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The p-Laplacian in Domains with Small Random Holes.

M. BALZANO - T. DURANTE

Sunto. – Attraverso un metodo variazionale, si studia un processo di omogeneizzazione
relativo al p-Laplaciano in regioni perforate in maniera stocastica. Per particolari
distribuzioni aleatorie dei «buchi» si caratterizza pienamente il problema limite.

Summary. – We investigate sequences of nonlinear Dirichlet problems of the form

.
/
´

2div (NDuhNp22 Duh ) 4g in D0Eh

uh�H 1, p
0 (D0Eh ) .

(Ph)

where 2 GpGn and Eh are random subsets of a bounded open set D of R n (nF2).
By means of a variational approach, we study the asymptotic behaviour of solu-
tions of (Ph ), characterizing the limit problem for suitable sequences of random
sets.

1. – Introduction.

A variational framework has been proposed in [2], for studying the asymp-
totic behaviour of sequences of nonlinear Dirichlet problems in randomly per-
forated domains of the form

min
u�H 1, p

0 (D0 Eh )
s

D0 Eh

f (x , Du) dx1 s
D0 Eh

gu dx ,

where (Eh ) is a sequence of closed random subsets of a bounded open set

D’Rn, nF2, 1 EpGn and g�L q (D), with 1

p
1

1

q
41.

In this paper, by using the abstract setting established in [2], we analyze
the p-Laplacian operator

D p u4 div (NDuNp22 Du)
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in domains with randomly distributed small holes, when p takes values in the
interval [2,n]. More specifically, we deal with sequences of problems of the
form

.
/
´

2D p uh 4g in D0Eh

uh �H 1, p
0 (D0Eh ) .

(1.1)

The problem (1.1) is the Euler equation of the minimization problem

min
u�H 1, p

0 (D0 Eh )
s

D0 Eh

NDuNp dx2p s
D0 Eh

gu dx .

The probabilistic problem that we are going to consider can be rigorously
stated as follows. Let b be a nonnegative finite Radon measure on D such that
b�H 21, q (D) and define

E b
p (U) 4

.
`
/
`
´

s s
U3U

db(x) db(y)

Nx2yNn2p

s s
U3U

ln
1

Nx2yN
db(x) db(y)

if 2 GpEn

if n4p

(1.2)

for every open set U of D.
We assume that there exists a strictly monotone and continuous function

f : R 1KR with f (0) 40 such that

E b
p (U) G f ( diam U) b(U)

for every open set U of D. For every h�N, let

xi
h : VKD , 1 G iGh ,

be a family of independent, identically distributed random variables defined
on a probability space (V , S , P), whose distributions are given by

P]v�V : xi
h �B( 4b(B), 1 G iGh

for every Borel set B’D. Furthermore, we consider a sequence of positive
numbers (r h ) such that

l4
.
/
´

lim
hK1Q

hr h
n2p

lim
hK1Q

h(2ln r h )12n

if 2 GpEn

if p4n
(1.3)
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is finite and strictly positive. Finally, we define

Eh 4 0
i41

h

(xi
h 1r h F)

where F is an arbitrary closed subset contained in the unit ball, such that the
interior of F is not empty. We prove that the sequence (uh ) of weak solutions
of (1.1) converges (strongly in L p (D)) in probability to the solution of the re-
laxed Dirichlet problem

.
/
´

2D p U1cl bNUNp22 U4g in D

U�H 1, p
0 (D)

where

c4

.
/
´

minm s
R n

NDuNp dx : u�H 1, p (Rn ), uF1 p-q.e. on Fn
v n21

if 2 GpEn

if p4n ,

l is given by (1.3) and v n21 is the area of the unit sphere of Rn.
In the linear stochastic case p42, the result is well-known. It has been in-

vestigated in [10], [11], [4] by Brownian motion methods, in [12], [7] by Green
function methods, in [1], [3] by a variational method. To the best of our know-
ledge, any result exists on the p-Laplacian operator in randomly perforated
domains with Dirichlet boundary conditions. Also the corresponding deter-
ministic case has been analyzed by many authors; we refer, for a wide bibli-
ografy on the subject, to [5]. Our paper is organized as follows. Section 2 pro-
vides the necessary preliminaries. In Section 3 we give the formulation of the
problem and state the main result (Th. 3.5) of the paper. Section 4 is complete-
ly devoted to the proof of Theorem 3.5; some of the results in this section, in
particular Lemma 4.2, may be of independent interest. In that Lemma we con-
struct an explicit supersolution relative to the p-Laplacian in a perforated
domain.

Aknowledgements. We gratefullly aknowledge many fruitful discussions
with Gianni Dal Maso and Antonio Corbo Esposito.

2. – Notation and preliminaries.

