BOLLETTINO UNIONE MATEMATICA ITALIANA

Donald I. Cartwright, Gabriella Kuhn

Restricting cuspidal representations of the group of automorphisms of a homogeneous tree

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **6-B** (2003), n.2, p. 353–379.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2003_8_6B_2_353_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2003.

Restricting Cuspidal Representations of the Group of Automorphisms of a Homogeneous Tree.

DONALD I. CARTWRIGHT - GABRIELLA KUHN

Sunto. – Sia \mathfrak{X} un albero omogeneo dove a ogni vertice si incontrano q + 1 ($q \ge 2$) spigoli. Sia $\mathfrak{C} = \operatorname{Aut}(\mathfrak{X})$ il gruppo di automorfismi di \mathfrak{X} e H un sottogruppo chiuso isomorfo a PGL(2, F) (F campo locale il cui campo residuo ha ordine q). Sia π una rappresentazione continua unitaria e irriducibile di \mathfrak{C} e si consideri π_H , la sua restrizione ad H. È noto che se π è una rappresentazione sferica o speciale π_H rimane irriducibile. In questo lavoro si mostra che quando π è cuspidale la situazione è molto più complessa. Si studia in dettaglio il caso in cui il sottoalbero minimale associato a π sia il più piccolo possibile, ottenendo una esplicita decomposizione di π_H .

Summary. – Let \mathfrak{X} be a homogeneous tree in which every vertex lies on q + 1 edges, where $q \ge 2$. Let $\mathfrak{A} = \operatorname{Aut}(\mathfrak{X})$ be the group of automorphisms of \mathfrak{X} , and let H be the its subgroup PGL(2, F), where F is a local field whose residual field has order q. We consider the restriction to H of a continuous irreducible unitary representation π of \mathfrak{A} . When π is spherical or special, it was well known that π remains irreducible, but we show that when π is cuspidal, the situation is much more complicated. We then study in detail what happens when the minimal subtree of π is the smallest possible.

1. - Introduction.

Continuing the notation in the abstract, \mathfrak{C} is a locally compact totally disconnected unimodular topological group with the topology of pointwise convergence. Fix a vertex o of \mathfrak{X} and a vertex o' adjacent to o. A classification of the irreducible continuous unitary representations π of \mathfrak{C} was given by Ol'shanskii [11, 12], and is described in [4], the notation of which we shall basically be following. They are parametrized by (orbits of) finite complete subtrees \mathfrak{x} of \mathfrak{X} (a subtree \mathfrak{x} is *complete* if for every vertex v of \mathfrak{x} not in the boundary of \mathfrak{X} , all of the q + 1 neighbours of v are also in \mathfrak{x}). For such a subtree, let $K(\mathfrak{x})$ denote the compact group of $g \in \mathfrak{C}$ for which gv = v for all vertices v of \mathfrak{x} , and let $\widetilde{K}(\mathfrak{x}) = \{g \in \mathfrak{C} : g\mathfrak{x} = \mathfrak{x}\}$. We write $K_o = \{g \in \mathfrak{C} : go = o\} = K(\{o\})$. If π has non-zero $K(\mathfrak{x})$ -fixed vectors, but no non-zero $K(\mathfrak{y})$ -fixed vectors for any finite complete subtree \mathfrak{y} with fewer vertices than \mathfrak{x} , we call \mathfrak{x} a *minimal sub*- tree for π . If \mathfrak{x} is a minimal subtree for π , then so is $g\mathfrak{x}$ for any $g \in \mathfrak{C}$. If π has a minimal subtree with only one vertex, which we may assume is o, then π is called *spherical*. If π has a minimal subtree with exactly 2 vertices, which we may assume are o and o', then π is called *special*. If π has a larger minimal subtree \mathfrak{x} , i.e., diam $(\mathfrak{x}) \ge 2$, then π is called *cuspidal*. These are obtained by induction from $\widetilde{K}(\mathfrak{x})$ to \mathfrak{C} of irreducible representations σ of $\widetilde{K}(\mathfrak{x})$ which are trivial on $K(\mathfrak{x})$ and which have no non-zero $K(\mathfrak{y})$ -fixed vectors for any of the maximal proper complete subtrees \mathfrak{y} of \mathfrak{x} (note that $K(\mathfrak{x}) \subset K(\mathfrak{y}) \subset \widetilde{K}(\mathfrak{x})$ for such a \mathfrak{y}). The set of equivalence classes of these «standard» representations of $\widetilde{K}(\mathfrak{x})$ is denoted $(\widetilde{K}(\mathfrak{x}))_0^{\circ}$. Because any automorphism of \mathfrak{x} can be extended to an automorphism of \mathfrak{X} , the map $g \mapsto g_{|\mathfrak{x}}$ induces an isomorphism $\widetilde{K}(\mathfrak{x})/K(\mathfrak{x}) \cong$ Aut (\mathfrak{x}) , and so the representations of $\widetilde{K}(\mathfrak{x})$ satisfying the above conditions correspond to certain irreducible representations of Aut (\mathfrak{x}) , which we also refer to as *standard*.

Note that in Ol'shanskii's papers, the representations classified were the algebraically irreducible admissible ones. If π is a cuspidal irreducible continuous unitary representation on a Hilbert space \mathcal{H}_{π} , let V_{π} denote the space of vectors $\xi \in \mathcal{H}_{\pi}$ which are $K(\mathfrak{y})$ -invariant for some finite complete subtree \mathfrak{y} . This a dense invariant subspace of \mathcal{H}_{π} . Let $\pi^{\circ} \colon \mathfrak{C} \to GL(V_{\pi})$ be the representation of \mathfrak{C} obtained from π . Then π° is admissible and algebraically irreducible [4, p. 115]. Conversely, if $\pi' \colon \mathfrak{C} \to GL(V)$ is an admissible and algebraically irreducible representation of \mathfrak{C} , which has minimal subtree of diameter at least 2, then π' is unitarizable [12, § 2.6], and extends to irreducible continuous unitary representation.

Let *F* be a commutative non-archimedean local field. Let $\operatorname{ord} : \operatorname{F} \to \mathbb{Z} \cup \{\infty\}$ be the valuation on *F*. Let $\mathfrak{O} = \{x \in F : \operatorname{ord}(x) \ge 0\}$ be the valuation ring of *F*, and let $\varpi \in \mathfrak{O}$ be an element of valuation 1. Let $\mathfrak{O}^{\times} = \{x \in \mathfrak{O} : \operatorname{ord}(x) = 0\}$ denote the group of invertible elements of the ring \mathfrak{O} . Let *q* be the order of the residual field $\mathfrak{O}/\mathfrak{m}\mathfrak{O}$, which equals p^r for some prime *p* and some integer $r \ge 1$. Let $A \subset \mathfrak{O}$ be a set of *q* elements, one of them 0, such that the canonical map $\mathfrak{O} \to \mathfrak{O}/\mathfrak{m}\mathfrak{O}$, restricted to *A*, is a bijection. Each element of \mathfrak{O} is expressible uniquely as the sum of a series $a_0 + a_1 \, \varpi + a_2 \, \varpi^2 + \ldots$, where each a_i is in *A*.

Recall the construction of the Bruhat-Tits tree \mathfrak{X} associated with G = GL(2, F) [16, p. 69; 4, p. 127]. Let $V = F^2$ denote the space of all column vectors of length 2 with entries in F. A lattice in V is a subset of V of the form $\{t_1v_1 + t_2v_2: t_1, t_2 \in \mathfrak{O}\}$, where $\{v_1, v_2\}$ is a basis of V over F. If $\{v_1, v_2\}$ is the usual basis of V, then the corresponding lattice is \mathfrak{O}^2 , and is denoted L_0 . If L is a lattice and if $g \in G$, then g(L) is a lattice, and so G acts on the set of lattices. This action is clearly transitive, and the stabilizer of L_0 is the group $K = GL(2, \mathfrak{O})$ of matrices with entries in \mathfrak{O} and having determinant in \mathfrak{O}^{\times} . Two lattices L, L' are called equivalent if $L' = \lambda L$ for some $\lambda \in F^{\times}$. Let [L] denote the equivalence class of the lattice L. The Bruhat-Tits tree \mathfrak{X} has as vertex set

the set of equivalence classes of lattices. Two distinct lattice classes [L] and [L'] are adjacent if representative lattices L and L' can be found such that $\varpi L \subsetneq L' \subsetneq L$. The tree \mathfrak{X} is homogeneous of degree q + 1.

The above action of G on \mathfrak{X} gives a homomorphism $\varphi: G \to \mathfrak{C}$ with kernel $Z = \{\lambda I: \lambda \in F^{\times}\}$. We write H for the image of φ . Thus $PGL(2, F) \cong H \leq \mathfrak{C}$. It is natural to ask how the irreducible unitary representations π of \mathfrak{C} behave when restricted to H. When π is spherical or special, the restriction is known to remain irreducible [4, p. 117]. We are concerned here only with the cuspidal case.

We identify H and PGL(2, F) throughout. The representations of H correspond to, and are here frequently identified with, representations of G which are trivial on Z. Everything we shall need about the representations of G is contained in Bump's book [1].

Let π be an irreducible unitary representation of \mathcal{C} with minimal subtree \underline{y} , where diam $(\underline{y}) \ge 2$. In Section 2 we prove some general results, showing in particular that the restriction of π to H is a direct sum of induced representations. Then in Sections 3 and 4 we discuss in detail the case when \underline{y} is as small as possible: o together with its q + 1 neighbours. Except for the one example with q = 2, the restriction of π to H is then never irreducible, and we give for it an explicit decomposition as a direct integral of irreducible representations.

We thank Tim Steger for useful conversations on the subject of this paper.

2. – Restricting cuspidal representations to PGL(2, F).

Let \mathcal{C} , G, K, Z, $\varphi : G \to \mathcal{C}$ and $H \cong G/Z = PGL(2, F)$ be as above.

Now let \mathfrak{x} be a finite complete subtree of \mathfrak{X} , with diam $(\mathfrak{x}) \ge 2$. Let $\sigma \in (\widetilde{K}(\mathfrak{x}))_0^-$ have representation space \mathcal{H}_{σ} (finite dimensional, of course). Let $\pi = Ind_{\widetilde{K}(\mathfrak{x})}^{\mathfrak{Q}}\sigma$. Because we are inducing from an open subgroup, the definition of an induced representation is particularly simple here. Counting measure on the discrete set $\mathfrak{C}/\widetilde{K}(\mathfrak{x})$ is an invariant measure, and so the representation space of π is the space \mathcal{H}_{π} of functions $f: \mathfrak{C} \to \mathcal{H}_{\sigma}$ such that

(i)
$$f(kg) = \sigma(k)(f(g))$$
 for all $g \in \mathcal{A}$ and $k \in K(\underline{x})$, and
(ii) $\sum_{a} ||f(g_a)||^2 < \infty$,

and we define ||f|| to be the square root of the sum in (ii). Here $\{g_a\}$ is any set of coset representatives for $\widetilde{K}(\underline{x})$ in \mathcal{A} . Notice that we do not have to add measurability conditions, because any $f \in \mathcal{H}_{\pi}$ is left $K(\underline{x})$ -invariant, and therefore is locally constant. For $g \in \mathcal{A}$, the action of $\pi(g)$ on $f \in \mathcal{H}_{\pi}$ is right translation: $(\pi(g) f)(g') = f(g'g)$. Because $\widetilde{K}(\mathfrak{x})$ is also compact, if $f \in \mathcal{H}_{\pi}$, then the integral of $||f(g)||^2$ over \mathfrak{C} with respect to a Haar measure *m* is $m(\widetilde{K}(\mathfrak{x}))$ times the sum in (ii) above.

Notice that in [4], the induced representation is defined so that \mathcal{H}_{π} consists of functions satisfying $f(gk) = \sigma(k^{-1})(f(g))$ for all $g \in \mathcal{C}$ and $k \in \widetilde{K}(\underline{r})$, with $\pi(g)$ being left translation. The intertwining operator $f \mapsto \check{f}$, where $\check{f}(x) = f(x^{-1})$, shows that the two definitions give equivalent representations.

The algebraically irreducible admissible representation π° corresponding to π is just the representation obtained from σ by compact induction (see, for example, [1, p. 470]). To see this, let $f \in V_{\pi}$, the representation space of π° . Then $f \in \mathcal{H}_{\pi}$ is right $K(\mathfrak{y})$ -invariant for some finite complete subtree \mathfrak{y} of \mathfrak{X} . So for any $\xi \in \mathcal{H}_{\sigma}$, the function $g \mapsto \langle f(g), \xi \rangle$ is in $\mathcal{S}(\mathfrak{x})$ (see [4, p. 87]) and is left $K(\mathfrak{y})$ -invariant, and so [4, Prop. III.3.2] is supported on the compact set $\{g \in \mathcal{C} : g\mathfrak{x} \subset \mathfrak{y}\}$, which is a finite union of cosets $g\tilde{K}(\mathfrak{x})$. Hence f is supported on a finite union of cosets $\tilde{K}(\mathfrak{x}) g$. Conversely, if $f \in \mathcal{H}_{\pi}$ is supported on the union of cosets $\tilde{K}(\mathfrak{x}) g_j$, $j = 1, \ldots, r$, choose a finite complete subtree \mathfrak{y} containing the union of the trees $g_j^{-1}\mathfrak{x}$. If $k \in K(\mathfrak{y})$, then $g_j k g_j^{-1} \in K(\mathfrak{x})$ and so $\sigma(g_j g g_j^{-1}) = I$ for each j. It follows that f is right $K(\mathfrak{y})$ -invariant, and so in V_{π} .

