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Bollettino U. M. I.
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On the Notion of Potential for Mappings between Linear Spaces.
A Generalized Version of the Poincaré Lemma.

TULLIO VALENT

Sunto. – Si indica un approccio alla teoria delle forme differenziali lineari in uno spa-
zio vettoriale X senza richiedere una struttura di spazio di Banach su X. Nelle defi-
nizioni e negli enunciati intervengono (implicitamente) solo delle topologie intrin-
seche (parzialmente vettoriali) di X. Successivamente si considera una funzione
F : U’XKY , con X , Y spazi vettoriali reali ed U sottoinsieme radiale di X. Dopo
aver mostrato un teorema di rappresentazione delle forme bilineari aQ , Qb su X3Y
tali che ax , yb 40 (x�X ¨ y40, si osserva come l’assegnazione di una tale for-
ma bilineare permetta di associare, in una maniera naturale, alla funzione F una
forma differenziale, e ciò conduce spontaneamente alla definizione di «potenziali-
tà» di F. Questa definizione ha interesse soprattutto quando F «descrive» un pro-
blema al contorno e, o, ai valori iniziali; nella sezione 6 si espone un esempio tratto
dalla teoria dell’elasticità finita.

Summary. – An approach to the theory of linear differential forms in a radial subset of
an (arbitrary) real linear space X without a Banach structure is proposed. Only in-
trinsic (partially linear) topologies on X are (implicitly) involved in the definitions
and statements. Then a mapping F : U’XKY , with X , Y real linear spaces and U
a radial subset of X , is considered. After showing a representation theorem of those
bilinear forms aQ , Qb on X3Y for which ax , yb 40 (x�X ¨ y40, we observe that
the assignment of such a bilinear form allows to associate (in a natural way) a lin-
ear differential form to the mapping F ; this fact spontaneously leads us to a defini-
tion of potentialness for F. This definition has a special interest in the case when
the mapping F describes a boundary and, or, initial value problem; a simple
example, originated from finite elasticity, is explained in sect. 6.

1. – Introduction.

In the first part of this article we deal with linear differential forms in a ra-
dial subset of an (arbitrary) real linear space X without a Banach structure .
(Note that, in any linear topological space, every open set is radial). Only in-
trinsic (partially linear) topologies of the linear space X will be (implicitly) in-
volved in the definitions and statements. These topologies (essentially, the ra-
dial topology of X and the n-radial topology of X) are introduced in section 2:
they have an intrinsic character, in the sense that they are determined by the
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linear structure of X. It seemed to us that (in our algebraic approach) the right
notion of locally exactness of a linear differential form v : U’XKX * would
be referred to the 2-radial topology of X; actually, one can prove that if v (sup-
posed to be weakly of class C 1 on the planes) is locally exact with respect to the
2-radial topology of X then it is closed (see Theorem 3.1). The main result in
section 3 is Theorem 3.2: it is a generalized version of the Poincaré Lemma. A
similar theorem was proved in Vainberg [5] (Th.5.1) within Banach spaces. (In
the Vainberg’s theorem U is an open subset of a Banach space, while here U is
only a radial subset of the linear space X).

In the second part of the paper we first prove that for any bilinear form
(x , y) O ax , yb on X3Y , with X , Y real linear spaces, such that

ax , yb 40 (x�X ¨ y40(1.1)

there are an inner product Q on Y and a linear map t : XKY such that

ax , yb 4t(x) Qy ((x , y) �X3Y .

In other words, any bilinear form on X3Y satisfying (1.1) can be described
through an inner product on Y and a linear map from X into Y. Obviously, the
roles of X and Y can be exchanged.

Then, we observe that the assignment of a bilinear form aQ , Qb on X3Y sat-
isfying (1.1) allows to associate (in a natural way) to any mapping F : U’XK

Y , with U a radial subset of X , a linear differential form FA : U’XKX *. Thus
it is spontaneous to say that the mapping F admits a potential if there is a bi-
linear form aQ , Qb on X3Y satisfying (1.1) such that the linear differential form
FA associated with F through aQ , Qb is exact.