Let D be a bounded open subset of Rn with diameter less than or equal to
one. In all that follows we shall assume nF2. We denote the family of all open
sets U’D by U, the family of all compact sets K’D by K and the family of all
closed sets F’D by F. Moreover, we indicate the s-field of all Borel subsets of
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D by B. For every x�Rn and rD0 we set

Br (x) 4 ]y�Rn : Nx2yNEr(,

and for every Borel set B%Rn we denote its Lebesgue measure by NBN. More-
over, for every set E’Rn and x�Rn we set

x1E4 ]y�Rn : x2y�E( .

The symbol J(I) indicates the number of elements of the set I.
Throughout this paper we shall indicate a real constant such that 2 GpGn

by p. Further, we denote the Sobolev space of all functions in L p (D) with first
order distributional derivatives in L p (D) by H 1, p (D) and the closure of C Q

0 (D)

in H 1, p (D) by H 1, p
0 (D). For all q such that 1

q
1

1

p
41, we denote the dual of

H 1, p
0 (D) by H 21, q (D). For every K� K, we define the p-capacity of K with re-

spect to D by

Cp (K , D) 4 infm s
D

NDWNp dx : W�C0
Q (D), WF1 on Kn .

The definition is extended to the sets U� U by

Cp (U , D) 4 sup ]Cp (K); K’U , K� K(

and to arbitrary sets E’D by

Cp (E , D) 4 inf ]Cp (U); U*E , U� U(.

The basic properties of the variational capacity so defined can be found, for
example, in [9], Th. 2.2. We say that a property P(x) holds for p-quasi every
x�E (or p-quasi-everywhere in E) if

Cp (]x�E : P(x) is not verified(, D) 40

Note that the property of being of p-capacity zero is independent of the open
set D. It can be proven that there exists one and only one u�H 1, p

0 (D) such
that uF1 p-quasi-everywhere on E such that

Cp (E , D) 4s
D

NDuNp dx .

We shall call such a u the p-capacitary potential of E with respect to D. The
next Lemma is needed in order to identify a class of random sets. The proof
can be obtained adapting to the case of the p-capacity that one of Lemma 4.1 in [1].
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LEMMA 2.1. – Let F be a closed set of Rn. For every K� K and h�N, the
real-valued function

(x1 , x2 , R , xh ) KCp
g 0

i41

h

(xi 1F)OK , Dh
is upper semicontinuous in (Rn )h.

A nonnegative countably additive set function m defined on B and with
value in [0 , 1Q] such that m(¯) 40 is called a Borel measure on D. A Borel
measure which assigns finite value to every compact subset of D is called a
Radon measure.

DEFINITION 2.2. – Let b�H 21, q (D). In the following, we need the set func-
tion so defined

E b
p (A) 4

.
`
/
`
´

s s
A3A

db(x) db(y)

Nx2yNn2p

s s
A3A

ln
1

Nx2yN
db(x) db(y)

if 2 GpEn

if n4p

for every A� U.

REMARK 2.3. – Let b�H 21, q (D). Defining the measure s on the Borel fam-
ily of D3D by

s (E) 4

.
`
/
`
´

ss
E

db(x) db(y)

Nx2yNn2p

ss
E

ln
1

Nx2yN
db(x) db(y)

if 2 GpEn

if n4p

we can check (e.g. see Remark 5.1 in [3]) that for every eD0 there exists dD0
such that for every E’D3D with diam EEd we have s (E) Ee.

Let (V , S , P) be a probability space.

DEFINITION 2.4. – A function F : VK F is called a p-random set if the
function

v�VKCp (F(v)OK) �R

is S-measurable for every K� K.
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EXAMPLE 2.5. – In order to identify a class of random sets according to the
previous definition, let us consider a family of vector-random variables, name-
ly a family of S-measurable functions xi

h : VKD, h�N, 1 G iGh.
Let F be a closed set of Rn such that F’B1 (0) and the interior of F is not

empty; for any h�N, 1 G iGh, v�V and rD0, we denote by Fi , h
r (v) the fol-

lowing set

Fi , h
r (v) 4mx�D :

1

r
(x2xi

h (v) �F)n
we note that Fi , h

r (v) ’Br (xi
h (v) ). Finally, we denote by Fh

r the random set

Fh
r 4 0

i41

h

Fi , h
r .

By Lemma 2.1 the sets Fh
r are actually random sets in according to the Defini-

tion 2.4.
For every S-measurable real-valued function X we define the expectation

of X by

E[X] 4s
V

XdP .

Let X , Y be two real-valued functions in L 2 (V). Then the covariance of X and
Y is defined by

Cov [X , Y] 4E[XY]2E[X] E[Y] .

