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Restricting Cuspidal Representations
of the Group of Automorphisms of a Homogeneous Tree.

DONALD I. CARTWRIGHT - GABRIELLA KUHN

Sunto. – Sia J un albero omogeneo dove a ogni vertice si incontrano q11 (qF2) spi-
goli. Sia A 4 Aut (J) il gruppo di automorfismi di J e H un sottogruppo chiuso
isomorfo a PGL(2 , F) (F campo locale il cui campo residuo ha ordine q). Sia p una
r a p p r e s e n t a z i o n e c o n t i n u a u n i t a r i a e ir r i d u c i b i l e d i A e si co n s i d e r i p H , l a
s u a r e s t r i z i o n e a d H . È no t o c h e s e p è un a r a p p r e s e n t a z i o n e s f e r i c a o sp e c i a l e
p H r i m a n e i r r i d u c i b i l e . I n q u e s t o l a v o r o s i m o s t r a c h e q u a n d o p è cu s p i d a l e l a
s i t u a z i o n e è mo l t o p i ù c o m p l e s s a . S i s t u d i a i n d e t t a g l i o i l c a s o i n c u i i l s o t t o a l -
b e r o m i n i m a l e a s s o c i a t o a p s i a i l p i ù p i c c o l o p o s s i b i l e , o t t e n e n d o u n a e s p l i c i -
t a d e c o m p o s i z i o n e d i p H .

Summary. – Let J be a homogeneous tree in which every vertex lies on q11 edges,
where qF2. Let A 4 Aut (J) be the group of automorphisms of J , and let H be the
its subgroup PGL(2 , F), where F is a local field whose residual field has order q .
We consider the restriction to H of a continuous irreducible unitary representation
p of A. When p is spherical or special, it was well known that p remains irre-
ducible, but we show that when p is cuspidal, the situation is much more compli-
cated. We then study in detail what happens when the minimal subtree of p is the
smallest possible.

1. – Introduction.

Continuing the notation in the abstract, A is a locally compact totally dis-
connected unimodular topological group with the topology of pointwise con-
vergence. Fix a vertex o of J and a vertex o 8 adjacent to o . A classification of
the irreducible continuous unitary representations p of A was given by
Ol’shanskii [11, 12], and is described in [4], the notation of which we shall basi-
cally be following. They are parametrized by (orbits of) finite complete sub-
trees f of J (a subtree f is complete if for every vertex v of f not in the bound-
ary of f , all of the q11 neighbours of v are also in f). For such a subtree, let
K(f) denote the compact group of g� A for which gv4v for all vertices v of f ,
and let KA(f) 4 ] g� A : gf4f(. We write Ko 4 ] g� A : go4o( 4K(]o(). If p
has non-zero K(f)-fixed vectors, but no non-zero K(g)-fixed vectors for any fi-
nite complete subtree g with fewer vertices than f , we call f a minimal sub-
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tree for p . If f is a minimal subtree for p , then so is gf for any g� A. If p has a
minimal subtree with only one vertex, which we may assume is o , then p is
called spherical. If p has a minimal subtree with exactly 2 vertices, which we
may assume are o and o 8 , then p is called special. If p has a larger minimal
subtree f , i.e., diam (f) F2, then p is called cuspidal. These are obtained by
induction from KA(f) to A of irreducible representations s of KA(f) which are
trivial on K(f) and which have no non-zero K(g)-fixed vectors for any of the
maximal proper complete subtrees g of f (note that K(f) %K(g) % KA(f) for such
a g). The set of equivalence classes of these «standard» representations of
KA(f) is denoted (KA(f) )0

× . Because any automorphism of f can be extended to an
automorphism of J , the map gOgNf induces an isomorphism KA(f) /K(f) `

Aut (f), and so the representations of KA(f) satisfying the above conditions cor-
respond to certain irreducible representations of Aut (f), which we also refer
to as standard.

Note that in Ol’shanskii’s papers, the representations classified were the
algebraically irreducible admissible ones. If p is a cuspidal irreducible contin-
uous unitary representation on a Hilbert space Hp , let Vp denote the space of
vectors j� Hp which are K(g)-invariant for some finite complete subtree g .
This a dense invariant subspace of Hp . Let p7 : A KGL(Vp ) be the representa-
tion of A obtained from p . Then p7 is admissible and algebraically irreducible
[4, p. 115]. Conversely, if p 8 : A KGL(V) is an admissible and algebraically ir-
reducible representation of A, which has minimal subtree of diameter at
least 2, then p 8 is unitarizable [12, § 2.6], and extends to irreducible continuous
unitary representation.

Let F be a commutative non-archimedean local field. Let ord : FKZN
]Q( be the valuation on F . Let A4 ]x�F : ord (x) F0( be the valuation ring
of F , and let +�A be an element of valuation 1. Let A34]x�A : ord (x)40(

denote the group of invertible elements of the ring A . Let q be the order of
the residual field A/+A , which equals p r for some prime p and some integer
rF1. Let A%A be a set of q elements, one of them 0, such that the canonical
map AKA/+A , restricted to A , is a bijection. Each element of A is express-
ible uniquely as the sum of a series a01a1 +1a2 + 21R , where each ai is in A .

