}{\left(\left|y-x_{j}\right|\right)^{\frac{n-p}{p-1}}} \\
& \leqslant \frac{\delta}{2}+\sum_{i \neq j} \frac{r^{n-p}}{\left(\left|y-x_{j}\right|\right)^{n-p}} \\
& \leqslant \frac{\delta}{2}+\sum_{i \neq j} \frac{r^{n-p}}{\left(\left|x_{i}-x_{j}\right|-R\right)^{n-p}} \leqslant \delta .
\end{aligned}
$$

This inequality, together with (4.11), shows that the assumption $u \leqslant \delta$ on $\partial B_{R}\left(x_{i}\right)$, for every $i \in I$, is always satisfied and so the proof is complete.

For our purposes we also need a suitable probabilistic result. In order to state it, we have to introduce some more notation.

Let $\left(\xi_{i}\right)_{i \in I}$ be a finite family of independent, identically distributed random variables with values in D, and with distribution given by

$$
P\left\{\omega \in \Omega: \xi_{i}(\omega) \in B\right\}=\beta(B) \quad \text { for every } B \in \mathscr{B}
$$

where $\beta \in H^{-1, q}(D)$.
For $0<r<R<1$ and for any subset $Z \subseteq D$, let us introduce the following random sets of indices

$$
\begin{aligned}
& N(Z)=\left\{i \in I: \xi_{i} \in Z\right\}, \\
& I(Z)=\left\{i \in I: B_{R}\left(\xi_{i}\right) \subset Z,\left|\xi_{i}-\xi_{j}\right| \geqslant 2 R, \forall j \in I, j \neq i\right\}, \\
& J(Z)=\left\{i \in I: B_{R}\left(\xi_{i}\right) \subset Z, \exists j \in I, j \neq i,\left|\xi_{i}-\xi_{j}\right| \leqslant 2 R\right\},
\end{aligned}
$$

and for every $\eta>0$

$$
I_{\eta}(Z)= \begin{cases}\left\{i \in I(Z): \sum_{i \neq j} \frac{r^{n-p}}{\left(\left|\xi_{i}-\xi_{j}\right|-R\right)^{n-p}}<\frac{\eta}{2}\right\} & \text { if } 2 \leqslant p<n \\ \left\{i \in I(Z):(-\ln r)^{1-n} \sum_{i \neq j} \ln \left(\left|\xi_{i}-\xi_{j}\right|-R\right)^{-1}<\frac{\eta}{2}\right\}, & \text { if } p=n\end{cases}
$$

and finally

$$
J_{\eta}(Z)=I(Z) \backslash I_{\eta}(Z)
$$

We are now in a position to state the Lemma announced above. Its proof
can be obtained by adapting to our case the proofs of (i) and (ii) of Lemma 5.1 in [3].

Lemma 4.4. - For any $0<\varrho<R<1$, let δ be the positive real number defined in (4.8) of Lemma 4.3. Then, for every $A \in \mathcal{U}$, the expectation of the random variable \#($\left.J_{\delta}(A)\right)$ satisfies the inequality
(i) $\quad \boldsymbol{E}\left[\#\left(J_{\delta}(A)\right)\right] \leqslant \begin{cases}\left(\frac{2}{\delta}\right)(2 \varrho)^{n-p}(\#(I))^{2} \Theta_{\beta}^{p}(A) & \text { if } 2 \leqslant p<n \\ \left(\frac{2}{\delta}\right)(-\ln \varrho)^{1-n}(\#(I))^{2} \Theta_{\beta}^{p}(A) & \text { if } p=n,\end{cases}$
the expectation of the random variable $\#(J(A))$ satisfies the inequality
(ii) $\quad \boldsymbol{E}[\#(J(A))] \leqslant \begin{cases}(2 R)^{n-p}(\#(I))^{2} \delta_{\beta}^{p}(\widetilde{A}) & \text { if } 2 \leqslant p<n \\ (-\ln 2 R)^{1-n}(\#(I))^{2} \delta_{\beta}^{p}(\widetilde{A}) & \text { if } p=n,\end{cases}$
where δ_{β}^{p} is the set function as in Definition 2.2 and $\widetilde{A}=\{y \in D$: $\operatorname{dist}(y, A)<2 R\}$, with $R<\frac{1}{2}$.