We start with two quite general results. In the first one, the hypotheses diam $(\mathfrak{x}) \ge 2$ and $\sigma \in (\widetilde{K}(\mathfrak{x}))_0^{\widehat{}}$ are not needed.

PROPOSITION 2.1. – Let χ be a finite complete subtree of \mathfrak{X} satisfying diam $(\chi) \ge 2$. Then \mathfrak{A} is a finite disjoint union

(2.1)
$$\mathfrak{C} = \bigcup_{j=1}^{r} \widetilde{K}(\underline{y}) g_{j} H,$$

of double cosets $\widetilde{K}(\mathfrak{x})$ gH. Let $\sigma \in (\widetilde{K}(\mathfrak{x}))_0^{\widehat{}}$, and let $\pi = \operatorname{Ind}_{\widetilde{K}(\mathfrak{x})}^{\mathbb{Q}} \sigma$. Then the restriction of π to H is unitarily equivalent to the representation

where $\sigma_j(k) = \sigma(g_j k g_j^{-1})$ for $k \in g_j^{-1} \widetilde{K}(\underline{x}) g_j \cap H$. In particular, if $r \ge 2$, then this restriction is reducible.

PROOF. – Fix any vertex $v_0 \in \underline{y}$. There are only finitely many subtrees of \mathfrak{X} containing v_0 and of the form $g(\underline{y})$ for some $g \in \mathfrak{A}$. Write these $\gamma_j(\underline{y})$, $j = 1, \ldots, m$. If $g \in \mathfrak{A}$, then as H acts transitively on the vertices of \mathfrak{X} , there is an $h \in H$ such that $g^{-1}(v_0) = h^{-1}(v_0)$. Thus $hg^{-1}(v_0) = v_0$, so that $hg^{-1}(\underline{y}) = \gamma_j(\underline{y})$ for some j. Thus $g \in \widetilde{K}(\underline{y}) \gamma_j^{-1} h$. Hence there are only finitely many distinct double cosets $\widetilde{K}(\underline{y}) gH$, so that (2.1) holds for some g_1, \ldots, g_r .

We may write $\widetilde{K}(\mathfrak{x}) g_j H$ as a union of disjoint cosets $\widetilde{K}(\mathfrak{x}) g_j h_{j,\nu}$, where the $h_{j,\nu}$'s are in H. Hence, for each j, H is the union of the disjoint cosets

 $(g_j^{-1}\widetilde{K}(\mathfrak{x}) g_j \cap H) h_{j,\nu}$. Let \mathcal{H}_{π} be defined as above, and let \mathfrak{H} denote the representation space of the representation (2.2), i.e., the space of *r*-tuples (f_1, \ldots, f_r) of functions $f_j: H \to \mathcal{H}_{\sigma}$ which satisfy

(i)
$$f_j(kh) = \sigma(g_j k g_j^{-1})(f_j(h))$$
 for all $h \in H$ and $k \in g_j^{-1} \widetilde{K}(\underline{r}) g_j \cap H$, and
(ii) $\sum_{j,\nu} ||f_j(h_{j,\nu})||^2 < \infty$.

Given $F \in \mathcal{H}_{\pi}$, let $f_j(h) = F(g_j h)$ for $h \in H$. It is clear that the map $T: F \mapsto (f_1, \ldots, f_r)$ is an isometry $\mathcal{H}_{\pi} \to \mathfrak{H}$. Moreover, this map is surjective, because if $(f_1, \ldots, f_r) \in \mathfrak{H}$, then we may define $F \in \mathcal{H}_{\pi}$ by setting $F(kg_j h) = \sigma(k)(f_j(h))$ for all $h \in H$, $k \in \widetilde{K}(\mathfrak{L})$, and all j. It is routine to check that F is well-defined and that $(f_1, \ldots, f_r) = T(F)$.

Let π be as in Proposition 2.1. The following result, while not used in the sequel, is of interest because it guarantees that any irreducible subrepresentation of the restriction π_H of π to H occurs with only finite multiplicity. Since π_H is still square integrable as a representation of H, standard arguments show that it is a subrepresentation of the sum of infinitely many copies of the left regular representation λ_H of H. In fact, we can show more:

PROPOSITION 2.2. – Let π be as in Proposition 2.1. Then for some $n < \infty$, the restriction to H of π is contained in the sum $n\lambda_H$ of n copies of the left regular representation of H.

PROOF. – Let \mathcal{H}_{π} be the representation space of π and let M be the space of $K(\underline{y})$ -fixed vectors in \mathcal{H}_{π} . Notice that if $f_1 \in M$ and $k \in \widetilde{K}(\underline{y})$, then $\pi(k)$ $f_1 \in M$ because $K(\underline{y})$ is normal in $\widetilde{K}(\underline{y})$. Let g_1, \ldots, g_r be as in (2.1). Suppose that $\langle f, \pi(h) \ \pi(g_j^{-1}) \ f_1 \rangle = 0$ for all $f_1 \in M$, all $h \in H$ and all j. Then f = 0. To see this, pick any $f_0 \in M \setminus \{0\}$. For if $g \in \mathcal{C}$, we can write $g = hg_j^{-1}k$ for some j, and some $h \in H$ and $k \in \widetilde{K}(\underline{y})$. Then $\langle f, \pi(g) \ f_0 \rangle = \langle f, \pi(h) \ \pi(g_j^{-1})(\pi(k) \ f_0) \rangle = 0$. But f_0 is a cyclic vector for π , and so f = 0.

Now M is finite dimensional because $M \in V_{\pi}$ and π° is admissible (cf. [4, p. 112]). Let M' be the sum of the subspaces $\pi(g_j^{-1}) M$, j = 1, ..., r. Let $f_1, ..., f_n$ be any basis of M'. For each i, let $(T_i f)(h) = \langle f, \pi(h) f_i \rangle$. Then $T_i f \in L^2(H)$ by [4, Lemma 3.12]. Define $T : \mathcal{H}_{\pi} \to L^2(H) \oplus ... \oplus L^2(H)$ (n copies) by $Tf = (T_1 f, ..., T_n f)$. It is easily checked that T intertwines π and $n\lambda_H$. Moreover, T has kernel $\{0\}$ by the first paragraph of this proof. Now $T^*T : \mathcal{H}_{\pi} \to \mathcal{H}_{\pi}$ must intertwine π with itself, and so be cI for some $c \ge 0$. As T is injective, we have $c \neq 0$. Hence $c^{-1/2}T$ is an isometry embedding \mathcal{H}_{π} in $L^2(H) \oplus \ldots \oplus L^2(H)$ and intertwining π and $n\lambda_H$.

We shall henceforth only be concerned with the case when the r in (2.1) is 1. In this case, Proposition 2.1 takes the following simpler form:

COROLLARY 2.3. – Let g be a finite complete subtree of \mathfrak{X} satisfying diam $(g) \ge 2$ for which

(2.3)
$$\mathcal{C} = \widetilde{K}(\mathfrak{x}) H$$

Let $\sigma \in (\widetilde{K}(\mathfrak{x}))_0^{\widehat{}}$, and let $\pi = \operatorname{Ind}_{\widetilde{K}(\mathfrak{x})}^{\mathbb{Q}} \sigma$. Then the restriction of π to H is unitarily equivalent to the representation

(2.4)
$$\operatorname{Ind}_{\widetilde{K}(\mathfrak{x})\cap H}^{H}\sigma_{|\widetilde{K}(\mathfrak{x})\cap H}$$

obtained by inducing from $\widetilde{K}(\mathfrak{x}) \cap H$ to H the restriction of σ to $\widetilde{K}(\mathfrak{x}) \cap H$.

Notice that the hypothesis (2.3) is satisfied by $\underline{x} = \underline{x}_n = \{v \in \mathcal{X} : d(v, o) \leq n\}$, because $\widetilde{K}(\underline{x}_n) = K_o$, and (2.3) holds because H acts transitively on the set of vertices of \mathcal{X} .

Another example in which (2.3) holds is $\underline{y} = \underline{y}'_n$, the subtree whose vertices are those at distance at most n from o or o' (recall that o' is a neighbour of o). Here $n \ge 1$. Clearly $\widetilde{K}(\underline{y}'_n) = \{g \in \mathbb{C} : g\{o, o'\} = \{o, o'\}\}$ for any n. Since G acts transitively on the vertices of \mathfrak{X} , (2.3) holds because $K = GL(2, \mathfrak{O})$ acts transitively on the set of neighbours of o. See the beginning of the next section.

Here is an example for which (2.3) is not true, i.e., r > 1 in (2.1). Assume that $q \ge 4$, and let x_1, \ldots, x_5 be 5 distinct neighbours of o. For each j, let v_j be a vertex at distance j + 1 from o such that x_j is on the geodesic from o to v_j . Let g be the smallest complete subtree having all the vertices v_j as interior points. Choose a $g \in K_o$ which interchanges x_1 and x_2 , but leaves the other neighbours of o fixed. Then any $h \in G$ which satisfies gg = hg must interchange x_1 and x_2 , and fix x_3 , x_4 and x_5 . But an $h \in G$ which fixes three neighbours of o must fix them all by Lemma 3.1 below.

In the context of Corollary 2.3, it is convenient to work with representations of G = GL(2, F) instead of H, and so we transfer the last lemma to that setting:

LEMMA 2.4. – With notation and hypotheses of Corollary 2.3, the representation of G obtained from the representation (2.4) of H by composing with $\varphi: G \rightarrow H$ is

(2.5)
$$\operatorname{Ind}_{\widetilde{K}_{G}(\mathfrak{x})}^{G}\sigma',$$

where $\widetilde{K}_G(\mathfrak{x}) = \{g \in G : \varphi(g) \in \widetilde{K}(\mathfrak{x})\}$ and where σ' is the representation of

 $\widetilde{K}_G(\mathfrak{x})$ obtained from $\sigma_{|\widetilde{K}(\mathfrak{x})\cap H}$ by composing with the restriction of φ to $\widetilde{K}_G(\mathfrak{x})$.

PROOF. – Write G as a disjoint union of cosets $\widetilde{K}_G(\underline{\mathfrak{x}}) g_a$. Then H is the disjoint union of the cosets $(\widetilde{K}(\underline{\mathfrak{x}}) \cap H) \varphi(g_a)$. It is easy to see that $f \mapsto f \circ \varphi$ is an isometric isomorphism from the representation space \mathfrak{F} of the representation (2.4) to that of (2.5).

Let $K_G(\mathfrak{x}) = \{g \in G : \varphi(g) \in K(\mathfrak{x})\}$. Then φ induces an embedding

(2.6)
$$\widetilde{K}_G(\mathfrak{x})/K_G(\mathfrak{x}) \hookrightarrow \widetilde{K}(\mathfrak{x})/K(\mathfrak{x}) \cong \operatorname{Aut}(\mathfrak{x}),$$

and σ' corresponds to a representation of $\widetilde{K}_G(\mathfrak{x})/K_G(\mathfrak{x})$, obtained by restricting the irreducible standard representation σ of Aut(\mathfrak{x}). So σ' will in general be a finite sum

(2.7)
$$\sigma' = \sigma'_1 + \ldots + \sigma'_m$$

of irreducible representations of $\widetilde{K}_G(\underline{x})/K_G(\underline{x})$. Thus (2.5) will be the sum of the corresponding induced representations.

Obtaining the decomposition (2.7) is a non-trivial problem in the representation theory of the finite group $Aut(\underline{x})$, even for the simplest of \underline{x} 's.

3. – The case $g = g_1$.