The fact that the linear differential form FA associated with the mapping F
through aQ , Qb is closed expresses the «symmetry» of the Gateaux derivative of
F with respect to the bilinear form aQ , Qb. We recall that the problem of search-
ing for (and constructing) a nondegenerated bilinear form on X3Y with re-
spect to which such symmetry holds has been deeply studied, in particular, by
Magri [1], Tonti [3], [4], Telega [2].

The mapping F can «describe» a boundary and, or, initial value problem, as
it occurs in the example explained in section 6 and originated from elasticity;
in this case the linear map t can have the meaning of a «trace operator».

2. – Some (partially linear) intrinsic topologies of the linear spaces.

In this section we emphasize some intrinsic topologies of an arbitrary real
linear space X. Such topologies are only partially compatible with the algebra-
ic structure of X. In order to introduce them we need a few definitions. Let U
be a subset of X. We say that U is radial at x (�X) if for each j�X there is a
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number l x , jD0 such that x1lj�U for all real l with NlNGl x , j (this means
that U contains a line segment through x in each direction). When U is radial
at every one of its points we shall say that U is radial. Moreover, for any inte-
ger n with 1 GnGdim X, we say that U is n-radial at x (�X) if for each
(j 1 , R , j n ) �X there is a number l x , j 1 , R , j n

D0 such that x1l 1 j 1 1R1

l n j n �U for all l 1 R , l n �R with Nl 1N , R , Nl nNGl x , j 1 , R , j n
. The set U will

be called n-radial if it is n-radial at every one of its points. It is evident that
the set of all radial subsets of X is a topology on X: we shall say that it is the
radial topology of X. More in general, for each n, with 1 GnGdim X , the set
of all n-radial subsets of X is a topology on X: it will be called the n-radial
topology of X. Let us denote by R(x) the set of those subsets of X that are ra-
dial at x; clearly, R(x) is a filter on X , and, for any x0 , x�X ,

R(x0 1x) 4x0 1 R(x) .

It follows that for the radial topology of X , the translations xOxo 1x are con-
tinuous, and hence they are omeomorphisms. It is also evident that, for the ra-
dial topology, the scalar multiplication is separately continuous (in each of two
variables). Thus, we can conclude that, for the radial topology, vector addition
and scalar multiplication are separately continuous.

We now prove that, if R is a topology on X for which (for each x0 �X) the
mappings xOx0 1x, lOlx0 are continuous (from X into X, and from R into
X, respectively), then R is contained in the radial topology of X. To do this let
us denote by F(x) the filter of neighborhoods of x for the topology R , and ob-
serve that if for R the mapping xOx0 1x is continuous then F(x0 ) 4x0 1 F(0).
Therefore, in order to prove that R is contained in the radial topology of X it
suffices to show that each element U of F(0) contains a radial subset V of X
with 0 �V . Accordingly, we fix U� F(0) and consider an open element V of
F 0) contained in U. Since V� F(x) (x�V we have V2x� F(0) (x�V . If for
the topology R on X the mappings lOlx , x�X , are continuous at 0 then each
element of F(0) is radial at 0 , and so, for any x�V the set V2x is radial at 0 ,
namely V is radial (at any x�V) and 0 �V .

Thus the following characterizations of the radial topology of X have been
proved.

REMARK 2.1. – The radial topology of X is the strongest topology on X for
which, for each x0 �X , the mappings xOx0 1x , lOlx0 are continuous.

REMARK 2.2. – The radial topology of X is the strongest topology on X for
which addition and scalar multiplication are separately continuous (in
each of the two variables).
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Moreover, it is easy to realize that the following further characterizations
of the radial topology hold.

REMARK 2.3. – The radial topology of X is the strongest topology on X for
which all affine curves in X (i.e., affine functions from R into X) are
continuous.

REMARK 2.4. – The radial topology of X is the strongest topology on X that
induces the usual (Hausdorff, linear) topology over each one-dimensional
linear submanifold of X.

Using analogous arguments one can prove the following characterizations
of the n-radial topology of X , (1 GnGdim X).

REMARK 2.5. – The n-radial topology of X is the strongest topology on X for
which, for each (x0 , x1 , R , xn ) �X 11n , the mappings

xOx0 1x , (l 1 , R , l n ) Ol 1 x1 1R1l n xn

are continuous.

REMARK 2.6. – The n-radial topology of X is the strongest topology on X
that induces the usual (Hausdorff, linear) topology over each linear subman-
ifold of X with dimension Gn.