Let (Fh ) be a sequence of p-random sets. We shall need the following set func-
tions defined on U

a 8 (U) 4 lim inf
hKQ

E[Cp (Fh OU) ](2.1)

a 9 (U) 4 lim sup
hKQ

E[Cp (Fh OU) ](2.2)

Next we consider the inner regularizations a 28 and a 29 of the set functions a 8

and a 9, defined for every U� U by

.
/
´

a 28 (U) 4 sup ]a 8 (V) : V� U, V%%U(,

a 29 (U) 4 sup ]a 9 (V) : V� U, V%%U(.
(2.3)

Then we extend the definitions of a 28 and a 29 to the Borel sets B� B by:

.
/
´

a 28 (B) 4 inf ]a 28 (U) : U� U, U*B(,

a 29 (B) 4 inf ]a 29 (U) : U� U, U*B(.
(2.4)
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Finally, we denote by n 8 and n 9 the least superadditive set functions
on B greater than or equal to a 28 and a 29 , respectively.

3. – Formulation of the problem and statement of the main result.

We are interested in analyzing the asymptotic behaviour of sequences of
quasi-linear problems in randomly perforated domains of the form

.
/
´

2D p uh 4g in D0Eh

uh �H 1, p
0 (D0Eh ) .

(3.1)

where Eh is a sequence of random subsets of D and g�L q (D) with 1

p
1

1

q
41

and D p is the p-Laplacian operator, that is

D p u4 div (NDuNp22 Du).

Problem (3.1) is the Euler equation of the random minimization problem

min
u�H 1, p

0 (D0 Eh )
s

D0 Eh

NDuNp dx2p s
D0 Eh

gu dx ,(3.2)

which is equivalent to the following problem

minm s
D

NDuNp 2ps
D

gu dx : u�H 1, p
0 (D) , u40 p-q.e. on Ehn .(3.3)

REMARK 3.1. – For every v�V there exists a unique uh (v) �H 1, p
0 (D),

uh (v) 40 p-q.e. on Eh solution of problem (3.3).
Let b be a Borel measure on B. For a weak solution of the problem

.
/
´

2D p U1bNUNp22 U4g in D

U�H 1, p
0 (D).

(3.4)

we mean the unique solution of the minimum problem

min
u�H 1, p

0 (D)
s

D

NDuNp dx1s
D

NuNp db(x)2ps
D

gu dx .(3.5)

Problems of this type have been extensively studied in [6].
In what follows, we want to study the behaviour of the sequence (uh (v) ) of

solutions of (3.3) as hK1Q. In particular we would like to identify the limit
problem of the sequence of random minimization problems (3.3).

THEOREM 3.2. – Let (Eh ) be a sequence of p-random sets, with 2 GpGn.
Let a 8 and a 9 be the set functions defined in (2.1), (2.2), and let n 8 and n 9 be
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the least superadditive set functions on B greater than or equal to a 28 and
a 29 , i.e. the set functions defined in (2.3) and (2.4).

Assume that

n 8 (B) 4n 9 (B) EQ for every B� Bi)

and denote by n(B) the common value of n 8 (B) and n 9 (B) for every B� B; fur-
ther, there exist hD0, a continuous function j : R3RKR with j(0 , 0 ) 40
and a Radon measure b on B such that

ii) lim sup
hK1Q

NCov [Cp (EhOU1), Cp (EhOU2)]NGj(diam U1 , diam U2) b(U1) b(U2)

for every U1 , U2 � U with U1 OU2 4¯ and diam (U1 ) Eh , diam (U2 ) Eh.
Let

mh (v) 4 min
u�H 1, p

0 (D0 Eh (v) )
s

D0 Eh (v)

NDuNp dx2p s
D0 Eh (v)

gu dx(3.6)

for any g�L q (D), with 1

p
1

1

q
41 and v�V.

Then n is finite Borel measure on B and (mh ) converges in probability, as
hK1Q, to

m0 4 min
u�H 1, p

0 (D)
s

D

NDuNp dx1s
D

NuNp dn2ps
D

gu dx ,(3.7)

that is, for any eD0,

lim
hK1Q

P]v�V , Nmh (v)2m0 NDe( 40 .

Moreover, if Uh (v) is the unique minimum point in H 1, p
0 (D0Eh (v) ) of prob-

lem (3.6) for every v�V , and U0 is the unique minimum point in H 1, p
0 (D) of

problem (3.5), we also have, for any eD0,

lim
hKQ

P]v�V : VUh (v)2U0 VL p (D) De( 40 .

PROOF. – The proof can be deduced,by means minor changes, from Proposi-
tion 3.3, Theorem 4.10 and Corollary 4.11 in [2]. An inspection of those proofs,
in particular, that one of Proposition 3.3, shows that the more general assump-
tion (ii) above is sufficient to get the result.

REMARK. – 3.3. – We could interpret the assumption (ii) as a sort of
«asymptotic weak correlation» of the random variables Cp (Eh OU1 ) and
Cp (Eh OU2 ) on disjoint sets U1 , U2 in U.

Our aim is to characterize, by applying the previous result, a class of prob-
lems, concerning the p-Laplacian operator in randomly perforated domains,
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for which the measure appearing in the limit problem can be explicitely
computed.