Recall the construction of the Bruhat-Tits tree J associated with G4

GL(2 , F) [16, p. 69; 4, p. 127]. Let V4F 2 denote the space of all column vec-
tors of length 2 with entries in F . A lattice in V is a subset of V of the form
]t1 v1 1 t2 v2 : t1 , t2 �A(, where ]v1 , v2 ( is a basis of V over F . If ]v1 , v2 ( is the
usual basis of V , then the corresponding lattice is A2 , and is denoted L0 . If L is
a lattice and if g�G , then g(L) is a lattice, and so G acts on the set of lattices.
This action is clearly transitive, and the stabilizer of L0 is the group K4

GL(2 , A) of matrices with entries in A and having determinant in A3 . Two
lattices L , L 8 are called equivalent if L 84lL for some l�F 3 . Let [L] denote
the equivalence class of the lattice L . The Bruhat-Tits tree J has as vertex set
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the set of equivalence classes of lattices. Two distinct lattice classes [L] and
[L 8 ] are adjacent if representative lattices L and L 8 can be found such that
+L%

c

L 8%
c

L . The tree J is homogeneous of degree q11.
The above action of G on J gives a homomorphism W : GK A with kernel

Z4 ]lI: l�F 3(. We write H for the image of W . Thus PGL(2 , F) `HG A. It
is natural to ask how the irreducible unitary representations p of A behave
when restricted to H . When p is spherical or special, the restriction is known
to remain irreducible [4, p. 117]. We are concerned here only with the cuspidal
case.

We identify H and PGL(2 , F) throughout. The representations of H corre-
spond to, and are here frequently identified with, representations of G which
are trivial on Z . Everything we shall need about the representations of G is
contained in Bump’s book [1].

Let p be an irreducible unitary representation of A with minimal subtree f ,
where diam (f) F2. In Section 2 we prove some general results, showing in
particular that the restriction of p to H is a direct sum of induced representa-
tions. Then in Sections 3 and 4 we discuss in detail the case when f is as small
as possible: o together with its q11 neighbours. Except for the one example
with q42, the restriction of p to H is then never irreducible, and we give for it
an explicit decomposition as a direct integral of irreducible representa-
tions.

We thank Tim Steger for useful conversations on the subject of this
paper.

2. – Restricting cuspidal representations to PGL(2 , F).

Let A, G , K , Z , W : GK A and H`G/Z4PGL(2 , F) be as above.
Now let f be a finite complete subtree of J , with diam (f) F2. Let s�

(KA(f) )0
× have representation space Hs (finite dimensional, of course). Let p4

IndKA(f)
A s . Because we are inducing from an open subgroup, the definition of an

induced representation is particularly simple here. Counting measure on the
discrete set A /KA(f) is an invariant measure, and so the representation space
of p is the space Hp of functions f : A K Hs such that

(i) f (kg) 4s (k)( f ( g) ) for all g� A and k� KA(f), and

(ii) !
a

V f ( ga )V

2 EQ ,

and we define V f V to be the square root of the sum in (ii). Here ] ga( is any set
of coset representatives for KA(f) in A. Notice that we do not have to add mea-
surability conditions, because any f� Hp is left K(f)-invariant, and therefore is
locally constant. For g� A, the action of p( g) on f� Hp is right translation:
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(p( g) f )( g 8 ) 4 f ( g 8 g). Because KA(f) is also compact, if f� Hp , then the inte-
gral of V f ( g)V

2 over A with respect to a Haar measure m is m(KA(f) ) times the
sum in (ii) above.

Notice that in [4], the induced representation is defined so that Hp consists
of functions satisfying f ( gk) 4s (k 21 )( f ( g) ) for all g� A and k� KA(f), with
p( g) being left translation. The intertwining operator f O f

q

, where f
q

(x) 4

f (x 21 ), shows that the two definitions give equivalent representations.
The algebraically irreducible admissible representation p7 corresponding

to p is just the representation obtained from s by compact induction (see, for
example, [1, p. 470]). To see this, let f�Vp , the representation space of p7 .
Then f� Hp is right K(g)-invariant for some finite complete subtree g of J . So
for any j� Hs , the function g O a f

q

( g), jb is in S(f) (see [4, p. 87]) and is left
K(g)-invariant, and so [4, Prop. III.3.2] is supported on the compact set ] g�
A : gf%g(, which is a finite union of cosets gKA(f). Hence f is supported on a fi-
nite union of cosets KA(f) g . Conversely, if f� Hp is supported on the union of
cosets KA(f) gj , j41, R , r , choose a finite complete subtree g containing the
union of the trees gj

21 f . If k�K(g), then gj kgj
21 �K(f) and so s ( gj ggj

21 ) 4I
for each j . It follows that f is right K(g)-invariant, and so in Vp .

We start with two quite general results. In the first one, the hypotheses
diam (f) F2 and s� (KA(f) )0

× are not needed.