Recall that A denotes a set of q elements in \mathfrak{O} containing 0 such that the map $a \mapsto a + \mathfrak{m}\mathfrak{O}$ is a bijection $A \to \mathfrak{O}/\mathfrak{m}\mathfrak{O}$. The neighbours of $o = [L_0]$ are the vertices $[g_{\infty}L_0]$ and $[g_aL_0]$, $a \in A$, where

(3.1)
$$g_{\infty} = \begin{bmatrix} 1 & 0 \\ 0 & \overline{\omega} \end{bmatrix}$$
 and $g_a = \begin{bmatrix} \overline{\omega} & a \\ 0 & 1 \end{bmatrix}$,

Clearly $\widetilde{K}_G(\underline{x}_1) = ZK = Z \cdot GL(2, \mathbb{O})$, and it is easy to see that $K_G(\underline{x}_1)$ equals

$$\{\lambda(I + \varpi M) : \lambda \in F^{\times} \text{ and } M \in M_{2 \times 2}(\mathfrak{O})\},\$$

where $M_{2\times 2}(\mathfrak{O})$ is the space of 2×2 matrices with entries in \mathfrak{O} . Since $\{I + \varpi M : M \in M_{2\times 2}(\mathfrak{O})\}$ is the kernel of the natural map $GL(2, \mathfrak{O}) \rightarrow GL(2, \mathfrak{O}/\varpi\mathfrak{O})$, we see that $\widetilde{K}_G(\mathfrak{x}_1)/K_G(\mathfrak{x}_1) \cong PGL(2, \mathbb{F}_q)$, where $\mathbb{F}_q \cong \mathfrak{O}/\mathfrak{o}\mathfrak{O}$ is the field with q elements. Thus the σ'_j 's in (2.7) can be thought of as representations of $PGL(2, \mathbb{F}_q)$. The map $GL(2, \mathfrak{O}) \rightarrow GL(2, \mathbb{F}_q)$ induced by the surjection $\mathfrak{O} \rightarrow \mathfrak{O}/\mathfrak{o}\mathfrak{O} \cong \mathbb{F}_q$ naturally gives rise to a surjection

which is trivial on Z. So the σ'_{j} 's can be thought of as representations of ZK.

It is also clear that $\operatorname{Aut}(\mathfrak{x}_1) \cong \mathfrak{S}_{q+1}$, the symmetric group on q+1 letters. So in this case the embedding (2.6) gives us an embedding of the group $PGL(2, \mathbb{F}_q)$, which has order (q+1) q(q-1), into \mathfrak{S}_{q+1} . This embedding is equivalent to the following well-known construction. Let $\mathbb{P}^1(\mathbb{F}_q)$ be the projective line over \mathbb{F}_q , i.e., the set of equivalence classes of non-zero vectors $v = \begin{pmatrix} a \\ \beta \end{pmatrix}$ in \mathbb{F}_q^2 , where $v \sim v'$ if $v' = \lambda v$ for some $\lambda \in \mathbb{F}_q^{\times}$. Let $\begin{bmatrix} a \\ \beta \end{bmatrix}$ be the equivalence class of $\begin{pmatrix} a \\ \beta \end{pmatrix}$. The natural action of $PGL(2, \mathbb{F}_q)$ on $\mathbb{P}^1(\mathbb{F}_q)$, which has q+1 elements, is faithful. This gives an embedding of $PGL(2, \mathbb{F}_q)$ into \mathfrak{S}_{q+1} . We can define a bijection from $\mathbb{P}^1(\mathbb{F}_q)$ to the set of neighbours of o by mapping $\begin{bmatrix} a \\ 1 \end{bmatrix}$ to $[g_a L_0]$, $a \in A$, and mapping $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $[g_\infty L_0]$. One may check that this is an isomorphism of $PGL(2, \mathbb{F}_q)$ -spaces. The following is a well-known and easily checked fact about the action of $PGL(2, \mathbb{F}_q)$ on $\mathbb{P}^1(\mathbb{F}_q)$ (see, for example, [15, Theorem 10.6.7]).

LEMMA 3.1. – If u_1, u_2, u_3 are three distinct neighbours of o, and if also v_1, v_2, v_3 are three distinct neighbours of o, then there is a unique $g \in PGL(2, \mathbb{F}_q)$ such that $gu_j = v_j$ for each j.

It is well-known that the irreducible representations of $\operatorname{Aut}(\underline{x}_1) \cong \mathfrak{S}_{q+1}$ are in one to one correspondence with the partitions of q+1 [8, Theorem 2.1.11]. We next identify which of them are standard.

LEMMA 3.2. – Of the irreducible representations of \mathfrak{S}_{q+1} , only two are nonstandard, namely the trivial representation and the q dimensional representation of $\mathfrak{S}_{q+q_{l+1}}$ obtained from the natural action of \mathfrak{S}_{q+1} on $V = \{(t_1, \ldots, t_{q+1}): \sum_{l=1}^{n} t_l = 0\}.$

PROOF. – Any maximal proper subtree of \mathfrak{x}_1 consists of o and a neighbour of o. So given any two maximal proper subtrees \mathfrak{y}_1 and \mathfrak{y}_2 of \mathfrak{x}_1 , there is a $g \in \operatorname{Aut}(\mathfrak{x}_1)$ such that $g(\mathfrak{y}_1) = \mathfrak{y}_2$. Thus to check whether a representation of $\operatorname{Aut}(\mathfrak{x}_1)$ is non-standard, we need only check when it has a non-zero $K(\mathfrak{y})$ -fixed vector for any particular maximal proper subtree \mathfrak{y} . The subgroup $K(\mathfrak{y})$ corresponds to the subgroup \mathfrak{S}_q of \mathfrak{S}_{q+1} which fixes a particular one of the letters $1, \ldots, q+1$. The irreducible representations of \mathfrak{S}_{q+1} having a non-zero \mathfrak{S}_q -fixed vector are just the subrepresentations of the quasi-regular representation λ' , say, of \mathfrak{S}_{q+1} on $\mathfrak{S}_{q+1}/\mathfrak{S}_q$ (see [4, p. 104]). But it is easy to see that λ' is equivalent to the representation obtained from the natural representation of \mathfrak{S}_{q+1} on \mathbb{C}^{q+1} , which is the sum of one copy of the trivial representation (be-

cause of the constant q + 1-tuple (1, 1, ..., 1), and the above q-dimensional representation on the orthogonal complement V of (1, 1, ..., 1).

The two non-standard representations of \mathfrak{S}_{q+1} appearing above correspond to the partitions (q+1) and (q, 1), respectively, of q+1 (see [8, Lemma 2.2.19(iii)]).

The irreducible representations of $PGL(2, \mathbb{F}_q)$ are also well-known. In [14] and [1, §4.1], for example, the irreducible representations of $G_0 = GL(2, \mathbb{F}_q)$ are described, and those of $PGL(2, \mathbb{F}_q)$ are just the ones which are trivial on the centre $Z_0 = \{\lambda I : \lambda \in \mathbb{F}_q^\times\}$ of G_0 . If q is odd, there are 2 characters, 2 «special» representations of degree q, (q-3)/2 «principal series» representations (all of degree q + 1), and (q-1)/2 «cuspidal» representations of degree q - 1. If q > 2 is even, there is only 1 character, and 1 special representation of degree q, and there are (q-2)/2 principal series representations (all of degree q + 1), and q/2 cuspidal representations of degree q - 1. If q = 2, there are 2 characters and 1 representation of degree 2.

Thus for $\mathfrak{x} = \mathfrak{x}_1$, the problem of describing the representation (2.4), or equivalently, (2.5), becomes the following: Firstly, take an irreducible representation σ of \mathfrak{S}_{q+1} , not one of the two non-standard ones described in Lemma 3.2, and consider its restriction σ' to $PGL(2, \mathbb{F}_q)$, embedded in \mathfrak{S}_{q+1} as described before Lemma 3.1.

(a) Decompose σ' into the sum (2.7) of irreducibles σ'_j , j = 1, ..., m.

(b) Regard each σ'_j as a representation on ZK via (3.2), and determine $\operatorname{Ind}_{ZK}^G \sigma'_j$.

We are able to perform step (a) explicitly for any particular small q. If $q \leq 3$, then (q+1) q(q-1) = (q+1)!, and so $PGL(2, \mathbb{F}_q) \cong \mathfrak{S}_{q+1}$. Thus m in (2.7) is 1. By Lemma 3.2, if q = 2, then only the sign character ε is standard. If q = 3, then \mathfrak{S}_{q+1} has trivial character, the sign character ε , 1 representation of degree 2, and two of degree 3 (see, for example, [8, p. 349]). Thus the standard representations are ε , and one each of degrees 2 and 3. These must «restrict» to a non-trivial character, a cuspidal and a special representation, respectively, of $PGL(2, \mathbb{F}_3)$.

For somewhat larger q's, we first use [14, §1.5] to determine the conjugacy classes C_i in $PGL(2, \mathbb{F}_q)$. Then for each i, after choosing a representative g_i of C_i , it is easy to calculate the cycle type of the permutation of $\mathbb{P}^1(\mathbb{F}_q)$ induced by g_i . Then we use the character tables in [8, pp. 349-355], and routine calculations to find the decomposition into irreducibles of the restriction to $PGL(2, \mathbb{F}_q)$ of each irreducible representation of \mathfrak{S}_{q+1} . By way of example, the result for case q = 7 is given in the table below. It is the smallest case in which multiplicities greater than 1 occur. The first row of the table gives the degree of each irreducible representation of S_{q+1} , in the order used in [8]. In the first column, χ_j is a character, and c_j , p_j and s_j refer to cuspidal, principal series, and special representations, respectively. The next two columns refer to the two non-standard representations of S_{q+1} , and so do not concern us here.

			The case $q = 7$.																			
	1	7	20	21	28	64	35	14	70	56	90	35	42	56	70	64	21	14	28	20	7	1
$\overline{\chi_0}$	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	1	0	0	0	0
χ_1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	1	. 0	. 0	0	1
p_1	0	0	0	1	0	2	1	0	2	1	2	0	1	2	1	2	0	0	1	1	0	0
p_2	0	0	1	0	1	2	0	0	1	2	2	1	1	1	2	2	1	0	0	0	0	0
s_0	0	1	0	0	1	1	1	0	$\frac{1}{2}$	1	2	1	1	0	2	1	1	0	1	0	0	0
s_1	0	0	0	1	1	1	1	0	2	0	2	1	1	1	2	1	0	0	1	0	1	0
c_1	0	0	0	1	1	1	0	0	1	0	3	0	$\frac{1}{2}$	0	1	1	1	0	1	0	0	0
c_2	0	0	1	0	0	1	1	1	1	2	1	1	0	2	1	1	0	1	0	1	0	0
c_3	0	0	1	0	0	1	1	1	1	2	1	1	0	2	1	1	0	1	0	1	0	0

We now turn to step (b) in the procedure for describing the representation (2.4): finding $\operatorname{Ind}_{ZK}^G \sigma'_j$ for each j. There are four cases, according to whether $\tau = \sigma'_j$ is cuspidal, a character, special or principal series.

PROPOSITION 3.3. – When τ is cuspidal, then $\operatorname{Ind}_{ZK}^{G}\tau$ is an irreducible supercuspidal representation of G.

PROOF. – This is a special case of a result of Kutzko [9], which is stated and proved in exactly our situation in [1, Theorem 4.8.1], with the central character being trivial in our case. A word is needed about the various types of induced representations used here and in [1]. Let us call the type defined at the beginning of Section 2 *unitary induction*. In [1], *ordinary induction* is defined as in our definition above, but without the condition (ii) there; *compact induction* is defined by the condition that $f(g_a) \neq 0$ for only finitely many a's. If the representations spaces of $\operatorname{Ind}_{ZK}^{G}\tau$ are V_2 , V' and V, respectively, for these three representations, then $V \subset V_2 \subset V'$. In the proof of irreducibility in Theorem 4.8.1 in [1], it is shown that $\operatorname{Hom}_{G}(V, V')$ is one-dimensional, and since there is a natural injection $\operatorname{Hom}_{G}(V_2, V_2) \rightarrow \operatorname{Hom}_{G}(V, V')$, the irreducibility of the representation on V_2 follows. The representation on V_2 is the completion of the representation on V, which is shown to be supercuspidal and admissible in [1].

Before dealing with the case when τ is a character, we first need to give some properties of the spherical principal series representations π_s of \mathcal{A} studied in [4], for example. Recall the boundary Ω of \mathfrak{X} consists of equivalence classes of infinite geodesics in \mathfrak{X} . If $(x_0, x_1, ...)$ and $(y_0, y_1, ...)$ are both in the class ω , with $x_0 = x$ and $y_0 = y$, there is an $h \in \mathbb{Z}$ such that $y_n = x_{n+h}$ for all sufficiently large *n*. We write $h(x, y; \omega) = h$. There is a natural topology on Ω making it a totally disconnected compact space. Let $\mathcal{C}^{\infty}(\Omega)$ denote the space of locally constant functions $\Omega \to \mathbb{C}$. There is also a natural action of \mathfrak{C} on Ω . For non-zero $s \in \mathbb{C}$, we can define a representation of \mathfrak{C} on $\mathcal{C}^{\infty}(\Omega)$ by

$$(\pi_s(g) F)(\omega) = F(g^{-1}\omega) \left(\frac{s}{\sqrt{q}}\right)^{h(go, o; \omega)}$$

The factor \sqrt{q} on the right is a normalization so that, when |s| = 1, π_s is unitarizable with respect to the inner product $\langle F_1, F_2 \rangle = \int_{\Omega} F_1(\omega) \overline{F_2(\omega)} d\nu_o(\omega)$ on $\mathcal{C}^{\infty}(\Omega)$. Here ν_o is the natural probability on Ω associated with the vertex o [4, p. 34]. The representations π_s are irreducible for |s| = 1, and make up the spherical principal series of representations of Ω . They remain irreducible when restricted to H, and are also so named in that context.