Proof of Proposition 4.1. - To get the proof, we can apply exactly the same scheme of the proof of Proposition 5.1 in [3]. For the readers convenience, we repeat the basic steps in our case. We shall prove the proposition when $2 \leqslant p<n$. The case $n=p$, can be adapted in a straightforward way.

For $0<\delta<1$ and $h \in N$, we choose $R_{h}>0$ such that $\varrho_{h}<R_{h}$ and

$$
\delta=2\left(\frac{r_{h}}{R_{h}}\right)^{n-p}
$$

where r_{h} is defined as in Lemmma 4.3 (in the definition of the quantity r put $\varrho=\varrho_{h}$). For every $U \in \mathcal{U}$ and $h \in \boldsymbol{N}$, let us introduce the following families of random indices

$$
\begin{aligned}
N_{h}(U) & =\left\{i \in I: \xi_{i} \in U\right\}, \\
I_{h}(U) & =\left\{i \in I: B_{R_{h}}\left(\xi_{i}\right) \subset U,\left|\xi_{i}-\xi_{j}\right| \geqslant 2 R_{h}, \forall j \in I_{h}, j \neq i\right\}, \\
J_{h}(U) & =\left\{i \in I_{h}: B_{R_{h}}\left(\xi_{i}\right) \subset U, \exists j \in I_{h}, j \neq i,\left|\xi_{i}-\xi_{j}\right| \leqslant 2 R_{h}\right\},
\end{aligned}
$$

and

$$
I_{\delta}^{h}(U)=\left\{i \in I_{h}(U): \sum_{i \neq j} \frac{r_{h}^{n-p}}{\left(\left|\xi_{i}-\xi_{j}\right|-R_{h}\right)^{n-p}}<\frac{\delta}{2}\right\} .
$$

Furthermore, we set

$$
J_{\delta}^{h}(U)=I_{h}(U) \backslash I_{\delta}^{h}(U) .
$$

and

$$
\widehat{U}_{h}=\left\{y \in U: \operatorname{dist}(y, \partial U)>R_{h}\right\} .
$$

It is not difficult to see that

$$
\begin{gathered}
I_{h}(U)=N_{h}\left(\widehat{U}_{h}\right) \backslash J_{h}(U) \\
I_{\delta}^{h}(U)=\left(N_{h}\left(\widehat{U}_{h}\right) \backslash J_{h}(U)\right) \backslash J_{\delta}^{h}(U) .
\end{gathered}
$$

Denote by F_{h}^{\prime} the random set

$$
F_{h}^{\prime}(\omega)=\bigcup_{i \in I_{\delta}^{k}(U)}\left\{x \in D: \frac{1}{\varrho_{h}}\left(x-x_{i}^{h}(\omega) \in F\right)\right\} .
$$

By Lemma 4.3, we have that, for every $\omega \in \Omega$,

$$
\begin{gather*}
C_{p}\left(F_{h}(\omega) \cap U\right) \geqslant C_{p}\left(F_{h}^{\prime}(\omega)\right) \geqslant(1-\delta)^{p} \sum_{i \in I_{\delta}^{k}(U)} C_{p}\left(F_{i}^{h}(\omega), B_{R_{h}}\left(x_{i}^{h}\right)\right) \geqslant \tag{4.12}\\
(1-p \delta)\left(h \varrho_{h}^{n-p}\right) C_{p}\left(F, B_{R_{h} / \varrho_{h}}(0)\right)\left[\frac{\# N_{h}\left(\widehat{U}_{h}\right)}{h}-\frac{\# J_{h}(U)}{h}-\frac{\# J_{\delta}^{h}(U)}{h}\right] .
\end{gather*}
$$