PROPOSITION 2.1. – Let f be a finite complete subtree of J satisfying
diam (f) F2. Then A is a finite disjoint union

A 4 0
j41

r

KA(f) gj H ,(2.1)

of double cosets KA(f) gH. Let s� (KA(f) )0
× , and let p4IndKA(f)

A s. Then the re-
striction of p to H is unitarily equivalent to the representation

5
j41

r
Indgj

21 KA(f) gjOH
H s j ,(2.2)

where s j (k) 4s ( gj kgj
21 ) for k�gj

21 KA(f) gj OH. In particular, if rF2, then
this restriction is reducible.

PROOF. – Fix any vertex v0 �f . There are only finitely many subtrees of J

containing v0 and of the form g(f) for some g� A. Write these g j (f), j4

1, R , m . If g� A, then as H acts transitively on the vertices of J , there is an
h�H such that g 21 (v0 ) 4h 21 (v0 ). Thus hg 21 (v0 ) 4v0 , so that hg 21 (f) 4g j (f)
for some j . Thus g� KA(f) g j

21 h . Hence there are only finitely many distinct
double cosets KA(f) gH , so that (2.1) holds for some g1 , R , gr .

We may write KA(f) gj H as a union of disjoint cosets KA(f) gj hj , n , where the
hj , n’s are in H . Hence, for each j , H is the union of the disjoint cosets
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( gj
21 KA(f) gj OH) hj , n . Let Hp be defined as above, and let 3 denote the repre-

sentation space of the representation (2.2), i.e., the space of r-tuples
( f1 , R , fr ) of functions fj : HK Hs which satisfy

(i) fj (kh)4s ( gj kgj
21 )( fj (h) ) for all h�H and k�gj

21 KA(f) gjOH , and

(ii) !
j , n

V fj (hj , n )V

2 EQ .

Given F� Hp , let fj (h) 4F( gj h) for h�H . It is clear that the map
T : FO ( f1 , R , fr ) is an isometry HpK3 . Moreover, this map is surjective,
because if ( f1 , R , fr ) �3 , then we may define F� Hp by setting F(kgj h) 4

s (k)( fj (h) ) for all h�H , k� KA(f), and all j . It is routine to check that F is well-
defined and that ( f1 , R , fr ) 4T(F). r

Let p be as in Proposition 2.1. The following result, while not used in the
sequel, is of interest because it guarantees that any irreducible subrepresen-
tation of the restriction p H of p to H occurs with only finite multiplicity. Since
p H is still square integrable as a representation of H , standard arguments
show that it is a subrepresentation of the sum of infinitely many copies of the
left regular representation l H of H . In fact, we can show more:

PROPOSITION 2.2. – Let p be as in Proposition 2.1. Then for some nEQ ,
the restriction to H of p is contained in the sum nl H of n copies of the left reg-
ular representation of H.

PROOF. – Let Hp be the representation space of p and let M be the space of
K(f)-fixed vectors in Hp . Notice that if f1 �M and k� KA(f), then p(k) f1 �M
because K(f) is normal in KA(f). Let g1 , R , gr be as in (2.1). Suppose that
a f , p(h) p( gj

21 ) f1 b 40 for all f1 �M , all h�H and all j . Then f40. To see this,
pick any f0 �M0]0(. For if g� A, we can write g4hgj

21 k for some j , and some
h�H and k� KA(f). Then a f , p( g) f0 b 4 a f , p(h) p( gj

21 ) (p(k) f0 )b 40. But f0 is
a cyclic vector for p , and so f40.

Now M is finite dimensional because M%Vp and p7 is admissible (cf. [4,
p. 112]). Let M 8 be the sum of the subspaces p( gj

21 ) M , j41, R , r . Let
f1 , R , fn be any basis of M 8 . For each i , let (Ti f )(h) 4 a f , p(h) fi b. Then
Ti f�L 2 (H) by [4, Lemma 3.12]. Define T : HpKL 2 (H)5R5L 2 (H) (n
copies) by Tf4 (T1 f , R , Tn f ). It is easily checked that T intertwines p and
nl H . Moreover, T has kernel ]0( by the first paragraph of this proof. Now
T * T : HpK Hp must intertwine p with itself, and so be cI for some cF0. As T
is injective, we have cc0. Hence c 21/2 T is an isometry embedding Hp in
L 2 (H)5R5L 2 (H) and intertwining p and nl H . r
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We shall henceforth only be concerned with the case when the r in (2.1)
is 1. In this case, Proposition 2.1 takes the following simpler form:

COROLLARY 2.3. – Let f be a finite complete subtree of J satisfying
diam (f) F2 for which

A 4 KA(f) H .(2.3)

Let s� (KA(f) )0
× , and let p4IndKA(f)

A s. Then the restriction of p to H is unitarily
equivalent to the representation

IndKA(f)OH
H s NKA(f)OH(2.4)

obtained by inducing from KA(f)OH to H the restriction of s to KA(f)OH.

Notice that the hypothesis (2.3) is satisfied by f4fn4]v�J : d(v , o)Gn(,
because KA(fn ) 4Ko , and (2.3) holds because H acts transitively on the set of
vertices of J .