Let $\chi_s: F^{\times} \to \mathbb{C}^{\times}$ be the quasi-character $a \mapsto s^{\operatorname{ord}(a)}$ of F^{\times} . Then it is routine to see that the restriction of π_s to H, regarded as a representation of G, is the principal series representation $\varrho_s = \mathcal{B}(\chi_s, \chi_{s^{-1}})$ defined in [1, p. 471]. Indeed, let ω_0 be the class of the geodesic $(g_0 o, g_1 o, \ldots)$, where $g_n = \begin{pmatrix} 1 & 0 \\ 0 & \sigma^n \end{pmatrix}$ for $n \in \mathbb{N}$. The set of $g \in G$ such that $g\omega_0 = \omega_0$ is the set P of upper-triangular matrices in G. We define $T: \mathcal{C}^{\infty}(\Omega) \to V_s$, the representation space of ϱ_s by

$$(TF)(g) = F(g^{-1}\omega_0) \left(\frac{s}{\sqrt{q}}\right)^{h(go, o; \omega_0)}$$

It is not hard to show that T is a bijection, intertwining π_s and ϱ_s on H.

The following is well-known. See [3]; cf. [4, Corollary II.6.5]. We include a proof for the convenience of the reader.

PROPOSITION 3.4. – Let λ be the unitary representation of \mathfrak{C} on $l^2(\mathfrak{X})$ obtained from the natural action of \mathfrak{C} on \mathfrak{X} . Then λ is unitarily equivalent to $\operatorname{Ind}_{K_0}^{\mathfrak{C}}\mathbf{1}$, and λ is the direct integral of the representations π_s , |s| = 1. The same is true when we restrict λ and the π_s 's to H.

PROOF. – Firstly, λ is unitarily equivalent to $\operatorname{Ind}_{K_0}^{\mathbb{C}} 1$. To see this, for each vertex $x \in \mathfrak{X}$, choose $g_x \in \mathfrak{C}$ such that $g_x x = o$. Then \mathfrak{C} is the disjoint union of the cosets $K_o g_x$, $x \in \mathfrak{X}$. For $f \in l^2(\mathfrak{X})$, define $F : \mathfrak{C} \to \mathbb{C}$ by $F(kg_x) = f(x)$ for all $k \in K_o$ and $x \in \mathfrak{X}$. Then F is in the representation space of $\operatorname{Ind}_{K_o}^{\mathbb{C}} 1$, and it is easy to check that this defines a unitary map intertwining λ and $\operatorname{Ind}_{K_o}^{\mathbb{C}} 1$.

The remaining statements are well-known, and implicit in [FN, Theorem 6.4], and we omit the proof. Proposition 4.7 below is a similar but somewhat less well-known fact, and we prove that for the convenience of the reader. $\hfill\blacksquare$

PROPOSITION 3.5. – When τ is a character, and q > 2, then $\operatorname{Ind}_{ZK}^G \tau$, as a representation of H = PGL(2, F), is the product of a character of H and the direct integral of the spherical principal series representations of H. When τ is a character and q = 2, then $\operatorname{Ind}_{ZK}^G \tau$ is an irreducible supercuspidal representation of G.

PROOF. – Our τ comes from a character of $PGL(2, \mathbb{F}_q)$, and hence a character of $G_0 = GL(2, \mathbb{F}_q)$ trivial on the centre Z_0 of G_0 . So when $q \neq 2$, it is of the form $gZ_0 \mapsto \chi_0 (\det(g))$, where χ_0 is a character of \mathbb{F}_q^{\times} [14], [1, § 4.1]. For triviality on Z_0, χ_0 must take only values 1 and -1. Using $\mathfrak{D}/\mathfrak{m}\mathfrak{D} \cong \mathbb{F}_q, \chi_0$ lifts to a character of \mathfrak{D}^{\times} , and then to a character χ of F^{\times} by setting $\chi(\mathfrak{m}) = 1$. So τ is the restriction to ZK of the character $\tilde{\chi}: g \mapsto \chi(\det(g))$ of GL(2, F), which is trivial on Z. Then

$$\operatorname{Ind}_{ZK}^G \tau = \operatorname{Ind}_{ZK}^G \widetilde{\chi}_{|ZK} \cong \widetilde{\chi} \cdot \operatorname{Ind}_{ZK}^G 1$$
.

Now $\operatorname{Ind}_{ZK}^G 1$ is clearly trivial on Z, and so factors through the representation $\operatorname{Ind}_{K_0\cap H}^H 1$ of H, which is the restriction to H of the representation $\operatorname{Ind}_{K_0}^{\mathfrak{C}} 1$ of \mathfrak{C} .

Let λ be as in Proposition 3.4. Then $\operatorname{Ind}_{K_o}^{\operatorname{cl}} 1$ is equivalent to λ . Hence by Proposition 3.4, $\operatorname{Ind}_{K_o\cap H}^{H} 1$, regarded as a representation of *G*, is the direct integral of the representations $\mathscr{B}(\chi_s, \chi_{s^{-1}}), |s| = 1$.

The product of the character $\tilde{\chi}: g \mapsto \chi(\det(g))$ and $\mathcal{B}(\chi_s, \chi_{s^{-1}})$ is equivalent to $\mathcal{B}(\chi\chi_s, \chi\chi_{s^{-1}})$ [1, p. 490], and so $\operatorname{Ind}_{ZK}^G \tau$ is the direct integral of these principal series representations, which are not in the spherical series if χ_0 is non-trivial.

Finally, suppose that q = 2, and that τ is the non-trivial character of $PGL(2, \mathbb{F}_2) \cong \mathfrak{S}_3$. Then $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ fixes $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and interchanges $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. So it is an odd permutation of $\mathbb{P}^1(\mathbb{F}_2)$, and the value of τ there is -1. Hence there is no non-zero linear functional $\phi : \mathbb{C} \to \mathbb{C}$ such that $\phi \left(\tau \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right) v \right) = \phi(v)$ for all $v \in \mathbb{C}$. So τ satisfies the condition of being cuspidal (though it is usually not thought of as such), and the proof of Theorem 4.8.1 in [1] goes through without change, taking $V_0 = \mathbb{C}$ and $\pi_0 = \tau$. So $\operatorname{Ind}_{ZK}^G \tau$ is irreducible and supercuspidal.

The case when τ is special.

When τ is special we are led to consider the representation π of \mathcal{C} obtained from its natural action on the set \mathcal{E} of (undirected) edges of \mathfrak{X} . We also consider the natural action on the set \mathcal{E}^d of directed edges of \mathfrak{X} . If e = (x, y) is a directed edge, let e' denote the edge (y, x). If $f: \mathcal{E}^d \to \mathbb{C}$ is a function, let $f': \mathcal{E}^d \to \mathbb{C}$ be defined by f'(e) = f(e'). We call f even if f' = f, and odd if f' = -f. Let $l^2(\mathcal{E})$ and $l^2(\mathcal{E}^d)$ denote the spaces of square summable functions on \mathcal{E} and \mathcal{E}^d , respectively. Let $l_e^2(\mathcal{E}^d)$ and $l_o^2(\mathcal{E}^d)$ denote the spaces of even and odd elements of $l^2(\mathcal{E}^d)$, respectively. Clearly, the map $f \mapsto ((f+f')/2, (f-f')/2)$ is an isomorphism $l^2(\mathcal{E}^d) \to l_e^2(\mathcal{E}^d) \oplus l_o^2(\mathcal{E}^d)$. Also, $(Tf)(\{x, y\}) = \sqrt{2}f((x, y))$ defines an isomorphism $T: l_e^2(\mathcal{E}^d) \to l^2(\mathcal{E})$.

The group \mathfrak{C} acts on \mathfrak{E} and \mathfrak{E}^d in a natural way, and hence on each of the spaces $l^2(\mathfrak{E})$, $l^2(\mathfrak{E}^d)$, $l^2_{\mathrm{e}}(\mathfrak{E}^d)$ and $l^2_{\mathrm{o}}(\mathfrak{E}^d)$. Let π , π^d , π^d_{e} and π^d_{o} denote the corresponding representations of \mathfrak{C} .

LEMMA 3.6. - Let $\chi: \mathfrak{A} \to \{-1, 1\}$ denote the non-trivial character $g \mapsto (-1)^{d(o, go)}$ of \mathfrak{A} . Then we have the following unitary equivalences. (i) $\pi^d \cong \pi^d_e \oplus \pi^d_o$, (ii) $\pi^d_e \cong \pi$, and (iii) $\pi^d_o \cong \chi \otimes \pi^d_e$.

PROOF. – The equivalences in (i) and (ii) are given by the bijections $l^2(\mathcal{E}^d) \rightarrow l_e^2(\mathcal{E}^d) \oplus l_o^2(\mathcal{E}^d)$ and $l_e^2(\mathcal{E}^d) \rightarrow l^2(\mathcal{E})$ defined above. To see (iii), fix a vertex $o \in \mathcal{X}$, and define $S: l_o^2(\mathcal{E}^d) \rightarrow l_e^2(\mathcal{E}^d)$ by $(Sf)((x, y)) = (-1)^{d(o, x)} f((x, y))$. This is easily checked to be a well-defined map. For $g \in \mathcal{C}$,

$$\begin{aligned} (S(\pi_o^d(g) f))((x, y)) &= (-1)^{d(o, x)}(\pi_o^d(g) f)((x, y)) \\ &= (-1)^{d(o, x)} f((g^{-1}x, g^{-1}y)) \\ &= (-1)^{d(o, go)}(-1)^{d(o, g^{-1}x)} f((g^{-1}x, g^{-1}y)) \\ &= \chi(g)(Sf)((g^{-1}x, g^{-1}y)) \\ &= (\chi(g) \pi_e^d(g)(Sf))((x, y)). \end{aligned}$$

If $e = (x, y) \in \mathcal{E}^d$, let i(e) denote the initial vertex x of e. The space V_e of $f \in l_e^2(\mathcal{E}^d)$ which satisfy $\sum_{e:i(e)=x} f(e) = 0$ for each $x \in \mathcal{X}$ is invariant under π_e^d , and so gives a subrepresentation sp_e of π_e^d . In the same way, we can define a subrepresentation sp_o of π_o^d on $V_o \subset l_o^2(\mathcal{E}^d)$. The representations sp_e and sp_o are known to be irreducible, and are called the *special* representations of \mathcal{C} (see [4, § III.2]). By part (iii) of the above lemma, sp_o $\cong \chi \otimes$ sp_e.

LEMMA 3.7. – Let λ denote the unitary representation of \mathfrak{C} on $l^2(\mathfrak{X})$ obtained by the natural action of \mathfrak{C} on \mathfrak{X} . Then $\pi_o^d \cong \operatorname{sp}_o \oplus \lambda$, and so $\pi_e^d \cong \operatorname{sp}_e \oplus (\chi \otimes \lambda)$.

PROOF. – Define $T: l^2(\mathfrak{X}) \to l_o^2(\mathcal{E}^d)$ by (Tf)((x, y)) = f(y) - f(x). It is easy to check that T is continuous, with norm at most $2\sqrt{q+1}$, and intertwines λ and π_o^d . Let T = UA be the polar decomposition of T. Thus A is a positive hermitian operator on $l^2(\mathfrak{X})$, and U is a partial isometry, inducing an isometric isomorphism of $M = \ker(T)^{\perp}$ onto $N = \ker(T^*)^{\perp}$ (cf. [13, Theorem 3.2.17]). From the construction of this decomposition, it is clear that U intertwines λ and π_o^d . Clearly T is injective, and so $M = l^2(\mathfrak{X})$, and thus the restriction of π_o^d to N is unitarily equivalent to λ . Also, for $F \in l_o^2(\mathcal{E}^d)$, $(T^*F)(x) =$ $-2\sum_{e \in \mathcal{E}^d: i(e) = x} F(e)$, and so $\ker(T^*) = V_o$. Hence $N = V_o^{\perp}$, and so $l_o^2(\mathcal{E}^d) = V_o \oplus N$. The first statement in the lemma has now been proved, and the second one follows from Lemma 3.6, since $\chi^{-1} = \chi$.

Recall that o' is a vertex adjacent to o. Notice that π^d is the representation obtained by inducing to \mathcal{A} the trivial character on $K(\{o, o'\}) = \{g \in \mathcal{A} : go = o \text{ and } go' = o'\}$. This is because \mathcal{A} acts transitively on \mathfrak{X} and K_o acts transitively on the set of neighbours of o, so that \mathcal{A} acts transitively on \mathcal{E}^d .

If we take $o' = [g_1L_0]$ for $g_1 = \begin{pmatrix} 1 & 0 \\ 0 & \varpi \end{pmatrix}$, then the preimage in G of $K(\{o, o'\})$ is ZK', where K' is the set of all matrices

$$\begin{pmatrix} a & b \\ \varpi c & d \end{pmatrix}$$
,

where $a, d \in \mathfrak{O}^{\times}$ and $b, c \in \mathfrak{O}$. Since *G* also acts transitively on \mathfrak{X} and *K* acts transitively on the set of neighbours of *o*, the restriction of π^d to *H*, regarded as a representation of *G*, is $\operatorname{Ind}_{ZK'}^G 1$.