ASSUMPTIONS 3.4. – Let us assume the following hypotheses:

i1 ) let b�H 21, q (D) such that b(D) 41. Furthermore, there exists a con-
tinuous function f : R 1KR with f (0) 40, strictly monotone in a neighbor-
hood O of t=0, such that

E b
p (U) G f ( diam U) b(U)

for every U� U;

i2 ) for every h�N we set Ih 41, R , h and we consider h measurable
functions xi

h : VKD , i�Ih , such that (xi
h )i�Ih

is a family of independent, iden-
tically distributed random variables with probability distribution b , that is

P]v�V : xi
h �B( 4b(B), i�Ih

for every Borel set B� B;

i3 ) let r h be a sequence of positive numbers such that 0 Er h E1 and the
limit

l4
.
/
´

lim
hK1Q

hr h
n2p

lim
hK1Q

h(2ln r h )12n

if 2 GpEn

if p4n

is finite and strictly positive.

REMARK 3.5. – In this remark some significant examples of measures satis-
fying hypothesis i1 ) of Assumptions 3.4 are given.

(a) Let M be a smooth, compact manifold in D (with or without boundary),
whose dimension is equal to n21. We denote the (n21)-dimensional
Hausdorff measure by H n21. Let us consider a non-negative function

V�L r (M , H n21 ), such that s
M

V(x) d H n21 (x)41, with rD
n21

p21
and 2GpEn.

Let us define the measure on D

b(B) 4 s
BOM

V(x) d H n21 (x) ,

for every B� B.
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If we set t4diam U , with U� U, we have

Ep
b (U)4s s

U3U

db(x) db(y)

Nx2yNn2p
G

G s
UOM

u s
B(x , t)OM

V(y)

Nx2yNn2p
d H n21 (y)v V(x) d H n21 (x) .

Moreover, by Hölder’s inequality, we obtain

s
B(x , t)OM

V(y)

Nx2yNn2p
d H n21 (y) G

GVVVL r (M , H n21 )y s
B(x , t)OM

1

Nx2yN
(n2p)r

r21

d H n21 (y)z
r21

r

.

By using the elementary formula

s
B(x , t)OM

1

Nx2yNa
d H n21 (y) 4

4as
0

t

H n21 (B(x , r)OM)

ra11
dr1

H n21 (B(x , r)OM)

t a

with a4
(n2p)r

r21
, and by noticing that, for any x�M and rD0,

H n21 (B(x , r)OM) GCr n21

where C is a constant independent of x and r , it is easy to get

f (t) 4k kC
n21

n2a21
l

r21

r

t
(n2a21) r21

r

where k4VVVL r (M , H n21 ) .

(b) Consider a measure defined, for every B� B, as

b(B) 4s
B

V(x) dx ,

where V(x) is a non-negative function such that s
D

V(x) dx41.

If V(x) is a continuous function of compact support in D , an easy computa-
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tion gives

f (t) 4

.
`
/
`
´

k
v n21

p
t p

k
v n21

n
t ng 1

n
2 ln th

if 2 GpEn

if p4n .

where k4 max ]V(x) : x�D(.

If V�L r (D), with rD
n

p
in the case 2 GpEn or rD1 in the case p4n ,

with a computation similar to that developed in (a), we obtain

f (t) 4

.
`
/
`
´

kgv n21
r21

rp2n
h

r21

r

t
rp2n

r

kv n21

r21

r u s
0

t

gln
1

r
h

r

r21

r n21 drv
r21

r

if 2 GpEn

if p4n ,

where k4VVVL r (D).
From now on we shall consider the sequence of random sets (Fh ) defined in

Example 2.5, with r4r h , that is, by setting

Fi
h (v) 4mx�D :

1

r h

(x2xi
h (v) �F)n

we define

Fh (v) 4 0
i�Ih

Fi
h (v) .(3.8)

Finally, denoting by v n21 the area of the unit sphere of Rn , we set

(3.9) c4

.
/
´

minm s
R n

NDuNp dx : u�H 1, p (Rn ), uF1 p-q.e. on Fn,

v n21 ,

if 2GpEn

if p4n.

The next theorem is the main result of the paper.

THEOREM 3.6. – Let (Eh ) be the sequence of random sets, as defined in (3.8).
Assume that the hypotheses (i1 ), (i2 ) and (i3 ) hold. Moreover, suppose that
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2 GpGn. For every h�N and v�V , let Uh (v) be the weak solution of the
problem

.
/
´

2D p Uh 4g in D0Eh (v)

Uh �H 1, p
0 (D0Eh (v) ),

where g�L q (D) and 1

p
1

1

q
41. Then, for every eD0,

lim
hKQ

P]v�V : VUh (v)2U0 VL p (D) De( 40

where U0 is the unique weak solution of the relaxed Dirichlet problem

.
/
´

2D p U1clbNUNp22 U4g in D

U�H 1, p
0 (D),

where c is the constant defined in (3.9).

4. – Proof of the main result.

By Theorem 3.2, Theorem 3.6 is an immediate consequence of the following
proposition.