3. – Linear differential forms in linear spaces.

Let X be a real linear space, and let U be a radial subset of X.
We are especially interested in the case when X is an infinite dimensional
linear space; however, we suppose that the dimension of X is F2. We
consider a linear differential form

v : UKX *

defined in U. (Of course, X * denotes the dual of the linear space X).
We shall say that v is exact if there is a mapping f : UKR such that
for every (x , j) �U3X the limit

¯j f (x) »4 lim
R�lK0

1

l
( f (x1lj)2 f (x) )

exists in R and

¯j f (x) 4v(x)(j) .
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Moreover, v will be said to be locally exact if for each x�U there is
a 2-radial subset Ux of U with x�Ux and such that v NUx

is exact.
If, for (x , j) �U3X , the limit

lim
R�lK0

1

l
(v(x1lj)2v(x) )

exists for the weak topology on X * (i.e., for the pointwise convergence topolo-
gy), then this limit will be denoted by ¯j v(x); thus ¯j v(x) is the element of X *
defined by putting

¯j v(x)(h) 4 lim
R�lK0

1

l
(v(x1lh)(h)2v(x)(h) )

for all h�X. A linear differential form v : UKX * for which ¯j v(x) exists for
every (x , j) �U3X will be said to be closed if, for any x�U , the bilinear
form

X3X� (j 1 , j 2 ) O¯j 1
v(x)(j 2 )

is symmetric.
We shall say that a linear differential form v : UKX * is weakly of class

C 1 on the planes if the restriction of v to the intersection of U with each two-
dimensional linear submanifold of X is of class C 1 for the weak topology
on X *.

THEOREM 3.1. – Let U be a radial subset of a real linear space X , and let
v : UKX * be weakly of class C 1 on the planes. If v is locally exact, then v is
closed.

PROOF. – Assume that v is locally exact. Then, for any fixed x�U there are
a 2-radial subset Ux of U with x�Ux , and a mapping f : Ux KR such
that

¯j f (y) 4v(y)(j) ((y , j) �Ux 3X .

In order to prove that

¯j 1
v(x)(j 2 ) 4¯j 2

v(x)(j 1 ) ((j 1 , j 2 ) �X3X(3.1)

we essentially follow the proof of the first part of Theorem 5.1 in Vainberg [5].
Let, for any fixed (j 1 , j 2 ) �X3X , c be a number D0 such that x1l 1 j 1 , x1

l 2 j 2 �U if Nl 1NGc and Nl 2NGc. For Nl 1NGc and Nl 2NGc we set

W l 1
(x) 4 f (x1l 1 j 1 )2 f (x), W l 2

(x) 4 f (x1l 2 j 2 )2 f (x) ,
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and observe that

(3.2) W l 1
(x1l 2 j 2 )2W l 1

(x) 4W l 2
(x1l 1 j 1 )2W l 2

(x) 4

f (x1l 1 j 1 1l 2 j 2 )2 f (x1l 1 j 1 )2 f (x1l 2 j 2 )2 f (x) .

In view of the Lagrange formula there are numbers t 1 , t 2 �]0 , 1[ such
that

W l 1
(x1l 2 j 2 )2W l 1

(x) 4¯j 2
W l 1

(x1t 2 l 2 j 2 )

4¯j 2
f (x1l 1 j 1 1t 2 l 2 j 2 )2¯j 2

f (x1t 2 l 2 j 2 ) 4

4v(x1l 1 j 1 1t 2 l 2 j 2 )(j 2 )2v(x1t 2 l 2 j 2 )(j 2 ) 4

4¯j 1
v(x1t 1 l 1 j 1 1t 2 l 2 j 2 )(j 2 ) .

Analogously we see that there are numbers u 1 , u 2 �]0 , 1[ such that

W l 2
(x1l 1 j 1 )2W l 2

(x) 4¯j 2
v(x1u 1 l 1 j 1 1u 2 l 2 j 2 )(j 1 ) .

Then from (3.2) it follows that

¯j 1
v(x1t 1 l 1 j 1 1t 2 l 2 j 2 )(j 2 ) 4¯j 2

v(x1u 1 l 1 j 1 1u 2 l 2 j 2 )(j 1 ) ,

and so (3.1) holds because v has been supposed to be weakly of class C 1 on the
planes. r

A subset V of X is said to be star-shaped at x(�X) if lj1 (12l) x�V for
all j�V and l�]0 , 1[. The next theorem is the main result of this section.