There is a special representation of $G_0 = GL(2, \mathbb{F}_q)$ corresponding to each character χ of \mathbb{F}_q^{\times} , obtained by inducing the character $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto \chi(ad)$ of P_0 from P_0 to G_0 , and taking a q-dimensional subrepresentation. For this to be trivial on the centre Z_0 of G_0 , we need χ^2 to be trivial. When q is even, this forces χ to be trivial, but when q is odd, there is a unique character χ_1 of \mathbb{F}_q^{\times} of order 2. Let τ_0 and τ_1 be the special representations of $PGL(2, \mathbb{F}_q)$ corresponding to the trivial character and to χ_1 , respectively. We can lift χ_1 to a character $\tilde{\chi}_1$ of F^{\times} by first lifting to \mathfrak{O}^{\times} using the surjection $\mathfrak{O} \to \mathfrak{O}/\varpi \mathfrak{O} \cong \mathbb{F}_q$, then to F^{\times} by mapping ϖ to 1.

PROPOSITION 3.8. – Let τ_0 and τ_1 be the special representations of $PGL(2, \mathbb{F}_q)$, as above (the latter existing only when q is odd). Lift these to ZK using (3.2). Then $\operatorname{Ind}_{ZK}^G \tau_0$, regarded as a representation of H, is unitarily equivalent to the direct sum of the restrictions to H of $\chi \otimes \lambda$, sp_e and sp_o . For q odd, $\operatorname{Ind}_{ZK}^G \tau_1$ is equivalent to the product of $\operatorname{Ind}_{ZK}^G \tau_0$ by the character $g \mapsto \tilde{\chi}_1(\det(g))$.

PROOF. – We have $\operatorname{Ind}_{P_0}^{G_0} 1 = 1 \oplus \tau_0$, where the 1's on the left and right denote the trivial characters of P_0 and G_0 , respectively.

Next observe that when we lift $\operatorname{Ind}_{P_0}^{G_0}1$ to ZK using (3.2), we get $\operatorname{Ind}_{ZK}^{ZK}1$, where K' is defined above. This is because K' is the preimage of P_0 in G_0 under the natural map $K \to GL(2, \mathbb{F}_q)$. Hence

$$\operatorname{Ind}_{ZK'}^{ZK'} 1 \cong 1 \oplus \tau_0$$

regarding the representations on the right as defined on ZK. Hence by transitivity of induction, we have

$$\operatorname{Ind}_{ZK}^G 1 \oplus \operatorname{Ind}_{ZK}^G \tau_0 \cong \operatorname{Ind}_{ZK'}^G 1$$

Now $\operatorname{Ind}_{ZK}^G 1$ regarded as a representation of H, is the restriction to H of λ , as we saw in the proof of Proposition 3.5. Also, $\operatorname{Ind}_{ZK}^G 1$ regarded as a representation of H, is the restriction to H of π^d , as we saw above. So by Lemma 3.7 and parts (i) and (iii) of Lemma 3.6 we have

$$\lambda \oplus \operatorname{Ind}_{ZK}^G \tau_0 \cong \lambda \oplus (\chi \otimes \lambda) \oplus \operatorname{sp}_{\mathrm{e}} \oplus \operatorname{sp}_{\mathrm{o}},$$

with the λ on the left and the representations on the right restricted to *G*. Since the representations on both sides are all finite in the sense of [10] (see pp. 33, 45 and 120-122 there), we can cancel λ from both sides, obtaining the stated decomposition of $\operatorname{Ind}_{ZK}^G \tau_0$. Starting from

$$\chi_1' \oplus \tau_1 = \operatorname{Ind}_{P_0}^{G_0} \chi_1 \cong \chi_1' \otimes \operatorname{Ind}_{P_0}^{G_0} 1,$$

where $\chi'_1(g) = \chi_1(\det(g))$, it is easy to prove the statement about $\operatorname{Ind}_{ZK} \tau_1$.

4. – The case when τ is principal series.

There is a principal series representation $\mathcal{B}(\chi_1, \chi_2)$ of $G_0 = GL(2, \mathbb{F}_q)$ corresponding to each pair (χ_1, χ_2) of distinct characters of \mathbb{F}_q^{\times} , obtained by inducing the character $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto \chi_1(a) \chi_2(d)$ of P_0 from P_0 to G_0 [14, § 8], [1, § 4.1]. Its dimension is q + 1. The representations $\mathcal{B}(\chi_1, \chi_2)$ and $\mathcal{B}(\chi_2, \chi_1)$ are equivalent. For $\mathcal{B}(\chi_1, \chi_2)$ to be trivial on the centre Z_0 of G_0 , we need $\chi_2 = \chi_1^{-1}$.

So we start with a character χ_0 of \mathbb{F}_q^{\times} such that χ_0^2 is non-trivial. We define a character $\chi_0': \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto \chi_0(a/d)$ of P_0 , then form $\tau_0 = \mathcal{B}(\chi_0, \chi_0^{-1}) = \operatorname{Ind}_{P_0}^{G_0} \chi_0'$. This lifts to a q + 1-dimensional representation τ of ZK in the usual way: for $\lambda \in F^{\times}$ and $k \in K$, set $\tau(\lambda k) = \tau_0(k)$, where k denotes the image of k in G_0 . LEMMA 4.1. – The above representation τ of ZK is unitarily equivalent to $\operatorname{Ind}_{ZK'}^{ZK}\chi'$, where χ' is the character $\lambda k \mapsto \chi'_0(\dot{k})$ of ZK'. Hence $\operatorname{Ind}_{ZK}^G\tau \cong \operatorname{Ind}_{ZK'}^G\chi'$.

PROOF. – Let V_0 and V be the representation spaces of τ and $\operatorname{Ind}_{ZK}^{ZK} \chi'$, respectively. If $f_0 \in V_0$, then $f_0: G_0 \to \mathbb{C}$ is a function such that $f_0(pg) = \chi'_0(p) f_0(g)$ for all $p \in P_0$ and $g \in G_0$. We then define $f \in V$ by $f(\lambda k) = f_0(k)$. It is routine to check that $f_0 \mapsto f$ gives a unitary equivalence. The last statement follows by transitivity of induction.

Of course $\operatorname{Ind}_{ZK'}^G \chi'$ is trivial on Z, and it will be convenient to work with the corresponding representation $\operatorname{Ind}_{K''}^H \chi''$, where K'' is the image of K' in H = PGL(2, F), and χ'' is the character $kZ \mapsto \chi'(k)$ of K''.

Studying $\operatorname{Ind}_{K''}^{H}\chi''$ leads us to consider the set $\widehat{H}_{\chi''}$ of equivalence classes of irreducible continuous unitary representations π of H for which $\mathcal{H}_{\pi,\chi''} = \{\xi \in \mathcal{H}_{\pi}: \pi(k) \ \xi = \chi''(k) \ \xi$ for all $k \in K''\}$ is non-zero. We also need to consider the space $\mathcal{H}'' = \mathcal{H}(H//K'', \overline{\chi''})$ consisting of compactly supported functions f on H for which

(4.1)
$$f(k_1 h k_2) = \overline{\chi''(k_1 k_2)} f(h)$$

for all $h \in H$ and $k_1, k_2 \in K''$. It is easy to see that if $f_1, f_2 \in \mathcal{H}''$, then $f_1 * f_2 \in \mathcal{H}''$ and $f_1^* \in \mathcal{H}''$, where $f_1^*(h) = \overline{f(h^{-1})}$. The algebra \mathcal{H}'' is an example of a τ -spherical Hecke algebra, described in [7, Appendix 1], for example.

To study \mathcal{H}' , it is convenient to work with the space \mathcal{H}' of continuous functions $f: G \to \mathbb{C}$ of compact support such that

(4.2)
$$f(k_1' g k_2') = \overline{\chi'(k_1' k_2')} f(g)$$

for all $g \in G$ and $k'_1, k'_2 \in K'$. It is also an example of a τ -spherical Hecke algebra.

Define $\Lambda : \mathcal{C}_c(G) \to \mathcal{C}_c(H)$ by

$$(\Lambda f)(gZ) = \int_{Z} f(gz) \, dz = \int_{F^{\times}} f\left(g\begin{pmatrix} x & 0\\ 0 & x \end{pmatrix}\right) \frac{dx}{|x|},$$

where dz refers to Haar measure on Z. Then Λ is a linear surjection [1, Proposition 4.3.4]. It is clear that Λ maps \mathcal{H}' into \mathcal{H}'' . In fact, $\Lambda(\mathcal{H}') = \mathcal{H}''$, for if $f \in \mathcal{H}''$ and if $f_0 \in \mathcal{C}_c(G)$ satisfies $\Lambda(f_0) = f$, then setting

(4.3)
$$f_1(g) = \iint_{K'K'} \chi'(k_1'k_2') f_0(k_1gk_2') dk_1' dk_2'$$

where dk' refers to normalized Haar measure on K', we have $f_1 \in \mathcal{H}'$ and $\Lambda(f_1) = f$ too.

It is easy to see that \varDelta is a $\,*\,\text{-algebra}$ homomorphism. Define matrices

$$g_{m,n} := \begin{pmatrix} \varpi^m & 0 \\ 0 & \varpi^n \end{pmatrix}$$
 $(m, n \in \mathbb{Z})$, and $w_0 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

LEMMA 4.2. – Let P be the group of upper-triangular matrices in G. Then we may write G as a disjoint union of double cosets in the following two ways: $G = PK' \cup Pw_0K'$, and

(4.3)
$$G = \bigcup_{m, n \in \mathbb{Z}} K' g_{m, n} K' \cup \bigcup_{m, n \in \mathbb{Z}} K' w_0 g_{m, n} K'.$$

PROOF. – Suppose that $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ has determinant D. If $\operatorname{ord}(c) > \operatorname{ord}(d)$, then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} D/d & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ c/d & 1 \end{pmatrix}$$

exhibits g as an element of PK'. If $\operatorname{ord}(c) \leq \operatorname{ord}(d)$, then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -D/c & a \\ 0 & c \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & d/c \\ 0 & 1 \end{pmatrix}$$

exhibits g as an element of Pw_0K' . Hence $G = PK' \cup Pw_0K'$. To see that these double cosets are disjoint, we must check that $w_0 \notin PK'$. But if $k = \begin{pmatrix} a & b \\ \varpi c & d \end{pmatrix} \in K'$, then

$$w_0 k = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ \overline{\omega c} & d \end{pmatrix} = \begin{pmatrix} \overline{\omega c} & d \\ a & b \end{pmatrix} \notin P$$
.

To show (4.3), it is enough to show that if $p = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in P$, then both p and pw_0 are in the union on the right in (4.3), which is easily seen to be disjoint. There are several cases:

(i) If either ord $(b) \ge$ ord (a) or ord $(b) \ge$ ord (d), let m =ord (a) and n =ord (d). Then $p \in K' g_{m,n} K'$ because

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a/\varpi^m & 0 \\ 0 & d/\varpi^n \end{pmatrix} \begin{pmatrix} \varpi^m & 0 \\ 0 & \varpi^n \end{pmatrix} \begin{pmatrix} 1 & b/a \\ 0 & 1 \end{pmatrix}$$

and

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} 1 & b/d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \varpi^m & 0 \\ 0 & \varpi^n \end{pmatrix} \begin{pmatrix} a/\varpi^m & 0 \\ 0 & d/\varpi^n \end{pmatrix}.$$

(ii) If $\operatorname{ord}(b) < \operatorname{ord}(a)$, $\operatorname{ord}(d)$, let $m = \operatorname{ord}(a) + \operatorname{ord}(d) - \operatorname{ord}(b)$ and $n = \operatorname{ord}(a) + \operatorname{ord}(b)$

 $\operatorname{ord}(b)$. Then

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ d/b & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \overline{\omega}^m & 0 \\ 0 & \overline{\omega}^n \end{pmatrix} \begin{pmatrix} -ad/b\overline{\omega}^m & 0 \\ a/\overline{\omega}^n & b/\overline{\omega}^n \end{pmatrix}$$

shows that $p \in K' w_0 g_{m,n} K'$.

(iii) If $\operatorname{ord}(b) > \operatorname{ord}(a)$, let $m = \operatorname{ord}(d)$ and $n = \operatorname{ord}(a)$. Then

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a/\varpi^n & 0 \\ 0 & d/\varpi^m \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \varpi^m & 0 \\ 0 & \varpi^n \end{pmatrix} \begin{pmatrix} 1 & 0 \\ b/a & 1 \end{pmatrix}$$

shows that $pw_0 \in K' w_0 g_{m,n} K'$.

(iv) If $\operatorname{ord}(b) \ge \operatorname{ord}(d)$, then again let $m = \operatorname{ord}(d)$ and $n = \operatorname{ord}(a)$. Then

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & b/d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \varpi^m & 0 \\ 0 & \varpi^n \end{pmatrix} \begin{pmatrix} d/\varpi^m & 0 \\ 0 & a/\varpi^n \end{pmatrix}$$

shows that $pw_0 \in K' w_0 g_{m,n} K'$.