PROPOSITION 4.1. – Let (Fh ) be the sequence of random sets, as defined in
(3.8). Let a 8 and a 9 be the set functions defined in (2.1), (2.2), and let n 8 and n 9

be the least superadditive set functions on B greater than or equal to a 28 and
a 29 , i.e. the set functions defined in (2.3) and (2.4). If hypotheses (i1 ), (i2 ) and
(i3 ) are satisfied and 2 GpGn , we have:

n 8 (B) 4n 9 (B) 4cl b(B) for every B� B ,t1)

where c is defined in (3.9).
Moreover, there exist hD0, a continuous function j : R3RKR with

j(0 , 0 ) 40 and a Radon measure b 1 on B such that

t2 ) lim sup
hK1Q

NCov [Cp (Eh OU1 ), Cp (Eh OU2 ) ]NG

Gj( diam U1 , diam U2 ) b 1 (U1 ) b 1 (U2 )

for every U1 , U2 � U with U1 OU2 4¯ and diam (U1 ) Eh , diam (U2 ) Eh.

The next two lemmas will be essential in the proof of Proposition 4.1. In the
first one, we identify a suitable supersolution of the p-Laplacian (for a defini-
tion see, for example, [8]) in perforated domains; in the second one, we give a
result which allows us to estimate from below the p-capacity of the union of a
family (Ei )i�I by means of the sum of p-capacities of the sets Ei .
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LEMMA 4.2. – Let (Ei )i�I be a family of closed subsets of D and let
E4 0

i�I
Ei . Assume that there exist a finite family (xi )i�I of points in D and a

real number r such that 0 ErE1 and

Ei ’Br (xi ) ’D for i�I .

Further, for every x�Rn and i�I , set

zi (x) 4

.
/
´

g r

Nx2xiN
h

n2p

p21

R1

(2ln r)21 ln (Nx2xiN)21 R1

if 2 GpEn

if p4n .

Finally, let

z(x) 4 !
i�I

zi (x).

Then z�H 1, p
loc (Rn 0E), zF0 on ¯D , zF1 on E, and it satisfies the following

condition

s
D0 E

NDzNp22 Dz DW dxF0(4.1)

for every non-negative W�C0
Q (D0E).

PROOF. – We consider the case 2 GpEn. The case p4n can be proven in
the same way. It is easy to see that the hardest part of the proof is to show that
the condition (4.1) holds. Let us set

g4
n2p

p21
.

First, we establish that, for every eD0,

div k(NDz(x)N2 1e)
p22

2 Dz(x)lG0,(4.2)

for all x�Rn 0E.
Let us define, for every x�Rn 0E and eD0, the function

ae (x) 4 (NDz(x)N2 1e)
p22

2 .

Note that

div (ae Dz) 4 aDae , Dzb1ae Dz .(4.3)

where a ,b is the scalar product in Rn , and D is the Laplace operator in Rn.
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A simple computation gives

aDae , Dzb 4 (p22)
ae

NDzN2 1e
!

i , h41

n
¯z

¯xi

¯z

¯xh

¯2 z

¯xi ¯xh

.

Moreover, we have that

4

G

!
i , h41

n
¯z

¯xi

¯z

¯xh

¯2 z

¯xi ¯xh

rg g(g12) o!
j�I

Nx2xjN
2(g14) (x2xj )7 (x2xj ) Dz , Dzp

2gr n2p!
j�I

NDzN2

Nx2xjN
g12

rg g(g11) NDzN2!
j�I

Nx2xj N
2(g12) .

Therefore,

aDae , DzbG (p22) g(g11) ae

NDzN2

NDzN2 1e
!
j�I

Nx2xj N
2(g12)

G (p22) g(g11) ae!
j�I

Nx2xj N
2(g12) .

(4.4)

It is also straightforward to show that

Dz4rg g(g122n) !
j�I

Nx2xj N
2(g12) .(4.5)

Thus, by (4.3), (4.4) and (4.5), we get

div k(NDz(x)N2 1e)
p22

2 Dz(x)lG

grg(NDz(x)N2 1e))
p22

2 !
j�I

Nx2xj N
2(g12) [ (g122n)1 (p22)(g11) ].

(4.6)

By applying the definition of g , we see that the quantity in bracket on the
right-hand side of (4.6) is equal to zero and so (4.2) is proven.

Now we are in a position to prove condition (4.1). Indeed, from (4.2), inte-
grating by part, we obtain

s
D0 E

(NDzN2 1e)
p22

2 Dz DW dxF0(4.7)

for every non-negative W�C0
Q (D0E).
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Finally, by taking the limit for eK0 in (4.7) and by applying Lebesgue’s
dominated convergence theorem, we get (4.1) and the proof is accom-
plished.