Another example in which (2.3) holds is f4f8n , the subtree whose vertices
are those at distance at most n from o or o 8 (recall that o 8 is a neighbour of o).
Here nF1. Clearly KA(f8n ) 4 ] g� A : g]o , o 8( 4 ]o , o 8(( for any n . Since G
acts transitively on the vertices of J , (2.3) holds because K4GL(2 , A) acts
transitively on the set of neighbours of o . See the beginning of the next
section.

Here is an example for which (2.3) is not true, i.e., rD1 in (2.1). Assume
that qF4, and let x1 , R , x5 be 5 distinct neighbours of o . For each j , let vj be
a vertex at distance j11 from o such that xj is on the geodesic from o to vj . Let
f be the smallest complete subtree having all the vertices vj as interior points.
Choose a g�Ko which interchanges x1 and x2 , but leaves the other neighbours
of o fixed. Then any h�G which satisfies gf4hf must interchange x1 and x2 ,
and fix x3 , x4 and x5 . But an h�G which fixes three neighbours of o must fix
them all by Lemma 3.1 below.

In the context of Corollary 2.3, it is convenient to work with representa-
tions of G4GL(2 , F) instead of H , and so we transfer the last lemma to that
setting:

LEMMA 2.4. – With notation and hypotheses of Corollary 2.3, the represen-
tation of G obtained from the representation (2.4) of H by composing with
W : GKH is

IndKAG (f)
G s 8 ,(2.5)

where KAG (f) 4 ] g�G : W( g) � KA(f)( and where s 8 is the representation of
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KAG (f) obtained from s NKA(f)OH by composing with the restriction of W to
KAG (f).

PROOF. – Write G as a disjoint union of cosets KAG (f) ga . Then H is the dis-
joint union of the cosets (KA(f)OH) W( ga ). It is easy to see that fO f i W is an
isometric isomorphism from the representation space 3 of the representa-
tion (2.4) to that of (2.5). r

Let KG (f) 4 ] g�G : W( g) �K(f)(. Then W induces an embedding

KAG (f) /KG (f) %KKA(f) /K(f) ` Aut (f) ,(2.6)

and s 8 corresponds to a representation of KAG (f) /KG (f), obtained by restricting
the irreducible standard representation s of Aut (f). So s 8 will in general be a
finite sum

s 84s 81 1R1s 8m(2.7)

of irreducible representations of KAG (f) /KG (f). Thus (2.5) will be the sum of the
corresponding induced representations.

Obtaining the decomposition (2.7) is a non-trivial problem in the represen-
tation theory of the finite group Aut (f), even for the simplest of f’s.

3. – The case f4f1 .

Recall that A denotes a set of q elements in A containing 0 such that the
map aOa1+A is a bijection AKA/+A . The neighbours of o4 [L0 ] are the
vertices [gQ L0 ] and [ga L0 ], a�A , where

gQ4
.
`
´

1

0

0

+

ˆ
`
˜

and ga 4
.
`
´

+

0

a

1

ˆ
`
˜

,(3.1)

Clearly KAG (f1 ) 4ZK4Z QGL(2 , A), and it is easy to see that KG (f1 )
equals

]l(I1+M) : l�F 3 and M�M232 (A)( ,

where M232 (A) is the space of 232 matrices with entries in A . Since ]I1

+M : M�M232 (A)( is the kernel of the natural map GL(2 , A) K

GL(2 , A/+A), we see that KAG (f1 ) /KG (f1 ) `PGL(2 , Fq ), where Fq `A/+A is
the field with q elements. Thus the s j8’s in (2.7) can be thought of as represen-
tations of PGL(2 , Fq ). The map GL(2 , A) KGL(2 , Fq ) induced by the surjec-
tion AKA/+A`Fq naturally gives rise to a surjection

ZKOPGL(2 , Fq )(3.2)
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which is trivial on Z . So the s j8’s can be thought of as representations of
ZK .

It is also clear that Aut (f1 ) `Eq11 , the symmetric group on q11 letters.
So in this case the embedding (2.6) gives us an embedding of the group
PGL(2 , Fq ), which has order (q11) q(q21), into Eq11 . This embedding is
equivalent to the following well-known construction. Let P1 (Fq ) be the projec-

tive line over Fq , i.e., the set of equivalence classes of non-zero vectors v4ga

b
h

in Fq
2 , where vAv 8 if v 84lv for some l�Fq

3 . Let ka

b
l be the equivalence class

of ga

b
h . The natural action of PGL(2 , Fq ) on P1 (Fq ), which has q11 elements,

is faithful. This gives an embedding of PGL(2 , Fq ) into Eq11 . We can define a

bijection from P1 (Fq ) to the set of neighbours of o by mapping ka
1
l to [ ga L0 ],

a�A , and mapping k1
0
l to [ gQ L0 ]. One may check that this is an isomorphism

of PGL(2 , Fq )-spaces. The following is a well-known and easily checked fact
about the action of PGL(2 , Fq ) on P1 (Fq ) (see, for example, [15, Theo-
rem 10.6.7]).

LEMMA 3.1. – If u1 , u2 , u3 are three distinct neighbours of o , and if also
v1 , v2 , v3 are three distinct neighbours of o , then there is a unique g�
PGL(2 , Fq ) such that guj 4vj for each j.