THEOREM 3.2. – Let U be a radial subset of a real linear space X, and let
v : UKX * be weakly of class C 1 on the planes. If v is closed, then for each
x0 �U and any radial subset V of X contained in U and star-shaped at x0 the
linear differential form v NV

is exact (and so v is locally exact).

PROOF. – Suppose that v is closed, namely that, for each x�U , (3.1) holds.
We shall prove that, if x0 �U and V is a radial subset of X contained in U and
star-shaped at x0 , then putting for each x�V

f (x) 4s
0

1

v(x0 1 t(x2x0 ) )(x2x0 ) dt ,

we have

¯j f (x) 4v(x)(j) ((x , j) �V3X .(3.3)

We begin by observing that, for any (x , j) �U3X such that x0 1 t(x2x0 1
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lj) �U ((t , l) �]0 , 1[3]0 , 1[, we have

f (x1j)2f (x)4s
0

1

[v(x01t(x2x01j))(x2x01j)2v(x01t(x2x0))(x2x0)] dt4

s
0

1 u s
0

1

d

dl
[v(x0 1 t(x2x0 1lj) )(x2x0 1lj) ] dlv dt .

Then, since

d

dl
[v(x1 t(x2x0 1lj) )(x2x0 1lj) ] 4

4¯tj v(x0 1 t(x2x0 1lj) )(x2x0 1lj)1v(x0 1 t(x2x0 1lj) )(j) ,

we obtain

f (x1j)2 f (x) 4s
0

1 u s
0

1

¯tj v(x0 1 t(x2x0 1lj) )(x2x0 1lj) dlv dt1

s
0

1 u s
0

1

v(x0 1 t(x2x0 1lj) )(j) dlv dt .

As v is closed we have

¯tj v(x0 1 t(x2x0 1lj) )(x2x0 1lj) 4¯x2x01lj v(x0 1 t(x2x0 1lj) )(tj) ,

and hence

f (x1j)2 f (x) 4

s
0

1 u s
0

1

[t¯x2x01lj v(x0 1 t(x2x0 1lj) )(j)1v(x0 1 t(x2x0 1lj) )(j) ] dlv dt .

On the other hand observe that

t¯x2x01lj v(x0 1 t(x2x0 1lj) )(j)1v(x0 1 t(x2x0 1lj) )(j) 4

d

dt
[tv(x0 1 t(x2x0 1lj) )(j) ] ,

and recall that v has been supposed to be weakly of class C 1 on the planes and
so, for each (x , j) �U3X the function

(l , t) O t¯x2x01lj v(x1 t(x2x0 1lj) )(j)1v(x0 1 t(x2x0 1lj) )(j)
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is continuous in ]0 , 1[3]0 , 1[. Therefore

f (x1j)2f (x)4s
0

1 u s
0

1

d

dt
[tv(x01t(x2x01lj) )(j) ] dtv dl4s

0

1

v(x1lj)(j) dl .

Now, we arbitrarily fix x�V and j�X , and remark that (as V is radial and
star-shaped at x0)

x0 1 t(x2x0 1l(sj) ) �V ((t , l) �]0 , 1[3]0 , 1[

if the absolute value of the real number s is small enough. Then, from the pre-
vious argument it follows that

lim
R�sK0

f (x1sj)2 f (x)

s
4 lim

R�sK0
s
0

1

v(x1slj)(j) dl4v(x)(j) .

Thus (3.3) is satisfied, and the proof is concluded. r

4. – A reprentation theorem for partially nondegenerate bilinear forms.

Let X , Y be real linear spaces and let (x , y) O ax , yb, (briefly aQ , Qb), be a bi-
linear form on X3Y. We shall say that aQ , Qb is partially nondegenerate if one
of the following conditions (i) and (ii) is satisfied:

(i) ax , yb 40 (x�X ¨ y40,

(ii) ax , yb 40 (y�Y ¨ x40.