(v) If $\operatorname{ord}(b) \leq \operatorname{ord}(a)$ and $\operatorname{ord}(b) < \operatorname{ord}(d)$, let $m = \operatorname{ord}(b)$ and $n = \operatorname{ord}(a) + \operatorname{ord}(d) - \operatorname{ord}(b)$. Then

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ d/b & 1 \end{pmatrix} \begin{pmatrix} \varpi^m & 0 \\ 0 & \varpi^n \end{pmatrix} \begin{pmatrix} b/\varpi^m & a/\varpi^m \\ 0 & -ad/b \varpi^n \end{pmatrix}$$

shows that $pw_0 \in K' g_{m,n} K'$.

LEMMA 4.3. – Any function f satisfying (4.2) must satisfy $f(w_0 g_{m,n}) = 0$ for all $m, n \in \mathbb{Z}$.

PROOF. – Let $a \in \mathbb{O}^{\times}$, let \dot{a} denote its image in \mathbb{F}_q^{\times} , and evaluate f at

$$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \overline{\omega}^m & 0 \\ 0 & \overline{\omega}^n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \overline{\omega}^m & 0 \\ 0 & \overline{\omega}^n \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}.$$

Then we must have $\chi_0(\dot{a})f(w_0g_{m,n}) = f(w_0g_{m,n})\chi_0(\dot{a}^{-1})$. Since $\chi_0^2 \neq 1$, we can choose a so that $\chi_0(\dot{a}) \neq \chi_0(\dot{a}^{-1})$. Hence $f(w_0g_{m,n}) = 0$.

Thus \mathcal{H}' is spanned by the functions $F_{m,n}$ defined by

$$F_{m,n}(g) = \begin{cases} \overline{\chi'(k_1'k_2')} & \text{if } g = k_1'g_{m,n}k_2' \in K'g_{m,n}K', \\ 0 & \text{if } g \notin K'g_{m,n}K'. \end{cases}$$

It is convenient to normalize these functions as follows:

(4.5)
$$G_{m,n} = q^{\min\{m,n\}} F_{m,n}$$
 for $m, n \in \mathbb{Z}$.

It is also convenient to work below with Haar measure on G normalized so that K' has measure 1.

PROPOSITION 4.4. – For all $m, n, r, s \in \mathbb{Z}$,

(4.6)
$$G_{m,n} * G_{r,s} = G_{m+r,n+s}.$$

Hence the convolution algebras \mathcal{H}' and $\mathcal{C}_c(\mathbb{Z}^2)$ are isomorphic, as are \mathcal{H}' and $\mathcal{C}_c(\mathbb{Z})$.

PROOF. - We first derive the formula

(4.7)
$$(F_{m,n} * F_{r,s})(g) = q^{|r-s|} \int_{K'} F_{m,n}(gk'g_{r,s}^{-1}) \chi'(k') dk',$$

where dk' refers to normalized Haar measure on K'. By the unimodularity of G,

$$(F_{m,n} * F_{r,s})(g) = \int_{G} F_{m,n}(gx^{-1}) F_{r,s}(x) \, dx = \int_{K'g_{r,s}K'} F_{m,n}(gx^{-1}) F_{r,s}(x) \, dx \, .$$

Now $K' g_{r,s} K'$ is the union of N cosets $g_{\alpha} K'$, where N is the index of $K' \cap g_{r,s} K' g_{r,s}^{-1}$ in K'. It is easy to see that $N = q^{|r-s|}$. Writing $g_{\alpha} = k_1' g_{r,s} k_2'$,

$$\begin{split} \int_{g_a K'} F_{m,n}(gx^{-1}) F_{r,s}(x) \, dx &= \int_{K'} F_{m,n}(gx^{-1}g_a^{-1}) F_{r,s}(g_a x) \, dx \\ &= \int_{K'} F_{m,n}(gk^{\,\prime -1}k_2^{\,\prime -1}g_{r,s}^{-1}k_1^{\,\prime -1}) F_{r,s}(k_1^{\,\prime}g_{r,s}k_2^{\,\prime}k^{\,\prime}) \, dk^{\,\prime} \\ &= \int_{K'} F_{m,n}(gkg_{r,s}^{-1})\chi^{\,\prime}(k) \, dk, \end{split}$$

using (4.2) and setting $k = k'^{-1}k_2'^{-1}$. As the integral is independent of α , (4.7) follows.

We can write $F_{m,n} * F_{r,s}$ as a linear combination

$$F_{m,n} * F_{r,s} = \sum_{\alpha,\beta \in \mathbb{Z}} c_{\alpha,\beta} F_{\alpha,\beta}$$

of $F_{\alpha,\beta}$'s, and the coefficient $c_{\alpha,\beta}$ equals $(F_{m,n} * F_{r,s})(g_{\alpha,\beta})$, which we calculate using the integral on the right in (4.7), with $g = g_{\alpha,\beta}$.

To evaluate this integral, we write a typical $k' \in K'$ as the product

$$k' = \begin{pmatrix} 1 & 0 \\ \varpi u' & 1 \end{pmatrix} \begin{pmatrix} t_1 & 0 \\ 0 & t_2 \end{pmatrix} \begin{pmatrix} 1 & v \\ 0 & 1 \end{pmatrix},$$

where $u', v \in \mathfrak{O}$ and $t_1, t_2 \in \mathfrak{O}^{\times}$. According to [1, p. 466], the normalized Haar

measure on K' is then $du' dv dt_1 dt_2$, where du' and dv are the normalized Haar measures on the compact additive group \mathfrak{O} , and dt_1 and dt_2 are the normalized Haar measures on the compact multiplicative group \mathfrak{O}^{\times} . Hence

$$g_{\alpha,\beta}k'g_{r,s}^{-1} = \begin{pmatrix} \overline{\omega}^{a-r}t_1 & \overline{\omega}^{a-s}t_1v \\ \overline{\omega}^{\beta-r+1}t_1u' & \overline{\omega}^{\beta-s}(t_2+t_1u'v\overline{\omega}) \end{pmatrix}$$
$$= \begin{pmatrix} t_1 & 0 \\ 0 & t_2(1+uv\overline{\omega}) \end{pmatrix} \begin{pmatrix} \overline{\omega}^{a-r} & \overline{\omega}^{a-s}v \\ \overline{\omega}^{\beta-r+1}\widetilde{u} & \overline{\omega}^{\beta-s} \end{pmatrix},$$

where $u = t_1 t_2^{-1} u'$ and $\tilde{u} = u/(1 + uv\varpi)$. So

$$F_{m,n}(g_{\alpha,\beta}k'g_{r,s}^{-1})\chi'(k') = F_{m,n}\left(\begin{pmatrix} \overline{\varpi}^{\alpha-r} & \overline{\varpi}^{\alpha-s}v\\ \overline{\varpi}^{\beta-r+1}\widetilde{u} & \overline{\varpi}^{\beta-s} \end{pmatrix}\right)$$

On making the change of variable $u' \mapsto u$, as the integrand is then independent of t_1 and t_2 , we have

(4.8)
$$\int_{K'} F_{m,n}(g_{\alpha,\beta}k'g_{r,s}^{-1})\chi'(k')dk' = \iint_{\mathfrak{O}} F_{m,n}\left(\begin{pmatrix} \varpi^{\alpha-r} & \overline{\varpi}^{\alpha-s}v\\ \overline{\varpi}^{\beta-r+1}\widetilde{u} & \overline{\varpi}^{\beta-s} \end{pmatrix}\right)du\,dv.$$

Notice that $\operatorname{ord}(\tilde{u}) = \operatorname{ord}(u)$ for all $u \in \mathfrak{O}$. We now break the integral in (4.8) into integrals over six (non-disjoint) subsets A_1, \ldots, A_6 , the first four covering the cases $C_u = \max \{ \operatorname{ord}(u) + s - r, \operatorname{ord}(u) + \beta - \alpha \} \ge 0$ and $C_v = \max \{ \operatorname{ord}(v) + r - s, \operatorname{ord}(v) + \alpha - \beta \} \ge 0$, and the last two sets covering the cases $C_u < 0$ and $C_v < 0$. In each case we express

$$M = M(u, v) = \begin{pmatrix} \overline{\omega}^{a-r} & \overline{\omega}^{a-s}v \\ \overline{\omega}^{\beta-r+1}\widetilde{u} & \overline{\omega}^{\beta-s} \end{pmatrix}$$

as an element in a double K' coset. In the first four cases, (4.2) shows that the integrand in (4.8) is 1 or 0 according as $(\alpha, \beta) = (m + r, n + s)$ or not.

 A_1 : ord $(v) + r - s \ge 0$ and ord $(u) + \beta - \alpha \ge 0$. Then

$$M = egin{pmatrix} 1 & 0 \ \varpi^{eta - r} & 1 \end{pmatrix} egin{pmatrix} arpi^{lpha - r} & 0 \ 0 & arpi^{eta - s} \end{pmatrix} egin{pmatrix} 1 & arpi^{r - s} v \ 0 & 1 - arpi \widetilde{u} v \end{pmatrix}.$$

 A_2 : ord $(v) + r - s \ge 0$ and ord $(u) + s - r \ge 0$. Then

$$M = egin{pmatrix} arpi^{lpha - r} & 0 \ 0 & arpi^{eta - s} \end{pmatrix} egin{pmatrix} 1 & arpi^{r - s} v \ arpi^{s - r + 1} \widetilde{u} & 1 \end{pmatrix}.$$

 A_3 : ord $(u) + s - r \ge 0$ and ord $(v) + \alpha - \beta \ge 0$. Then

$$M = \begin{pmatrix} 1 & \overline{\omega}^{a-\beta} v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \overline{\omega}^{a-r} & 0 \\ 0 & \overline{\omega}^{\beta-s} \end{pmatrix} \begin{pmatrix} 1 - \overline{\omega} \tilde{u} v & 0 \\ \overline{\omega}^{s-r+1} \tilde{u} & 1 \end{pmatrix}.$$

 A_4 : ord $(u) + \beta - \alpha \ge 0$ and ord $(v) + \alpha - \beta \ge 0$. Then

$$M = \begin{pmatrix} 1 & \varpi^{\alpha-\beta} v \\ \varpi^{\beta-\alpha+1} \widetilde{u} & 1 \end{pmatrix} \begin{pmatrix} \varpi^{\alpha-r} & 0 \\ 0 & \varpi^{\beta-s} \end{pmatrix}.$$

In the remaining two cases, (4.2) show that the integrand in (4.8) is 0.

 A_5 : ord (u) + s - r < 0 and ord $(u) + \beta - \alpha < 0$. Let i =ord (u). Then

$$M = \begin{pmatrix} -\varpi^{i}\widetilde{u}^{-1} & \varpi^{\alpha-\beta-i-1} \\ 0 & \overline{\omega}^{-i}\widetilde{u} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \overline{\omega} & 0 \end{pmatrix} \begin{pmatrix} \overline{\omega}^{\beta-r+i} & 0 \\ 0 & \overline{\omega}^{\alpha-s-i-1} \end{pmatrix} \begin{pmatrix} 1 & \overline{\omega}^{r-s-1}\widetilde{u}^{-1} \\ 0 & 1-\overline{\omega}\widetilde{u}v \end{pmatrix}.$$

 A_6 : ord (v) + r - s < 0 and ord $(v) + a - \beta < 0$. Let j = ord(v). Then

$$M = \begin{pmatrix} 1 & 0 \\ \varpi^{\beta-\alpha}v^{-1} & 1-\varpi\tilde{u}v \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \varpi & 0 \end{pmatrix} \begin{pmatrix} \varpi^{\beta-r-j-1} & 0 \\ 0 & \varpi^{j+\alpha-s} \end{pmatrix} \begin{pmatrix} -\varpi^{j}v^{-1} & 0 \\ \varpi^{s-r-j} & \varpi^{-j}v \end{pmatrix}.$$

Now $A_5 \neq \emptyset$ if and only if s < r and $\beta < \alpha$, while $A_6 \neq \emptyset$ if and only if r < s and $\alpha < \beta$. So at least one of the sets A_5 and A_6 is empty.

Also, the integrand on the right in (4.8) is 1 for all $u, v \in \mathfrak{O} \setminus (A_5 \cup A_6)$ if $(\alpha, \beta) = (m + r, n + s)$, and 0 for all $u, v \in \mathfrak{O}$ for any other (α, β) . Hence $F_{m,n} * F_{r,s} = cF_{m+r,n+s}$, where $c = q^{|r-s|}(1 - m(A_5) - m(A_6))$.

The Haar measure of the set of $u \in \mathfrak{O}$ such that $\operatorname{ord}(u) = i$ is $(q-1)/q^{i+1}$, and hence the measure of $\{u \in \mathfrak{O} : \operatorname{ord}(u) < l\}$ equals $1 - 1/q^l$ for all $l \ge 0$.