It is well-known that the irreducible representations of Aut (f1 ) `Eq11

are in one to one correspondence with the partitions of q11 [8, Theo-
rem 2.1.11]. We next identify which of them are standard.

LEMMA 3.2. – Of the irreducible representations of Eq11 , only two are non-
standard, namely the trivial representation and the q dimensional represen-
tation of Eq11 obtained from the natural action of Eq11 on V4

](t1 , R , tq11 ) : !
i41

q11

ti 40(.

PROOF. – Any maximal proper subtree of f1 consists of o and a neighbour of
o . So given any two maximal proper subtrees g1 and g2 of f1 , there is a g�
Aut (f1 ) such that g(g1 ) 4g2 . Thus to check whether a representation of
Aut (f1 ) is non-standard, we need only check when it has a non-zero K(g)-fixed
vector for any particular maximal proper subtree g . The subgroup K(g) corre-
sponds to the subgroup Eq of Eq11 which fixes a particular one of the letters
1 , R , q11. The irreducible representations of Eq11 having a non-zero Eq-
fixed vector are just the subrepresentations of the quasi-regular representa-
tion l 8 , say, of Eq11 on Eq11 /Eq (see [4, p. 104]). But it is easy to see that l 8 is
equivalent to the representation obtained from the natural representation of
Eq11 on Cq11 , which is the sum of one copy of the trivial representation (be-
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cause of the constant q11-tuple (1 , 1 , R , 1 )), and the above q-dimensional
representation on the orthogonal complement V of (1 , 1 , R , 1 ). r

The two non-standard representations of Eq11 appearing above corre-
spond to the partitions (q11) and (q , 1 ), respectively, of q11 (see [8,
Lemma 2.2.19(iii)]).

The irreducible representations of PGL(2 , Fq ) are also well-known. In [14]
and [1, §4.1], for example, the irreducible representations of G0 4GL(2 , Fq )
are described, and those of PGL(2 , Fq ) are just the ones which are trivial on
the centre Z0 4 ]lI : l�Fq

3( of G0 . If q is odd, there are 2 characters, 2 «spe-
cial» representations of degree q , (q23) /2 «principal series» representations
(all of degree q11), and (q21) /2 «cuspidal» representations of degree q21.
If qD2 is even, there is only 1 character, and 1 special representation of de-
gree q , and there are (q22) /2 principal series representations (all of degree
q11), and q/2 cuspidal representations of degree q21. If q42, there are
2 characters and 1 representation of degree 2.

Thus for f4f1 , the problem of describing the representation (2.4), or
equivalently, (2.5), becomes the following: Firstly, take an irreducible repre-
sentation s of Eq11 , not one of the two non-standard ones described in Lem-
ma 3.2, and consider its restriction s 8 to PGL(2 , Fq ), embedded in Eq11 as de-
scribed before Lemma 3.1.

(a) Decompose s 8 into the sum (2.7) of irreducibles s j8 , j41, R , m .
(b) Regard each s j8 as a representation on ZK via (3.2), and determine

IndZK
G s j8 .
We are able to perform step (a) explicitly for any particular small q . If

qG3, then (q11) q(q21) 4 (q11) ! , and so PGL(2 , Fq ) `Eq11 . Thus m
in (2.7) is 1. By Lemma 3.2, if q42, then only the sign character e is standard.
If q43, then Eq11 has trivial character, the sign character e , 1 representation
of degree 2, and two of degree 3 (see, for example, [8, p. 349]). Thus the stan-
dard representations are e , and one each of degrees 2 and 3. These must «re-
strict» to a non-trivial character, a cuspidal and a special representation, re-
spectively, of PGL(2 , F3 ).

For somewhat larger q’s, we first use [14, §1.5] to determine the conjugacy
classes Ci in PGL(2 , Fq ). Then for each i , after choosing a representative gi of
Ci , it is easy to calculate the cycle type of the permutation of P1 (Fq ) induced by
gi . Then we use the character tables in [8, pp. 349-355], and routine calcula-
tions to find the decomposition into irreducibles of the restriction to
PGL(2 , Fq ) of each irreducible representation of Eq11 . By way of example,
the result for case q47 is given in the table below. It is the smallest case in
which multiplicities greater than 1 occur. The first row of the table gives the
degree of each irreducible representation of Sq11 , in the order used in [8]. In
the first column, x j is a character, and cj , pj and sj refer to cuspidal, principal
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series, and special representations, respectively. The next two columns refer
to the two non-standard representations of Sq11 , and so do not concern us
here.

We now turn to step (b) in the procedure for describing the representa-
tion (2.4): finding IndZK

G s j8 for each j . There are four cases, according to
whether t4s j8 is cuspidal, a character, special or principal series.

PROPOSITION 3.3. – When t is cuspidal, then IndZK
G t is an irreducible su-

percuspidal representation of G.