On the other hand, by using the elementary properties of the capacity, we immediately get that, for every $U \in \mathcal{U}$,

$$
\begin{align*}
& C_{p}\left(F_{h}(\omega) \cap U\right) \leqslant \sum_{i \in N_{h}\left(\widetilde{U}_{h}\right)} C_{p}\left(F_{i}^{h}(\omega), B_{R_{h}}\left(x_{i}^{h}\right)=\right. \tag{4.13}\\
& \quad\left(h \varrho_{h}^{n-p}\right) C_{p}\left(F, B_{R_{h} / \varrho_{h}}(0)\right)\left[\frac{\# N_{h}\left(\widetilde{U}_{h}\right)}{h}\right]
\end{align*}
$$

where we have set $\widetilde{U}_{h}=\left\{y \in D: \operatorname{dist}(x, U)<2 R_{h}\right\}$.
Proof of $\left(t_{1}\right)$. - By Lemma 4.4 we deduce that

$$
\begin{align*}
& \limsup _{h \rightarrow+\infty} \frac{\boldsymbol{E}\left[\#\left(J_{\delta}(U)\right)\right]}{h} \leqslant \frac{2^{n-p+1}}{\delta} l \varepsilon_{\beta}^{p}(U) \tag{4.14}\\
& \limsup _{h \rightarrow+\infty} \frac{\boldsymbol{E}\left[\#\left(J_{h}(U)\right)\right]}{h} \leqslant \frac{2^{n-p+1}}{\delta} l \delta_{\beta}^{p}(U) . \tag{4.15}
\end{align*}
$$

Further, it is not difficult to check that

$$
\beta(U)=\left\{\begin{array}{l}
\lim _{h \rightarrow+\infty} \frac{\boldsymbol{E}\left[\#\left(N_{h}\left(\widehat{U}_{h}\right)\right)\right]}{h} \tag{4.16}\\
\lim _{h \rightarrow+\infty} \frac{\boldsymbol{E}\left[\#\left(N_{h}\left(\widetilde{U}_{h}\right)\right)\right]}{h}
\end{array}\right.
$$

for every $U \in \mathcal{U}$ with $\beta(\partial U)=0$.
Noticing that

$$
\lim _{R \rightarrow+\infty} C_{p}\left(F, B_{R}(0)\right)=c,
$$

where c is the constant defined in (3.9), we get, from (2.4), (4.13) and (4.14),

$$
\begin{equation*}
\alpha_{-}^{\prime \prime}(B) \leqslant c l \beta(B) \tag{4.17}
\end{equation*}
$$

for every $B \in \mathscr{B}$; and from (2.4), (4.12), (4.14), (4.15) and (4.16) it follows that

$$
\begin{equation*}
\alpha_{-}^{\prime}(B) \geqslant(1-\delta)^{p} c l\left[\beta(B)-\frac{2^{n-p+2}}{\delta} l \sigma(B \times B)\right] \tag{4.18}
\end{equation*}
$$

for every $B \in \mathscr{B}$, where σ is the measure defined in Remark 2.3. From (4.17) we have

$$
\begin{equation*}
v^{\prime \prime}(B) \leqslant c l \beta(B) \tag{4.19}
\end{equation*}
$$

for every $B \in \mathscr{B}$.
On the other hand, we also have

$$
\begin{equation*}
v^{\prime}(B) \geqslant(1-\delta)^{p} c l \beta(B) \tag{4.20}
\end{equation*}
$$

for every $B \in \mathcal{B}$. Indeed, let us fix $B \in \mathscr{B}$; for arbitrary $0<\eta<1$, take a Borel partition $\left(B_{j}\right)_{j \in J}$ of B with diameter of $\left(B_{j}\right)$ less than η. Since v^{\prime} is superadditive, we have

$$
\begin{aligned}
\nu^{\prime}(B) & \geqslant \sum_{i \in J} v^{\prime}\left(B_{j}\right) \geqslant(1-\delta)^{p} c l\left(\beta(B)-\frac{2^{n-p+2}}{\delta} \sum_{j \in J} \sigma\left(B_{j} \times B_{j}\right)\right) \\
& =(1-\delta)^{p} c l\left(\beta(B)-\frac{2^{n-p+2}}{\delta} \sum_{j \in J} \int_{B_{j} \times B_{j}} \int \frac{\beta(d x) \beta(d y)}{|x-y|^{n-p}}\right) \\
& \geqslant(1-\delta)^{p} c l\left(\beta(B)-\frac{2^{n-p+2}}{\delta} \iint_{D_{\eta}} \frac{\beta(d x) \beta(d y)}{|x-y|^{n-p}}\right) \\
& =(1-\delta)^{p} c l\left(\beta(B)-\frac{2^{n-p+2}}{\delta} \sigma\left(D_{\eta}\right)\right),
\end{aligned}
$$