LEMMA 4.3. – Let (Ei )i�I be a family of closed subsets of D and let
E4 0

i�I
Ei . Assume that there exist a finite family (xi )i�I of points in D and

two real positive numbers r and R such that

0 ErERE1;(i)

Ei ’Br (xi ) ’BR (xi ) ’D for i�I ;(ii)

Nxi 2xj NF2R for ic j .(iii)

Define

r4
.
/
´

r
1

p21

e 2( ln 1

r
)

1

n21

if 2 GpEn

if p4n .

Let us set

d4

.
/
´

2g r

R
hn2p

2(2ln r)12n ln R 21

if 2 GpEn

if p4n .

(4.8)

If, in addition, we suppose

.
`
/
`
´

!
ic j

r n2p

(Nxi 2xj N2R)n2p
E

d

2

(2ln r)12n!
ic j

ln (Nxi 2xj N2R)21 E
d

2

if 2 GpEn

if p4n .

(iv)

then, for dE1,

Cp (E) F (12d)p !
i�I

Cp (Ei , BR (xi ) ).

PROOF. – Let u�H0
1, p (D) be the capacitary potential of E with respect to

D. We claim that the proof is achieved, whenever uGd on ¯BR (xi ) for every
i�I. Indeed, if this is the case, let us define the function v4 (12d)21 (u2

d)1. By definition of capacitary potential, it is easy to see that v�H0
1, p (D),

vF1 p-q.e. on E and v40 p-q.e. on ¯BR (xi ), for every i�I. Since (ii) holds, we
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have

Cp (Ei , BR (xi ) ) G s
BR (xi )

NDvNp dx

for every i�I. Hence,

s
D

NDvNp dxF !
i�I

s
BR (xi )

NDvNp dxF !
i�I

Cp (Ei , BR (xi ) ) .(4.9)

By definition of v , we have also

s
D

NDvNp dx4
1

(12d)p
s

D

ND(u2d)1 Np dx

G
1

(12d)p
s

D

NDvNp dx4
1

(12d)p
Cp (E).

(4.10)

We obtain the assertion by (4.9) and (4.10). Now, it remains to prove that uGd
on ¯BR (xi ) for every i�I. We shall give the details only for the case 2 EpEn.
The case p4n is obtained in the same way. Consider the function z(x) defined
in Lemma 4.2.

The function z is a supersolution relative to the p-Laplacian operator in
D0E (see Remark 4.3), such that zF0 on ¯D and zF1 on E. Since the capaci-
tary potential u is a weak solution in D0E relative to the p-Laplacian, that is

s
D0 E

NDuNp22 Du DW dx40

for every W�C0
Q (D0E), we can apply the comparison principle for supersolu-

tions relative to the p-Laplacian in D0E (see [9] Lemma 3.18), which
gives

uGz a.e. in D0E .(4.11)

Finally, it is easy to see that, for every i�I , zGd on ¯BR (xi ). For a fixed i�I ,
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let y�¯BR (xi ). By definition of function z and by assumption (iv) we
obtain

z(y)G!
j�I

r n2p

(Ny2xj N)
n2p

p21

Gg r

R
hn2p

1!
ic j

r n2p

(Ny2xj N)
n2p

p21

G
d

2
1!

ic j

r n2p

(Ny2xj N)n2p

G
d

2
1!

ic j

r n2p

(Nxi 2xj N2R)n2p
Gd .

This inequality, together with (4.11), shows that the assumption uGd on
¯BR (xi ), for every i�I , is always satisfied and so the proof is complete.

For our purposes we also need a suitable probabilistic result. In order to
state it, we have to introduce some more notation.

Let (j i )i�I be a finite family of independent, identically distributed random
variables with values in D , and with distribution given by

P]v�V : j i (v) �B( 4b(B) for every B� B ,

where b�H 21, q (D).
For 0 ErERE1 and for any subset Z’D , let us introduce the following

random sets of indices

N(Z)4]i�I : j i�Z( ,

I(Z)4]i�I : BR(j i)%Z, Nj i2j jNF2R, (j�I, jci( ,

J(Z)4]i�I : BR(j i)%Z, )j�I, jci, Nj i2j jNG2R( ,

and for every hD0

Ih (Z) 4

.
`
/
`
´

{i�I(Z) : !
ic j

r n2p

(Nj i 2j j N2R)n2p
E

h

2
}

mi�I(Z) : (2ln r)12n!
ic j

ln (Nj i 2j j N2R)21E
h

2
n ,

if 2 GpEn

if p4n ;

and finally

Jh (Z) 4I(Z)0Ih (Z) .

We are now in a position to state the Lemma announced above. Its proof
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can be obtained by adapting to our case the proofs of (i) and (ii) of
Lemma 5.1 in [3].