PROOF. – This is a special case of a result of Kutzko [9], which is stated and
proved in exactly our situation in [1, Theorem 4.8.1], with the central character
being trivial in our case. A word is needed about the various types of induced
representations used here and in [1]. Let us call the type defined at the begin-
ning of Section 2 unitary induction. In [1], ordinary induction is defined as
in our definition above, but without the condition (ii) there; compact induction
is defined with (ii) replaced by the condition that f ( ga ) c0 for only finitely
many a’s. If the representation spaces of IndZK

G t are V2 , V 8 and V , respect-
ively, for these three representations, then V%V2 %V 8 . In the proof of irre-
ducibility in Theorem 4.8.1 in [1], it is shown that HomG (V , V 8 ) is one-dimen-
sional, and since there is a natural injection HomG (V2 , V2 ) KHomG (V , V 8 ),
the irreducibility of the representation on V2 follows. The representation on V2

is the completion of the representation on V , which is shown to be supercuspi-
dal and admissible in [1]. r

Before dealing with the case when t is a character, we first need to give
some properties of the spherical principal series representations p s of A stud-
ied in [4], for example. Recall the boundary V of J consists of equivalence
classes of infinite geodesics in J . If (x0 , x1 , R) and (y0 , y1 , R) are both in the
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class v , with x0 4x and y0 4y , there is an h�Z such that yn 4xn1h for all suf-
ficiently large n . We write h(x , y ; v) 4h . There is a natural topology on V
making it a totally disconnected compact space. Let CQ (V) denote the space of
locally constant functions VKC . There is also a natural action of A on V . For
non-zero s�C , we can define a representation of A on CQ (V) by

(p s ( g) F)(v) 4F( g 21 v)g s

kq
hh( go , o ; v)

.

The factor kq on the right is a normalization so that, when NsN41, p s is unita-
rizable with respect to the inner product aF1 , F2 b 4 s

V
F1 (v) F2 (v) dn o (v) on

CQ (V). Here n o is the natural probability on V associated with the vertex o [4,
p. 34]. The representations p s are irreducible for NsN41, and make up the
spherical principal series of representations of A. They remain irreducible
when restricted to H , and are also so named in that context.

Let x s : F 3KC3 be the quasi-character aOs ord (a) of F 3 . Then it is rou-
tine to see that the restriction of p s to H , regarded as a representation of G , is
the principal series representation r s 4 B(x s , x s 21 ) defined in [1, p. 471]. In-

deed, let v 0 be the class of the geodesic ( g0 o , g1 o , R), where gn 4g1
0

0
+ nh

for n�N . The set of g�G such that gv 0 4v 0 is the set P of upper-triangular
matrices in G . We define T : CQ (V)KVs , the representation space of r s by

(TF)( g) 4F( g 21 v 0 )g s

kq
hh( go , o ; v 0 )

.

It is not hard to show that T is a bijection, intertwining p s and r s on H .
The following is well-known. See [3]; cf. [4, Corollary II.6.5]. We include a

proof for the convenience of the reader.

PROPOSITION 3.4. – Let l be the unitary representation of A on l 2 (J) ob-
tained from the natural action of A on J. Then l is unitarily equivalent to
IndKo

A 1, and l is the direct integral of the representations p s , NsN41. The
same is true when we restrict l and the p s’s to H.

PROOF. – Firstly, l is unitarily equivalent to IndKo
A 1. To see this, for each

vertex x�J , choose gx � A such that gx x4o . Then A is the disjoint union of
the cosets Ko gx , x�J . For f� l 2 (J), define F : A KC by F(kgx ) 4 f (x) for all
k�Ko and x�J . Then F is in the representation space of IndKo

A 1, and it is easy
to check that this defines a unitary map intertwining l and IndKo

A 1.
The remaining statements are well-known, and implicit in [FN, The-

orem 6.4], and we omit the proof. Proposition 4.7 below is a similar but
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somewhat less well-known fact, and we prove that for the convenience
of the reader. r

PROPOSITION 3.5. – When t is a character, and qD2, then IndZK
G t , as a rep-

resentation of H4PGL(2 , F), is the product of a character of H and the di-
rect integral of the spherical principal series representations of H. When t is
a character and q42, then IndZK

G t is an irreducible supercuspidal represen-
tation of G.

PROOF. – Our t comes from a character of PGL(2 , Fq ), and hence a charac-
ter of G0 4GL(2 , Fq ) trivial on the centre Z0 of G0 . So when qc2, it is of the
form gZ0 Ox 0 (det ( g) ), where x 0 is a character of Fq

3 [14], [1, § 4.1]. For trivial-
ity on Z0 , x 0 must take only values 1 and 21. Using A/+A`Fq , x 0 lifts to a
character of A3 , and then to a character x of F 3 by setting x(+) 41. So t is
the restriction to ZK of the character xA : gOx(det ( g) ) of GL(2 , F), which is
trivial on Z . Then

IndZK
G t4IndZK

G xANZK ` xA QIndZK
G 1 .

Now IndZK
G 1 is clearly trivial on Z , and so factors through the representation

IndKoOH
H 1 of H , which is the restriction to H of the representation IndKo

A 1 of A.
Let l be as in Proposition 3.4. Then IndKo

A 1 is equivalent to l . Hence by
Proposition 3.4, IndKoOH

H 1, regarded as a representation of G , is the direct in-
tegral of the representations B(x s , x s 21 ), NsN41.