To complete the proof of Proposition 4.4, we again we need to consider cases. Firstly, if r = s, then $A_5 = A_6 = \emptyset$, and so c = 1. Also, in this case, min $\{m + r, n + s\} = \min \{m, n\} + \min \{r, s\}$, and (4.6) follows. We now consider the case $r \neq s$. Write $\alpha = m + r$ and $\beta = n + s$.

1. If r > s and m > n, then n + s < m + r and $\alpha - \beta = m - n + r - s > r - s$. So $m(A_5) = 1 - 1/q^{r-s}$, $m(A_6) = 0$ and c = 1. Thus $G_{m,n} * G_{r,s} = q^{n+s} F_{m,n} * F_{r,s} = q^{n+s} F_{m+r,n+s} = G_{m+r,n+s}$.

2(a). If r > s, $m \le n$ and n + s < m + r, then $0 < \alpha - \beta = (r - s) - (n - m) \le r - s$. So $m(A_5) = 1 - 1/q^{\alpha - \beta}$, $m(A_6) = 0$ and $c = q^{r - s}/q^{\alpha - \beta} = q^{n - m}$. Thus $G_{m,n} * G_{r,s} = q^{m+s} F_{m,n} * F_{r,s} = q^{m+s} q^{n-m} F_{m+r,n+s} = q^{n+s} F_{m+r,n+s} = G_{m+r,n+s}$.

2(b). If r > s, $m \le n$ and $m + r \le n + s$, then $\alpha - \beta \le 0$. So $m(A_5) = m(A_6) = 0$ and $c = q^{r-s}$. Thus $G_{m,n} * G_{r,s} = q^{m+s} F_{m,n} * F_{r,s} = q^{m+s} q^{r-s} F_{m+r,n+s} = q^{m+r} F_{m+r,n+s} = G_{m+r,n+s}$.

3. If r < s and m < n, then m + r < n + s and $\beta - a = n - m + s - r > s - r$. So $m(A_5) = 0$, $m(A_6) = 1 - 1/q^{s-r}$ and c = 1. Thus $G_{m,n} * G_{r,s} = q^{m+r}F_{m,n} * F_{r,s} = q^{m+r}F_{m+r,n+s} = G_{m+r,n+s}$.

4(a). If r < s, $m \ge n$ and m + r < n + s, then $0 < \beta - \alpha = (s - r) - (m - n) \le s - r$. So $m(A_5) = 0$, $m(A_6) = 1 - 1/q^{\beta - \alpha}$ and $c = q^{s - r}/q^{\beta - \alpha} = q^{m - n}$. Thus $G_{m,n} * G_{r,s} = q^{n+r}F_{m,n} * F_{r,s} = q^{n+r}q^{m-n}F_{m+r,n+s} = q^{m+r}F_{m+r,n+s} = G_{m+r,n+s}$. 4(b). If r < s, $m \ge n$ and $n + s \le m + r$, then $\beta - a \le 0$. So $m(A_5) = m(A_6) = 0$ and $c = q^{s-r}$. Thus $G_{m,n} * G_{r,s} = q^{n+r}F_{m,n} * F_{r,s} = q^{n+r}q^{s-r}F_{m+r,n+s} = q^{n+s}F_{m+r,n+s} = G_{m+r,n+s}$.

COROLLARY 4.5. – For any $\pi \in \widehat{H}$, the space $\mathcal{H}_{\pi, \chi''}$ is at most one-dimensional.

PROOF. – If $f \in \mathcal{H}'$, then it is easy to see that $\pi(f)$ maps $\mathcal{H}_{\pi,\chi''}$ into itself. Hence we obtain a representation of the commutative algebra \mathcal{H}'' on $\mathcal{H}_{\pi,\chi''}$. If $\mathcal{H}_{\pi,\chi''}$ had dimension greater than 1, there would be a non-zero proper subspace W of $\mathcal{H}_{\pi,\chi''}$ invariant under $\pi(f)$ for all $f \in \mathcal{H}''$. Choose $\eta \in \mathcal{H}_{\pi,\chi''}$ of norm 1 such that $\eta \in W^{\perp}$. If $f \in \mathcal{C}_c(H)$, define $f_1: H \to \mathbb{C}$ by

$$f_1(h) = \int_{K''} \int_{K''} \chi''(k_1k_2) f(k_1hk_2) dk_1 dk_2,$$

where dk_1 and dk_2 refer to normalized Haar measure on K''. Then $f_1 \in \mathcal{H}''$, and for any $\xi \in W$ we have

$$\langle \pi(f) \eta, \xi \rangle = \langle \pi(f_1) \eta, \xi \rangle = \langle \eta, \pi(f_1^*) \xi \rangle = 0$$

Hence $\{\pi(f) \eta : f \in \mathcal{C}_c(H)\}$ is a subset of W^{\perp} , and so its closure is a non-zero proper *H*-invariant subspace of \mathcal{H}_{π} , contradicting the irreducibility of π .

For each $z \in \mathbb{T}$, we get a character χ_z of F^{\times} by setting

$$\chi_z(a\pi^r) = \chi_0(\dot{a}) z^r$$
 for $a \in \mathfrak{O}^{\times}$ and $r \in \mathbb{Z}$,

where \dot{a} is as usual the image of a in \mathbb{F}_q . Define a character χ'_z of P by setting

$$\chi'_z \left(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right) = \chi_z(a/d) \,.$$

Let σ_z be the unitary representation of G obtained by unitarily inducing χ'_z from P to G. Thus the representation space \mathcal{H}_z of σ_z consists of the completion of the space \mathcal{H}_z^0 of locally constant functions $f: G \to \mathbb{C}$ such that $f(pg) = \delta(p)^{1/2}\chi'_z(p)_f(g)$ for all $p \in P$ and $g \in G$ with respect to the norm $||f|| = \left(\int_K |f(k)| dk\right)^{1/2}$, and $(\sigma_z(g) f)(g') = f(g'g)$ for $f \in \mathcal{H}_z^0$ [1, pp. 469, 507]. Here δ is the modular quasi-character of P, defined by

$$\int_{P} f(gp) \, dg = \delta(p) \int_{P} f(g) \, dg \quad \text{ for any } f \in \mathcal{C}_{c}(P) \text{ and } p \in P,$$

where dg refers to left Haar measure on P. So $\delta(p) = q^{\operatorname{ord}(d/a)}$ if $p = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ [1, p. 426]. Note that $\delta(p)$ is denoted $1/\Delta(p)$ in [5, p. 46].

PROPOSITION 4.6. – The representations σ_z are irreducible, and trivial on Z. Regarding $\sigma_z \in \widehat{H}$, we have $\sigma_z \in \widehat{H}_{\chi^{"}}$, and every $\pi \in \widehat{H}_{\chi^{"}}$ is equivalent to exactly one of the σ_z .

PROOF. – On the uncompleted space \mathcal{H}_z^0 , σ_z is $\mathcal{B}(\chi_z, \chi_z^{-1})$, and so is (algebraically) irreducible [1, Theorem 4.5.1] and unitarizable [1, Proposition 4.6.11]. It follows that σ_z is irreducible on the completed space \mathcal{H}_z . For if T is a continuous linear operator which commutes with each $\sigma_z(g)$, then for each compact open subgroup K_0 of G, T commutes with $Q_{K_0} = \int_{K_0} \sigma_z(k) dk$, which is the orthogonal projection of the space $\mathcal{H}_z(K_0)$ of right K_0 -invariant elements of \mathcal{H}_z . So T maps each $\mathcal{H}_z(K_0)$ into itself, and hence their union, \mathcal{H}_z^0 , into itself. By algebraic irreducibility, T must be a multiple of the identity operator. So σ_z is irreducible.

By the first part of Lemma 4.2, and since $\delta(p) = 1$ and $\chi'(p) = \chi'_z(p)$ for all $p \in P \cap K'$,

$$f_z(g) = \begin{cases} \delta(p)^{1/2} \chi'_z(p) \chi'(k') & \text{if } g = pk' \in PK', \\ 0 & \text{if } g \in Pw_0K'. \end{cases}$$

well-defines a function $f_z \in \mathcal{H}_z$ such that $\sigma_z(k') f_z = \chi'(k') f_z$ for all $k' \in K'$ and such that f(1) = 1. It follows that the representation of H corresponding to σ_z is in $\widehat{H}_{\chi''}$.

Any $f \in \mathcal{H}_z$ such that $\sigma_z(k') f = \chi'(k') f$ for all $k' \in K'$ must be a multiple of f_z . This is immediate from Corollary 4.5, but can easily be seen directly as follows: taking $p = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ and $p' = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$, where $a \in \mathfrak{O}^{\times}$, we have $p \in P \cap K'$, $pw_0 = w_0 p'$, $\delta(p) = 1$ and $\chi'_z(p) = \chi'(p)$. Thus

$$\chi'(p) f(w_0) = f(pw_0) = f(w_0 p') = \chi'(p') f(w_0),$$

which means that $\chi_0(\dot{a}^{-1}) f(w_0) = \chi_0(\dot{a}) f(w_0)$. Since $\chi_0^2 \neq 1$, there is an $a \in \mathbb{O}^{\times}$ such that $\chi_0(\dot{a}^{-1}) \neq \chi_0(\dot{a})$. Hence $f(w_0) = 0$. Since *f* is determined by f(1) and $f(w_0)$, we must have $f = cf_z$ for c = f(1).

For any $F \in \mathcal{H}'$, $f = \pi(F)(f_z)$ satisfies $\sigma_z(k') f = \chi'(k') f$ for all $k' \in K'$, and so $f = cf_z$ for c = f(1). We next show that if $F = F_{m,n}$, then $c = q^{|m-n|/2} z^{m-n}$. Since $F_{m,n}^* = F_{-m,-n}$, we may assume that $m \leq n$. Now

$$c = (\sigma_z(F_{m,n}) f_z)(1) = \int_G F_{m,n}(x) f_z(x) dx = (q+1) \int_P \left(\int_K F_{m,n}(pk) f_z(pk) dk \right) dp$$

by [1, Proposition 2.1.5(ii)]. Here dk denotes normalized Haar measure m_K on K and dp denotes left Haar measure on P, normalized so that $P \cap K$ has measure 1. The factor q + 1 is to normalize the Haar measure dx on G so that K' has measure 1.

Now K is the union of the cosets w_0K' and g_aK' , where $a \in A$ and $g_a = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$. Notice that

$$g_{\alpha} = \begin{pmatrix} -1/\alpha & 1/\alpha \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha & 1 \\ 0 & 1 \end{pmatrix} \in Pw_0 K$$

for all $\alpha \in A \setminus \{0\}$, so that $f_z(pk) = 0$ for $p \in P$ and $k \in K \setminus K'$. If $k \in K'$, then

$$F_{m,n}(pk) f_z(pk) = F_{m,n}(p) \overline{\chi'(k)} \chi'(k) f_z(p) = F_{m,n}(p) f_z(p).$$

Since $m_K(K') = 1/(q+1)$,

$$\int_{K} F_{m,n}(pk) f_{z}(pk) dk = \int_{K'} F_{m,n}(pk) f_{z}(pk) dk = F_{m,n}(p) f_{z}(p)/(q+1).$$

Hence $c = \int_{P} F_{m,n}(p) f_{z}(p) dp$.

Now *P* is the product of the two closed groups *D* and *U*, where *D* consists of the diagonal matrices $\begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}$, where $a_1, a_2 \in F^{\times}$ and *U* consists of the matrices $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, where $x \in F$. So by [1, Proposition 2.1.5(ii)] again, for any $\varphi \in \mathcal{C}_c(P)$,

(4.9)
$$\int_{P} \varphi(p) dp = C \int_{F^{\times}} \int_{F^{\times}} \int_{F} \varphi\left(\begin{pmatrix} a_1 & a_1 x \\ 0 & a_2 \end{pmatrix} \right) \frac{da_1}{|a_1|} \frac{da_2}{|a_2|} dx ,$$

for some C > 0, where da_1 , da_2 and dx refer to additive Haar measure m_F on F, normalized so that \mathfrak{O} has measure 1. The number C is determined by the condition that $P \cap K$ has measure 1. Taking φ to be the indicator function of $P \cap K$, and using the fact that $\begin{pmatrix} a_1 & a_1x \\ 0 & a_2 \end{pmatrix} \in P \cap K$ if and only if $a_1, a_2 \in \mathfrak{O}^{\times}$ and $x \in \mathfrak{O}$, the right hand side of (4.9) is

$$C\int_{\mathfrak{O}^{\times}}\int_{\mathfrak{O}^{\times}}\int_{\mathfrak{O}}\varphi\left(\begin{pmatrix}a_1&a_1x\\0&a_2\end{pmatrix}\right)da_1da_2dx=C(q-1)^2/q^2.$$

Thus $C = q^2/(q-1)^2$.