We observe that the most spontaneous way to construct a bilinear form on
X3Y that satisfies (i) is the following: one fixes an inner product Q on Y and a
linear map t : XOY such that t(X) 74 ]0(, and set

ax , yb 4y Qt(x)(4.1)

for all (x , y) �X3Y.
Of course, the roles of X and Y can be exchanged. Thus, in order to obtain a

bilinear form aQ , Qb on X3Y satisfying (ii) one can fix an inner product Q on X
and a linear map s : YKX such that s (Y) 74 ]0(, and set

ax , yb 4x Qs (y) .(4.2)

Here, of course, t(X) 7 denotes the orthogonal of t(X) in the pre-Hilbert space
(Y , Q), while s (Y) 7 denotes the orthogonal of s (Y) in the pre-Hilbert space
(X , Q). Note that the equality t(X7)(X) 4 ]0( [resp. s (Y) 74 ]0(] holds if t(X)
[resp. s (Y)] is dense in the pre-Hilbert space (Y , Q) [resp. (X , Q)].

The following theorem shows that every bilinear form on X3Y satisfying
(i) is of the type (4.1); then, symmetrically, every bilinear form on X3Y satis-
fying (ii) is of the type (4.2).
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THEOREM 4.1. – For any bilinear form aQ , Qb on X3Y there are a nonnega-
tive, symmetric, bilinear form (y1 , y2 ) Oy1 Qy2 on Y3Y and a linear map
t : XKY such that (4.1) holds. Furthermore, if the bilinear form aQ , Qb satis-
fies (i) then there are an inner product Q on Y and a linear map t : XKY such
that (4.1) holds, (and hence t(X) 74 ]0().

PROOF. – Let (ai )i�I and (bj )j�J be Hamel bases of X and Y. For any j4

!
i

j i ai �X we define the element t(x) of Y by putting

t(x) 4!
i , j

aai , bj b j i bj .

Then, for any x4!
k

xk ak �X we have

ax , t(j)b 4 !
i , j , k

j i xk aai , bj baak , bj b ,

and hence

(x , j) O ax , t(j)b

is a nonnegative, symmetric, bilinear form on X3X. We observe that the sym-
metry of this form implies

Ker t’ ]j�X : aj , t(x)b 40 (x�X( ,

and so, for all x�X the number aj , t(x)b depends only on t(j), namely

t(j 1 ) 4t(j 2 ) ¨ aj 1 , t(x)b 4 aj 2 , t(x)b (x�X .

Therefore, we can define the nonnegative, symmetric, bilinear mapping Q from
t(X)3t(X) into R by setting

t(j) Qt(x) 4 aj , t(x)b (x , j�X .

Clearly, there is a nonnegative, symmetric, bilinear form on Y3Y which ex-
tends Q; we still denote it by Q, thus (4.1) holds. To conclude the proof it suffices
to note that, if the bilinear form aQ , Qb satisfies (i) then from t(x) Qy40 (j�X it
follows y40, namely the nonnegative, symmetric, bilinear form Q on Y3Y for
which (4.1) holds is nondegenerate; hence (by the Cauchy-Schwarz inequality)
it is positive definite, and so it is an inner product on Y. r

5. – Linear differential forms associated with mappings. The notion of
potential for mappings.

Let X , Y be real linear spaces, and let U be a radial subset of X. In order to
make a sense to the assertion: «a mapping F : U’XKY admits a potential»
we must somehow regard F as a linear differential form defined in U , i.e., as a
mapping from U into X *. The most general way to do this is to consider a bilin-
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ear form (x , y) O ax , yb on X3Y such that

ax , yb 40 (x�X ¨ y40 ,(5.1)

and so identify the linear space Y with the linear subspace YA of X * defined by
putting

YA 4 ]yA �X *: y�Y( , yA(x) 4 ax , yb (x�X .

Then we can associate to F the linear differential form FA defined in U by writ-
ing FA(x) 4 F(x)A (x�U, i.e.,

FA(x)(j) 4 aj , F(x)b ((x , j) �U3X .

We shall say that FA is the linear differential form associated with the map-
ping F through the bilinear form aQ , Qb. At this point it is spontaneous to say
that a mapping F : U’XKY admits a potential with respect to a bilinear
form aQ , Qb on X3Y satisfying (4.1) if the linear differential form FA associated
with F through aQ , Qb is exact.