The product of the character xA : gOx(det ( g) ) and B(x s , x s 21 ) is equivalent
to B(xx s , xx s 21 ) [1, p. 490], and so IndZK

G t is the direct integral of these principal
series representations, which are not in the spherical series if x 0 is non-trivial.

Finally, suppose that q42, and that t is the non-trivial character of

PGL(2 , F2 ) `E3 . Then g1
0

1
1
h fixes g1

0
h and interchanges g0

1
h and g1

1
h. So it is

an odd permutation of P1 (F2 ), and the value of t there is 21. Hence there is no

non-zero linear functional f : CKC such that f gt gg1
0

1
1
hh vh4f(v) for all

v�C . So t satisfies the condition of being cuspidal (though it is usually not
thought of as such), and the proof of Theorem 4.8.1 in [1] goes through without
change, taking V0 4C and p 0 4t . So IndZK

G t is irreducible and supercuspi-
dal. r

The case when t is special.

When t is special we are led to consider the representation p of A obtained
from its natural action on the set E of (undirected) edges of J . We also consid-
er the natural action on the set Ed of directed edges of J . If e4 (x , y) is a di-
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rected edge, let e 8 denote the edge (y , x). If f : Ed KC is a function, let f 8 : Ed K

C be defined by f 8 (e) 4 f (e 8 ). We call f even if f 84 f , and odd if f 842f . Let
l 2 (E) and l 2 (Ed ) denote the spaces of square summable functions on E and Ed ,
respectively. Let l 2

e (Ed ) and l 2
o (Ed ) denote the spaces of even and odd elements

of l 2 (Ed ), respectively. Clearly, the map fO ( ( f1 f 8 ) /2 , ( f2 f 8 ) /2 ) is an isomor-
phism l 2 (Ed ) K l 2

e (Ed )5 l 2
o (Ed ). Also, (Tf )(]x , y() 4k2f((x , y) ) defines an iso-

morphism T : l 2
e (Ed ) K l 2 (E).

The group A acts on E and Ed in a natural way, and hence on each of the
spaces l 2 (E), l 2 (Ed ), l 2

e (Ed ) and l 2
o (Ed ). Let p , p d , p d

e and p d
o denote the corre-

sponding representations of A.

LEMMA 3.6. – Let x : A K ]21, 1( denote the non-trivial character
gO (21)d(o , go) of A. Then we have the following unitary equivalences.

(i) p d
`p d

e 5p d
o ,

(ii) p d
e `p , and

(iii) p d
o `x7p d

e .

PROOF. – The equivalences in (i) and (ii) are given by the bijections
l 2 (Ed ) K l 2

e (Ed )5 l 2
o (Ed ) and l 2

e (Ed ) K l 2 (E) defined above. To see (iii), fix a ver-
tex o�J , and define S : l 2

o (Ed ) K l 2
e (Ed ) by (Sf ) ((x , y) )4 (21)d(o , x) f((x , y) ) .

This is easily checked to be a well-defined map. For g� A,

(S(p d
o ( g) f ) )((x , y)) 4 (21)d(o , x) (p d

o ( g) f )((x , y))

4 (21)d(o , x) f(( g 21 x , g 21 y))

4 (21)d(o , go) (21)d(o , g 21 x) f(( g 21 x , g 21 y))

4x( g)(Sf )(( g 21 x , g 21 y))

4 (x( g) p d
e ( g)(Sf ))((x , y)) . r

If e4 (x , y) � Ed , let i(e) denote the initial vertex x of e . The space Ve of
f� l 2

e (Ed ) which satisfy !
e : i(e) 4x

f (e) 40 for each x�J is invariant under p d
e , and

so gives a subrepresentation spe of p d
e . In the same way, we can define a sub-

representation spo of p d
o on Vo % l 2

o (Ed ). The representations spe and spo are
known to be irreducible, and are called the special representations of A (see
[4, § III.2]). By part (iii) of the above lemma, spo `x7spe .

LEMMA 3.7. – Let l denote the unitary representation of A on l 2 (J) ob-
tained by the natural action of A on J. Then p d

o `spo 5l , and so
p d

e `spe 5 (x7l).
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PROOF. – Define T : l 2 (J) K l 2
o (Ed ) by (Tf )((x , y)) 4 f (y)2 f (x). It is easy

to check that T is continuous, with norm at most 2kq11 , and intertwines l
and p d

o . Let T4UA be the polar decomposition of T . Thus A is a positive her-
mitian operator on l 2 (J), and U is a partial isometry, inducing an isometric
isomorphism of M4ker (T)» onto N4ker (T *)» (cf. [13, Theorem 3.2.17]).
From the construction of this decomposition, it is clear that U intertwines
l and p d

o . Clearly T is injective, and so M4 l 2 (J), and thus the restriction
of p d

o to N is unitarily equivalent to l . Also, for F� l 2
o (Ed ), (T * F)(x) 4

22 !
e� Ed : i(e)4x

F(e), and so ker (T *)4Vo . Hence N4Vo
» , and so l 2

o (Ed )4Vo5N .