where σ is the measure defined in Remark 2.3 and $D_{\eta}=\{(x, y) \in D \times D: \mid x-$
$y \mid<\eta\}$. Notice that $B_{j} \times B_{j} \subset D_{\eta}$, for every $j \in J$ and that the diameter of D_{η} is less than η. Since $\beta \in H^{-1, q}(D)$, by Remark 2.3 we find that

$$
\lim _{\eta \rightarrow 0} \sigma\left(D_{\eta}\right)=0
$$

and we get (4.20); finally, letting $\delta \rightarrow 0$, we obtain

$$
v^{\prime}(B) \geqslant \operatorname{cl} \beta(B) \geqslant v^{\prime \prime}(B)
$$

for every $B \in \mathscr{B}$. So, $\left(t_{1}\right)$ is proved, because $v^{\prime \prime} \geqslant v^{\prime}$.
Proof of $\left(t_{2}\right)$. - We observe that, for every $U \in \mathcal{U}$, by Strong Law of Large Numbers, we have

$$
\begin{equation*}
\lim _{h \rightarrow+\infty} \frac{\#\left(N_{h}\left(\widehat{U}_{h}\right)\right)}{h}=\beta(U) \tag{4.21}
\end{equation*}
$$

for a.e. $\omega \in \Omega$, and

$$
\begin{equation*}
\lim _{h \rightarrow+\infty} \frac{\#\left(N_{h}\left(\widehat{U}_{h}\right)\right)}{h}=\beta(U) \tag{4.22}
\end{equation*}
$$

in $L^{1}(\Omega)$.
Since the sequence of random variables $\left(h^{-1} \#\left(N_{h}\left(\widehat{U}_{h}\right)\right)\right)_{h \in N}$ is equibounded, we also have

$$
\begin{equation*}
\lim _{h \rightarrow+\infty} \frac{\#\left(N_{h}\left(\widehat{U}_{h}\right)\right)}{h}=\beta(U) \tag{4.23}
\end{equation*}
$$

in $L^{2}(\Omega)$.
By (4.12), we obtain

$$
\begin{gather*}
\liminf _{h \rightarrow+\infty} \boldsymbol{E}\left[C_{p}\left(F_{h} \cap U, D\right) C_{p}\left(F_{h} \cap V, D\right)\right] \tag{4.24}\\
\geqslant[(1-2 p \delta) c l]^{2} \times \liminf _{h \rightarrow+\infty}\left\{\boldsymbol{E}\left[\frac{\#\left(N_{h}\left(\widehat{U}_{h}\right)\right)}{h} \frac{\#\left(N_{h}\left(\widehat{V}_{h}\right)\right)}{h}\right]\right. \\
-\boldsymbol{E}\left[\frac{\#\left(N_{h}\left(\widehat{U}_{h}\right)\right)}{h} \frac{\#\left(J_{\delta}^{h}(\widehat{V})\right)}{h}\right]-\boldsymbol{E}\left[\frac{\#\left(N_{h}\left(\widehat{V}_{h}\right)\right)}{h} \frac{\#\left(J_{\delta}^{h}(\widehat{U})\right)}{h}\right] \\
\left.-\boldsymbol{E}\left[\frac{\#\left(N_{h}\left(\widehat{U}_{h}\right)\right)}{h} \frac{\#\left(J_{h}(\widehat{V})\right)}{h}\right]-\boldsymbol{E}\left[\frac{\#\left(N_{h}\left(\widehat{V}_{h}\right)\right)}{h} \frac{\#\left(J_{h}(\widehat{U})\right)}{h}\right]\right\}
\end{gather*}
$$

for any pair $U, V \in \mathcal{U}$ with $\bar{U} \cap \bar{V}=\emptyset$. From (4.23) we obtain

$$
\begin{equation*}
\lim _{h \rightarrow+\infty} \boldsymbol{E}\left[\frac{\#\left(N_{h}\left(\widehat{U}_{h}\right)\right)}{h} \frac{\#\left(N_{h}\left(\widehat{V}_{h}\right)\right)}{h}\right]=\beta(U) \beta(V) \tag{4.25}
\end{equation*}
$$