Recall that we are assuming that $m \leq n$. For $a_1, a_2 \in F^{\times}$ and $x \in F$,

 $\begin{pmatrix} a_1 & a_1 x \\ 0 & a_2 \end{pmatrix} \in K' g_{m, n} K' \text{ if and only if } a_1 / \varpi^m \in \mathfrak{O}^{\times}, \ a_2 / \varpi^n \in \mathfrak{O}^{\times} \text{ and } x \in \mathfrak{O},$

as is clear from the cases (i) and (ii) considered in the proof of Lemma 4.2. Hence

$$(4.10) \qquad c = C \int_{F^{\times}} \int_{F} \int_{F} (F_{m,n} \cdot f_z) \left(\begin{pmatrix} a_1 & a_1 x \\ 0 & a_2 \end{pmatrix} \right) \frac{da_1}{|a_1|} \frac{da_2}{|a_2|} dx$$
$$= C \int_{F^{\times}} \int_{F^{\times}} \int_{F} (F_{m,n} \cdot f_z) \left(\begin{pmatrix} \varpi^m a_1 & \varpi^m a_1 x \\ 0 & \varpi^n a_2 \end{pmatrix} \right) \frac{da_1}{|a_1|} \frac{da_2}{|a_2|} dx$$
$$= C \int_{\mathfrak{O}^{\times}} \int_{\mathfrak{O}^{\times}} \int_{\mathfrak{O}} (F_{m,n} \cdot f_z) \left(\begin{pmatrix} \varpi^m a_1 & \varpi^m a_1 x \\ 0 & \varpi^n a_2 \end{pmatrix} \right) da_1 da_2 dx .$$

If $a_1, a_2 \in \mathfrak{O}^{\times}$ and $x \in \mathfrak{O}$, then $p = \begin{pmatrix} a_1 & a_1 x \\ 0 & a_2 \end{pmatrix} \in P \cap K'$, and so

$$(F_{m,n} \cdot f_z) \left(\begin{pmatrix} \overline{\varpi}^m a_1 & \overline{\varpi}^m a_1 x \\ 0 & \overline{\varpi}^n a_2 \end{pmatrix} \right) = (F_{m,n} \cdot f_z)(g_{m,n}p) = (F_{m,n} \cdot f_z)(g_{m,n}),$$

since $F_{m,n}(g_{m,n}p) = \overline{\chi'(p)}$ and $f_z(g_{m,n}p) = \chi'(p)f_z(g_{m,n})$. This equals

$$f_{z}(g_{m,n}) = \delta(g_{m,n})^{1/2} \chi_{z}'(g_{m,n}) = q^{(n-m)/2} \chi_{z}(\varpi^{m-n}) = q^{(n-m)/2} z^{m-n}.$$

Hence the integrand in (4.10) equals the constant $q^{(n-m)/2}z^{m-n}$, so that

$$c = Cm_F(\mathfrak{O}^{\times})^2 m_F(\mathfrak{O}) q^{(n-m)/2} z^{m-n} = q^{(n-m)/2} z^{m-n}.$$

Let $\pi \in \widehat{H}_{\chi''}$. Since $\mathcal{H}_{\pi,\chi''}$ is 1-dimensional, if $f \in \mathcal{H}'$, then $\pi(f)(\xi)$ is a multiple $\lambda_{\pi}(f) \xi$ of ξ . Then $\lambda_{\pi}: \mathcal{H}' \to \mathbb{C}$ is a *-algebra homomorphism. It does not depend on the choice of ξ , nor on the equivalence class of π . The map $\pi \mapsto \lambda_{\pi}$ is injective from the set $\widehat{H}_{\chi''}$ into the set of *-algebra homomorphisms on \mathcal{H}'' [7, Appendix 1].

Let $f_n = \Lambda(F_{0,n}) \in \mathcal{H}'$ for $n \in \mathbb{Z}$. Thus $f_n(gZ) = \overline{\chi'(k_1k_2)}$ if $gZ = k_1g_{0,n}k_2Z$ for some $k_1, k_2 \in K'$, and \mathcal{H}' is spanned by the f_n 's. Then $f_n^* = \Lambda(F_{0,n}^*) = \Lambda(F_{0,-n}) = f_{-n}$, and by Proposition 4.4, f_n is the *n*-th convolution power of f_1 for all $n \ge 1$. Also, $f_0 * f_0 = f_0$, and $f_1 * f_1^* = f_1 * f_{-1} = qf_0$, since $F_{0,1} * F_{0,1}^* = F_{0,1} * F_{0,-1} = G_{0,1} * qG_{0,-1} = qG_{0,0} = qF_{0,0}$. Let λ be a *-algebra homomorphism on \mathcal{H}'' . Then λ is determined by $\lambda(f_1)$, and we have $\lambda(f_0) = 1$, and $|\lambda(f_1)|^2 = q$. It follows that $\lambda = \lambda_{\sigma_z}$ for some $z \in \mathbb{T}$. Hence if $\pi \in \widehat{H}_{\chi''}$ then $\lambda_{\pi} = \lambda_{\sigma_z}$ for some z, and so π must be equivalent to this σ_z .

PROPOSITION 4.7. – The representation $\operatorname{Ind}_{K^{*}}^{H}\chi^{"}$ is unitarily equivalent to the direct integral $\int_{T}^{\oplus} \sigma_{z} dz$ of the representations σ_{z} , |z| = 1.

PROOF. – Let π be an irreducible unitary representation of H, and let $\mathcal{HS}(\mathcal{H}_{\pi})$ denote the space of Hilbert-Schmidt operators on the representation space \mathcal{H}_{π} of π . It is a Hilbert space with inner product $\langle S, T \rangle = \operatorname{Trace}(T^*S)$,

and π gives a unitary representation π' on $\mathcal{HS}(\mathcal{H}_{\pi})$ by $\pi'(g)(T) = \pi(g) T$. If $f \in L^{1}(H) \cap L^{2}(H)$, let $\widehat{f}(\pi)$ denote the operator $\int_{H} f(x) \pi(x^{-1}) dx$. Let \widehat{H} denote the set of equivalence classes of irreducible representations of H. The Plancherel Theorem [5, p. 234], [2, p. 327] states that there is a measure μ on \widehat{H} so that the map $f \mapsto (\widehat{f}(\pi))$ extends to an isometry of $L^{2}(H)$ onto $\stackrel{\oplus}{\to} \mathcal{HS}(\mathcal{H}_{\pi}) d\mu(\pi)$ which intertwines the right regular representation ϱ of H and the direct integral of the representations π' .

Let $f_0 \in \mathcal{H}''$ be as defined at the end of the last proof. It is easy to see that if $\pi \in \widehat{H}$, then $\widehat{f}_0(\pi)$ is the orthogonal projection $P_{\pi, \gamma''}$ of \mathcal{H}_{π} onto $\mathcal{H}_{\pi, \gamma''}$.

Let V denote the representation space of $\operatorname{Ind}_{K^{*}}^{H}\chi^{"}$. Then $V = \{f_{0} * f : f \in L^{2}(H)\}$. If $f \in L^{1}(H) \cap L^{2}(H)$ is in V, then $f = f_{0} * f$, and so $\widehat{f}(\pi) = \widehat{f}(\pi) \widehat{f}_{0}(\pi) = \widehat{f}(\pi) \widehat{f}_{0}(\pi) = \widehat{f}(\pi) P_{\pi,\chi^{"}}$. Hence, considering the above unitary map $L^{2}(H) \rightarrow \bigoplus_{\widehat{H}} \mathcal{GS}(\mathcal{H}_{n}) d\mu(\pi)$, the image in $\int \mathcal{HS}(S(\mathcal{H}_{n}) d\mu(\pi)$ of $V \subset L^{2}(H)$ is the space of fields (S_{π}) of operators such that $S_{\pi} = S_{\pi} P_{\pi,\chi^{"}}$ for all π . Hence $S_{\pi} = 0$ unless $\mathcal{H}_{\pi,\chi^{"}} \neq \{0\}$. For each $\pi \in \widehat{H}_{\chi^{"}}$, pick $\xi_{\pi} \in \mathcal{H}_{\pi,\chi^{"}}$ of norm 1. An operator S_{π} on \mathcal{H}_{π} such that $S_{\pi} = S_{\pi} P_{\pi,\chi^{"}}$ is completely determined by $u_{\pi} = S_{\pi}(\xi_{\pi})$. In fact, $S_{\pi}(t\xi_{\pi}+\eta) = tu_{\pi}$ if $\eta \in \{\xi_{\pi}\}^{\perp}$. Hence S_{π} is a Hilbert-Schmidt operator. If $S_{\pi} = S_{\pi} P_{\pi,\chi^{"}}$ and $T_{\pi} = T_{\pi} P_{\pi,\chi^{"}}$, let $u_{\pi} = S_{\pi}(\xi_{\pi})$ and $v_{\pi} = T_{\pi}(\xi_{\pi})$. Then Trace $(T_{\pi}^{*}S_{\pi}) = \langle u_{\pi}, v_{\pi} \rangle$. Hence $S_{\pi} \mapsto S_{\pi}(\xi_{\pi})$ defines an isometry of $\{S_{\pi} \in \mathcal{L}(\mathcal{H}_{\pi}) : S_{\pi} = S_{\pi} P_{\pi,\chi^{"}}\}$ onto \mathcal{H}_{π} . Hence $f \mapsto (\pi(f)(\xi_{\pi}))$ is an isometry from the subspace V of $L^{2}(H)$ onto $\int_{\mathcal{H}_{x^{*}}} \mathcal{H}_{\pi} d\mu(\pi)$ which intertwines the right translation on V, i.e., $\operatorname{Ind}_{K^{*}}^{H}\chi^{"}$, with $\widehat{H}_{x^{*}}$

By Proposition 4.6, any $\pi \in \widehat{H}_{\chi^{n}}$ is equivalent to one of the representations σ_{z} , |z| = 1, and we can take $\xi_{\pi} = f_{z}$ if $\pi = \sigma_{z}$. Because $q^{|n|} \delta_{m,n} = \langle f_{m}, f_{n} \rangle$ equals

$$\begin{split} \int_{\mathbb{T}} \langle \widehat{f}_m(\sigma_z) f_z, \widehat{F}_m(\sigma_z) f_z \rangle \, d\mu(\sigma_z) &= \int_{\mathbb{T}} \langle (\sigma_z)(f_{-m}) f_z, (\sigma_z)(f_{-n}) f_z \rangle \, d\mu(\sigma_z) \\ &= \int_{\mathbb{T}} \langle q^{|m|/2} z^m f_z, q^{|n|/2} z^n f_z \rangle \, d\mu(\sigma_z) \\ &= q^{(|m| + |n|)/2} \int_{\mathbb{T}} z^{m-n} d\mu(\sigma_z), \end{split}$$

the Plancherel measure induces the Haar measure on T via the embedding $z \mapsto \sigma_z$.

REFERENCES

- D. BUMP, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics: 55, Cambridge University Press, 1997.
- [2] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- [3] J. FARAUT, Analyse harmonique sur les paires de Gelfand et les spaces hyperboliques, Analyse Harmonique Nancy 1980, CIMPA, Nice 1983.
- [4] A. FIGÀ-TALAMANCA C. NEBBIA, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Mathematical Society Lecture Note Series 162, Cambridge University Press, Cambridge, 1991.
- [5] G. B. FOLLAND, A course in abstract harmonic analysis, CRC Press, Boca Raton, 1995.
- [6] R. HOWE, On the principal series of Gl_n over p-adic fields, Trans. Amer. Math Soc., 177 (1973), 275-296.
- [7] R. HOWE, Harish-Chandra Homomorphisms for p-adic groups, CBMS Regional Conference Series in Mathematics, No. 59, American Mathematical Society, 1985.
- [8] G. JAMES A. KERBER, The representation theory of the symmetric group, Encyclopedia of Mathematics and its applications, volume 16, Addison-Wesley, 1981.
- [9] P. C. KUTZKO, On the supercuspidal representations of Gl₂, Amer. J. Math., 100 (1978), 43-60.
- [10] G. W. MACKEY, The theory of unitary group representations, University of Chicago Press, Chicago, 1976.
- [11] G. I. OL'SHANSKII, Representations of groups of automorphisms of trees, Usp. Mat. Nauk, 303 (1975), 169-170.
- [12] G. I. OL'SHANSKII, Classification of irreducible representations of groups of automorphisms of Bruhat-Tits trees, Functional Anal. Appl., 11 (1977), 26-34.
- [13] G. K. PEDERSEN, Analysis now, Graduate Texts in Mathematics 118, Springer Verlag (1989).
- [14] I. PIATETSKI-SHAPIRO, Complex representations of GL(2, K) for finite fields K, Contemporary Mathematics, Vol. 16, American Mathematical Society, Providence, 1983.
- [15] W. R. SCOTT, Group theory, Prentice-Hall, 1964.
- [16] J. P. SERRE, Trees, Springer Verlag, Berlin Heidelberg New York, 1980.

Donald I. Cartwright: School of Mathematics and Statistics University of Sydney, N.S.W. 2006, Australia

Gabriella Kuhn: Dipartimento di matematica e applicazioni, Università di Milano-Bicocca Viale Sarca 202, Edificio U7, 20126 Milano, Italy

Pervenuta in Redazione

il 21 gennaio 2002