We remark that the fact that the linear differential form FA is closed, name-
ly that

¯j 1
FA(x)(j 2 ) 4¯j 2

F×(x)(j 1 ) (j 1 , j 2 �X and (x�U ,

means that for every x�U the following symmetry holds:

aj 1 , ¯j 2
F(x)b 4 aj 2 , ¯j 1

F(x)b (j 1 , j 2 �X .(5.2)

We also observe that if F is linear then (5.2) becomes

aj 1 , F(j 2 ) 4 aj 2 , F(j 1 )b (j 1 , j 2 �X .(5.3)

Moreover, if Q is an inner product on Y and t : XKY is a linear map such that
ax , yb 4y Qt(x) ((x , y) �X3Y (see Theorem 4.1), then symmetry (5.3) has the
form

F(j 2 ) Qt(j 1 ) 4F(j 1 ) Qt(j 2 ) (j 1 , j 2 �X .

6. – An example from elasticity.

In this section we deal with the potentialness of a mapping which «de-
scribes» a boundary problem. For any integer nF1, let us denote by Mn the
set of real n3n matrices, and by Mn

1 the set of Z�Mn such that det ZD0.
Moreover, let V be a bounded, smooth, open subset of Rn , let n be the outward,
unit normal to the boundary ¯V of V , and let s : V3Mn

1KMn be a given
mapping.

For any deformation x of V (i.e., orientation preserving diffeomorphism of
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V onto a subset of Rn) consider the mapping S(x) : V KMn defined by
putting

S(x)(t) 4s(t , ¯x(t) ) (t� V ,

where ¯x(t) denotes the gradient at t of the mapping x : V KRn . Let then, for
any deformation x of V,

F(x) 4 (F1 (x), F2 (x) ) ,

where F1 (x) : VKRn and F2 (x) : ¯VKRn are the functions defined by

.
`
/
`
´

F1 (x)(t) 4

F2 (x)(t) 4

2!
j41

n
¯

¯tj

Sij (x)(t) ,

!
j41

n

Sij (x)(t) n j (t) ,

t�V ,

t�¯V .

In the physical context (n43), V represent a reference configuration of a
body, the function s defines an elastic response of the body in the sense that
s(t , ¯x(t) ) is the first Piola-Kirchhoff stress at the point t relative to the defor-
mation x , and xOF(x) is the finite elastostatics operator.

If the function s is smooth we can take

X4C Q (V, Rn ), Y4C Q (V, Rn )3C Q (¯V, Rn ) ,

and take as U the (radial) subset of X whose elements are the orientation-pre-
serving C Q diffeomorphisms of V onto a subset Rn. However, other choices of
the linear spaces X , Y are possible; for example (see Valent [6], Ch. 3)

X4W m12, p (V, Rn), Y4W m, p (V, Rn)3W
m112

1

p
, p

(¯V, Rn) with p(m11)Dn .

Consider the (nondegenerated) bilinear form (x , y) O ax , yb on X3Y de-
fined by setting

ax , yb 4s
V

x(t) Qy1 (t) dt1s
¯V

x(t) Qy2 (t) ds (t)(6.1)

for all x�X and y4 (y1 , y2 ) �Y , where Q denotes the usual inner product on
Rn. The linear differential form FA associated with the mapping F through such
bilinear form on X3Y (see section 5) is defined by

FA(x)(j) 42 !
i , j41

n

s
V

j i
¯

¯tj

Sij (x)(t) dt1

!
i , j41

n

s
¯V

j i Sij (x)(t) n j (t) ds (t), (x , j) �U3X .
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Then, in view of the divergence theorem, we have

FA(x)(j) 4 !
i , j41

n

s
V

Sij (x)(t)
¯

¯tj

j i (t) dt .

It follows that FA is closed if and only if

¯Zhk
sij (t , Z) 4¯Zij

shk (t , Z), i , j , h , k41, R , n ,

for all (t , Z) �V3M1
n . This symmetry is satisfied provided there is a (stored-

energy) function w : V3Mn
1KR such that

s(t , Z) 4¯Z w(t , Z) ((t , Z) �V3Mn
1 .

In this case, a potential of FA, (i.e., a potential of F with respect to the bilinear
form aQ , Qb defined by (6.1)), is the function f : UKR defined by

f (x) 4s
V

w(t , ¯x(t) ) dt .
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