moreover, by Lemma 4.4 and (4.21) we have

$$
\begin{equation*}
\boldsymbol{E}\left[\frac{\#\left(N_{h}\left(\widehat{U}_{h}\right)\right)}{h} \frac{\#\left(J_{\delta}^{h}(\widehat{V})\right)}{h}\right] \leqslant \frac{2^{n-p+1}}{\delta} l \beta(U) \xi_{\beta}^{p}(V) \tag{4.26}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{E}\left[\frac{\#\left(N_{h}\left(\widehat{V}_{h}\right)\right)}{h} \frac{\#\left(J_{\delta}^{h}(\widehat{U})\right)}{h}\right] \leqslant \frac{2^{n-p+1}}{\delta} l \beta(V) \varepsilon_{\beta}^{p}(U) \tag{4.27}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{E}\left[\frac{\#\left(N_{h}\left(\widehat{U}_{h}\right)\right)}{h} \frac{\#\left(J_{h}(\widehat{V})\right)}{h}\right] \leqslant \frac{2^{n-p+1}}{\delta} l \beta(U) \bigodot_{\beta}^{p}(V), \tag{4.28}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{E}\left[\frac{\#\left(N_{h}\left(\widehat{V}_{h}\right)\right)}{h} \frac{\#\left(J_{h}(\widehat{U})\right)}{h}\right] \leqslant \frac{2^{n-p+1}}{\delta} l \beta(V) \varepsilon_{\beta}^{p}(U), \tag{4.29}
\end{equation*}
$$

for any pair $U, V \in \mathcal{U}$. Then (4.24), (4.25), (4.26), (4.27), (4.28) and (4.29) give

$$
\begin{equation*}
\liminf _{h \rightarrow+\infty} \boldsymbol{E}\left[C_{p}\left(F_{h} \cap U, D\right) C_{p}\left(F_{h} \cap V, D\right)\right] \tag{4.30}
\end{equation*}
$$

$$
\geqslant[(1-p \delta) c l]^{2}\left[\beta(U) \beta(V)-\frac{2^{n-p+2}}{\delta} l \beta(U) \delta_{\beta}^{p}(V)-\frac{2^{n-p+2}}{\delta} l \beta(V) \delta_{\beta}^{p}(U)\right]
$$

for any pair $U, V \in \mathcal{U}$ with $\bar{U} \cap \bar{V}=\emptyset$.
By (4.13) and (4.23) we also deduce
(4.31) $\quad \limsup _{h \rightarrow+\infty} \boldsymbol{E}\left[C_{p}\left(F_{h} \cap U, D\right) C_{p}\left(F_{h} \cap V, D\right)\right] \leqslant[c l]^{2} \beta(U) \beta(V)$
for any pair $U, V \in \mathcal{U}$ with $\beta(\partial U)=\beta(\partial V)=0$. Estimates similar to (4.30) and (4.31) for the upper and lower limit of the sequence $\left(\boldsymbol{E}\left[C_{p}\left(F_{h} \cap\right.\right.\right.$ $\left.U, D)] \boldsymbol{E}\left[C_{p}\left(F_{h} \cap V, D\right)\right]\right)_{h \in N}$ can be obtained in the same way. Therefore, we get for any pair $U, V \in \mathcal{U}$ with $\bar{U} \cap \bar{V}=\emptyset$

$$
\begin{gathered}
\limsup _{h \rightarrow+\infty}\left|\operatorname{Cov}\left[C_{p}\left(F_{h} \cap U, D\right), C_{p}\left(F_{h} \cap V, D\right)\right]\right| \\
\leqslant(c l)^{2} \beta(U) \beta(V)-[(1-p \delta) c l]^{2} \times \\
\times\left[\beta(U) \beta(V)-l \frac{2^{n-p+2}}{\delta} \beta(U) \varepsilon_{\beta}^{p}(V)-l \frac{2^{n-p+2}}{\delta} \beta(V) \varepsilon_{\beta}^{p}(U)\right] .
\end{gathered}
$$