LEMMA 4.4. – For any 0 ErERE1, let d be the positive real number de-
fined in (4.8) of Lemma 4.3. Then, for every A� U, the expectation of the ran-
dom variable J(Jd (A) ) satisfies the inequality

E[J(Jd (A) ) ] G

.
`
/
`
´

g 2

d
h (2r)n2p (J(I) )2 Eb

p (A)

g 2

d
h (2ln r)12n (J(I) )2 Eb

p (A)

if 2 GpEn

if p4n ,

(i)

the expectation of the random variable J(J(A) ) satisfies the inequality

E[J(J(A) ) ] G
.
/
´

(2R)n2p (J(I) )2 Eb
p (AA)

(2ln 2R)12n (J(I) )2 Eb
p (AA)

if 2 GpEn

if p4n ,
(ii)

where Eb
p is the set function as in Definition 2.2 and AA 4 ]y�D :

dist (y , A) E2R(, with RE
1

2
.

PROOF OF PROPOSITION 4.1. – To get the proof, we can apply exactly the
same scheme of the proof of Proposition 5.1 in [3]. For the readers conve-
nience, we repeat the basic steps in our case. We shall prove the proposition
when 2 GpEn. The case n4p , can be adapted in a straightforward
way.

For 0 EdE1 and h�N , we choose Rh D0 such that r h ERh and

d42g rh

Rh
hn2p

,

where rh is defined as in Lemmma 4.3 (in the definition of the quantity r put
r4r h). For every U� U and h�N , let us introduce the following families of
random indices

Nh (U)

Ih (U)

Jh (U)

4 ]i�I : j i �U ( ,

4 ]i�I : BRh
(j i ) %U , Nj i 2j jNF2Rh , (j�Ih , jc i( ,

4 ]i�Ih : BRh
(j i ) %U , )j�Ih , jc i , Nj i 2j jNG2Rh ( ,

and

I h
d (U) 4{i�Ih (U) : !

ic j

rh
n2p

(Nj i 2j jN2Rh )n2p
E

d

2
} .
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Furthermore, we set

Jd
h (U) 4Ih (U)0Id

h (U) .

and

U×h 4 ]y�U : dist (y , ¯U) DRh ( .

It is not difficult to see that

Ih (U) 4Nh (U×h )0Jh (U)

Id
h (U) 4 (Nh (U×h )0Jh (U) )0Jd

h (U) .

Denote by Fh8 the random set

Fh8 (v) 4 0
i�Id

h (U)
mx�D :

1

r h

(x2xi
h (v) �F)n .

By Lemma 4.3, we have that , for every v�V ,

(4.12) Cp (Fh (v)OU) FCp (Fh8 (v) ) F (12d)p !
i�Id

h (U)
Cp (Fi

h (v), BRh
(xi

h ) ) F

(12pd)(hr h
n2p ) Cp (F , BRh /r h

(0) ) y JNh (U×h )

h
2

JJh (U)

h
2

JJd
h (U)

h
z .

On the other hand, by using the elementary properties of the capacity, we im-
mediately get that, for every U� U,

(4.13) Cp (Fh (v)OU) G !
i�Nh (U

A
h )

Cp (Fi
h (v), BRh

(xi
h ) 4

(hr h
n2p ) Cp (F , BRh /r h

(0) )y JNh (UAh )

h
z

where we have set UAh 4 ]y�D : dist (x , U) E2Rh (.

PROOF OF (t1 ). – By Lemma 4.4 we deduce that

lim sup
hK1Q

E[J(Jd (U) ) ]

h
G

2n2p11

d
l Eb

p (U)(4.14)

lim sup
hK1Q

E[J(Jh (U) ) ]

h
G

2n2p11

d
l Eb

p (U) .(4.15)
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Further, it is not difficult to check that

b(U) 4

.
`
/
`
´

lim
hK1Q

E[J(Nh (U×h ) ) ]

h

lim
hK1Q

E[J(Nh (UAh ) ) ]

h

(4.16)

for every U� U with b(¯U) 40.
Noticing that

lim
RK1Q

Cp (F , BR (0) ) 4c ,

where c is the constant defined in (3.9), we get, from (2.4), (4.13) and (4.14),

a 29 (B) Gcl b(B)(4.17)

for every B� B; and from (2.4), (4.12), (4.14), (4.15) and (4.16) it follows
that

a 28 (B) F (12d)p cl kb(B)2
2n2p12

d
ls (B3B)l(4.18)

for every B� B, where s is the measure defined in Remark 2.3. From (4.17) we
have

n 9 (B) Gcl b(B)(4.19)

for every B� B.
On the other hand, we also have

n 8 (B) F (12d)p cl b(B)(4.20)

for every B� B. Indeed, let us fix B� B; for arbitrary 0 EhE1, take a Borel
partition (Bj )j�J of B with diameter of (Bj ) less than h. Since n 8 is superaddi-
tive, we have

n 8 (B) F!
i�J

n 8 (Bj ) F (12d)p clgb(B)2
2n2p12

d
!
j�J

s (Bj 3Bj )h
4 (12d)p club(B)2

2n2p12

d
!
j�J

s s
Bj3Bj

b(dx) b(dy)

Nx2yNn2p v

F (12d)p club(B)2
2n2p12

d
s s

Dh

b(dx) b(dy)

Nx2yNn2p v

4 (12d)p clgb(B)2
2n2p12

d
s (Dh )h ,

where s is the measure defined in Remark 2.3 and Dh4 ](x , y) �D3D : Nx2
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yNEh(. Notice that Bj 3Bj %Dh , for every j�J and that the diameter of Dh is
less than h. Since b�H 21, q (D), by Remark 2.3 we find that

lim
hK0

s (Dh ) 40

and we get (4.20); finally, letting dK0, we obtain

n 8 (B) Fcl b(B) Fn 9 (B)

for every B� B. So, (t1 ) is proved, because n 9Fn 8.