Moreover, by i_{1}) of Assumptions 3.4 and by taking

$$
\delta=\max (\sqrt{f(\operatorname{diam} U)}, \sqrt{f(\operatorname{diam} V)})
$$

we obtain

$$
\begin{gathered}
\limsup _{h \rightarrow+\infty}\left|\operatorname{Cov}\left[C_{p}\left(F_{h} \cap U, D\right), C_{p}\left(F_{h} \cap V, D\right)\right]\right| \\
\leqslant \beta(U) \beta(V)(c l)^{2}\left[2 p \delta+\frac{2^{n-p+2}}{\delta} l(f(\operatorname{diam} U)+f(\operatorname{diam} V))\right] \\
\leqslant(c l)^{2} \beta(U) \beta(V)[2 p \max (\sqrt{f(\operatorname{diam} U)}, \sqrt{f(\operatorname{diam} V)})+ \\
\left.+2^{n-p+2} l(\sqrt{f(\operatorname{diam} U)}+\sqrt{f(\operatorname{diam} V)})\right]
\end{gathered}
$$

for every $U, V \in \mathcal{U}$ with $f(\operatorname{diam} U)<1$ and $f(\operatorname{diam} V)<1$. Finally, let

$$
t_{0}=\sup \{t \in \mathcal{O}: f(t)<1\} .
$$

So, for $\eta=f^{-1}\left(t_{0}\right)$,

$$
\xi(x, y)=\left[2 p \max (\sqrt{f(x)}, \sqrt{f(y)})+2^{n-p+2} l(\sqrt{f(x)}+\sqrt{f(y)}]\right.
$$

and $\beta_{1}=c l \beta$, the assertion t_{2} of Proposition 4.1 follows and the proof is accomplished.

REFERENCES

[1] M. Balzano, Random Relaxed Dirichlet Problems, Ann. Mat. Pura Appl. (IV), 153 (1988), 133-174.
[2] M. Balzano - A. Corbo Esposito - G. Paderni, Nonlinear Dirichlet problems in randomly perforated domains, Rendiconti di Matematica e delle sue Appl., 17 (1997), 163-186.
[3] M. Balzano - L. Notarantonio, On the asymptotic behaviour of Dirichlet problems in a Riemannian manifold less small random holes, Rend. Sem. Mat. Univ. Padova, 100 (1998).
[4] J. R. Baxter - N. C. Jain, Asymptotic capacities for finely divided bodies and stopped diffusions, Illinois J. Math., 31 (1987), 469-495.
[5] G. Dal Maso, Comportamento asintotico delle soluzioni di problemi di Dirichlet, Conference XV Congress U.M.I. (Padova, Italy) 1995 - Boll. Un. Mat. Ital. (7), 11-A (1997), 253-277.
[6] G. Dal Maso - A. Defranceschi, Limits of nonlinear Dirichlet problems in varying domains, Manuscripta Math., 61 (1988), 251-278.
[7] R. Figari - E. Orlandi - A. Teta, The Laplacian in regions with many small obstacles: fluctuation aroun the limit operator, J. Statist. Phys., 41 (1985), 465487.
[8] J. Heinonen - T. Kilpeläinen, A-superharmonic functions and supersolutions of degenerate ellipitic equations, Arkiv för Matematik, 26 (1988), 87-105.
[9] J. Heinonen - T. Kilpeläinen - O. Martio, Nonlinear potential theory of degenerate ellipitic equations, Oxford Mathematical Monographs - Clarendon Press, 1993.
[10] M. Kac, Probabilistic methods in some problems of scattering theory, Rocky Mountain J. Math., 4 (1974), 511-538.
[11] S. Ozawa, Random media and the eigenvalues of the Laplacian, Comm. Math. Phys., 94 (1984), 421-437.
[12] G. C. Papanicolauu - S. R. S. Varadhan, Diffusion in regions with many small holes, Stochastic Differential Systems, Filtering and Control. Proc. of the IFIPWG 7/1 Working Conference (Vilnius, Lithuania, 1978), 190-206. Lectures Notes in Control and Information Sci., 25, Springer-Verlag, Berlin (1980).
[13] W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, 1989.
Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell'Informazione e Matematica Industriale Università degli Studi di Cassino
Via G. Di Biasio, 43-03043 Cassino (FR) - Italy

[^0]il 26 luglio 2001

[^0]: Pervenuta in Redazione