PROOF OF (t2 ). – We observe that, for every U� U, by Strong Law of Large
Numbers, we have

lim
hK1Q

J(Nh (U×h ) )

h
4b(U)(4.21)

for a.e. v�V , and

lim
hK1Q

J(Nh (U×h ) )

h
4b(U)(4.22)

in L 1 (V).
Since the sequence of random variables (h 21

J(Nh (U×h ) ) )h�N is equibound-
ed, we also have

lim
hK1Q

J(Nh (U×h ) )

h
4b(U)(4.23)

in L 2 (V).
By (4.12), we obtain

lim inf
hK1Q

E[Cp (Fh OU , D) Cp (Fh OV , D) ](4.24)

F [ (122pd) cl]2 3 lim inf
hK1Q

{E y J(Nh (U×h ) )

h

J(Nh (V×h ) )

h
z

2E y J(Nh (U×h ) )

h

J(J h
d (V×) )

h
z2E y J(Nh (V×h ) )

h

J(J h
d (U×) )

h
z

2E y J(Nh (U×h ) )

h

J(Jh (V×) )

h
z2E y J(Nh (V×h ) )

h

J(Jh (U×) )

h
zn

for any pair U , V� U with UOV 4¯. From (4.23) we obtain

lim
hK1Q

E y J(Nh (U×h ) )

h

J(Nh (V×h ) )

h
z4b(U)b(V)(4.25)
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moreover, by Lemma 4.4 and (4.21) we have

E y J(Nh (U×h ) )

h

J(J h
d (V×) )

h
zG

2n2p11

d
lb(U) Ep

b (V) ,(4.26)

E y J(Nh (V×h ) )

h

J(J h
d (U×) )

h
zG

2n2p11

d
lb(V) Ep

b (U) ,(4.27)

E y J(Nh (U×h ) )

h

J(Jh (V×) )

h
zG

2n2p11

d
lb(U) Ep

b (V) ,(4.28)

E y J(Nh (V×h ) )

h

J(Jh (U×) )

h
zG

2n2p11

d
lb(V) Ep

b (U) ,(4.29)

for any pair U , V� U. Then (4.24), (4.25), (4.26), (4.27), (4.28) and (4.29)
give

lim inf
hK1Q

E [Cp (Fh OU , D) Cp (Fh OV , D) ](4.30)

F [ (12pd) cl]2kb(U) b(V)2
2n2p12

d
lb(U) Ep

b (V)2
2n2p12

d
lb(V) Ep

b (U)l
for any pair U , V� U with UOV 4¯.

By (4.13) and (4.23) we also deduce

lim sup
hK1Q

E[Cp (Fh OU , D) Cp (Fh OV , D) ] G [cl]2 b(U) b(V)(4.31)

for any pair U , V� U with b(¯U) 4b(¯V) 40. Estimates similar to (4.30) and
(4.31) for the upper and lower limit of the sequence (E[Cp (Fh O
U , D) ]E[Cp (Fh OV , D) ] )h�N can be obtained in the same way. Therefore, we
get for any pair U , V� U with UOV 4¯

lim sup
hK1Q

NCov [Cp (Fh OU , D), Cp (Fh OV , D) ]N

G (cl)2 b(U) b(V)2 [ (12pd) cl]2 3

3kb(U)b(V)2 l
2n2p12

d
b(U) Ep

b (V)2 l
2n2p12

d
b(V) Ep

b (U)l .

Moreover, by i1 ) of Assumptions 3.4 and by taking

d4 max (kf ( diam U) , kf ( diam V))
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we obtain

lim sup
hK1Q

NCov [Cp (Fh OU , D), Cp (Fh OV , D) ]N

Gb(U) b(V)(cl)2k2pd1
2n2p12

d
l( f ( diam U)1 f ( diam V) )l

G (cl)2 b(U) b(V)k2p max (kf ( diam U) , kf ( diam V))1

12n2p12 l(kf ( diam U)1kf ( diam V))l

for every U , V� U with f ( diam U) E1 and f ( diam V) E1. Finally, let

t0 4 sup ]t� O : f (t) E1( .

So, for h4 f 21 (t0 ),

j(x , y) 4 k2p max (kf (x) , kf (y))12n2p12 l(kf (x)1kf (y)l

and b 1 4cl b , the assertion t2 of Proposition 4.1 follows and the proof is
accomplished.
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