The first statement in the lemma has now been proved, and the second one fol-
lows from Lemma 3.6, since x21 4x . r

Recall that o 8 is a vertex adjacent to o . Notice that p d is the representation
obtained by inducing to A the trivial character on K(]o , o 8() 4 ] g� A : go4o
and go 84o 8(. This is because A acts transitively on J and Ko acts transitively
on the set of neighbours of o , so that A acts transitively on Ed .

If we take o 84 [ g1 L0 ] for g1 4g1
0

0
+
h , then the preimage in G of

K(]o , o 8() is ZK 8 , where K 8 is the set of all matrices

g a
+c

b
d
h ,

where a , d�A3 and b , c�A . Since G also acts transitively on J and K acts
transitively on the set of neighbours of o , the restriction of p d to H , regarded
as a representation of G , is IndZK 8

G 1.
There is a special representation of G0 4GL(2 , Fq ) corresponding to each

character x of Fq
3 , obtained by inducing the character ga

0
b
d
hOx(ad) of P0

from P0 to G0 , and taking a q-dimensional subrepresentation. For this to be
trivial on the centre Z0 of G0 , we need x 2 to be trivial. When q is even, this
forces x to be trivial, but when q is odd, there is a unique character x 1 of Fq

3 of
order 2. Let t 0 and t 1 be the special representations of PGL(2 , Fq ) corre-
sponding to the trivial character and to x 1 , respectively. We can lift x 1 to a
character xA1 of F 3 by first lifting to A3 using the surjection AKA/+A`Fq ,
then to F 3 by mapping + to 1.

PROPOSITION 3.8. – Let t 0 and t 1 be the special representations of
PGL(2 , Fq ), as above (the latter existing only when q is odd). Lift these to ZK
using (3.2). Then IndZK

G t 0 , regarded as a representation of H , is unitarily
equivalent to the direct sum of the restrictions to H of x7l , spe and spo . For q
odd, IndZK

G t 1 is equivalent to the product of IndZK
G t 0 by the character

gO xA1 ( det ( g) ).
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PROOF. – We have IndP0

G0 1 415t 0 , where the 1’s on the left and right de-
note the trivial characters of P0 and G0 , respectively.

Next observe that when we lift IndP0

G0 1 to ZK using (3.2), we get IndZK 8
ZK 1,

where K 8 is defined above. This is because K 8 is the preimage of P0 in G0 un-
der the natural map KKGL(2 , Fq ). Hence

IndZK 8
ZK 1 `15t 0 ,

regarding the representations on the right as defined on ZK . Hence by transi-
tivity of induction, we have

IndZK
G 15IndZK

G t 0 `IndZK 8
G 1.

Now IndZK
G 1 regarded as a representation of H , is the restriction to H of l , as

we saw in the proof of Proposition 3.5. Also, IndZK 8
G 1 regarded as a representa-

tion of H , is the restriction to H of p d , as we saw above. So by Lemma 3.7 and
parts (i) and (iii) of Lemma 3.6 we have

l5IndZK
G t 0 `l5 (x7l)5spe 5spo ,

with the l on the left and the representations on the right restricted to G .
Since the representations on both sides are all finite in the sense of [10] (see
pp. 33, 45 and 120-122 there), we can cancel l from both sides, obtaining the
stated decomposition of IndZK

G t 0 . Starting from

x 185t 1 4IndP0
G0 x 1 `x 187IndP0

G0 1 ,

where x 18 ( g) 4x 1 ( det ( g) ), it is easy to prove the statement about
IndZK t 1 . r

4. – The case when t is principal series.

There is a principal series representation B(x 1 , x 2 ) of G0 4GL(2 , Fq ) cor-
responding to each pair (x 1 , x 2 ) of distinct characters of Fq

3 , obtained by in-

ducing the character ga
0

b
d
hOx 1 (a) x 2 (d) of P0 from P0 to G0 [14, § 8], [1,

§ 4.1]. Its dimension is q11. The representations B(x 1 , x 2 ) and B(x 2 , x 1 ) are
equivalent. For B(x 1 , x 2 ) to be trivial on the centre Z0 of G0 , we need
x 2 4x 1

21 .
So we start with a character x 0 of Fq

3 such that x 0
2 is non-trivial. We define a

character x 08 :ga
0

b
d
hOx 0 (a/d) of P0 , then form t 0 4 B(x 0 , x 0

21 ) 4IndP0
G0 x 08 .

This lifts to a q11-dimensional representation t of ZK in the usual way: for
l�F 3 and k�K , set t(lk) 4t 0 (k

.
), where k

.
denotes the image of k in G0 .
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LEMMA 4.1. – The above representation t of ZK is unitarily equivalent to
IndZK 8

ZK x 8 , where x 8 is the character lkOx 08 (k
.
) of ZK 8. Hence IndZK

G t`

IndZK 8
G x 8.

PROOF. – Let V0 and V be the representation spaces of t and IndZK 8
ZK x 8 , re-

spectively. If f0 �V0 , then f0 : G0 KC is a function such that f0 (pg) 4

x 08 (p) f0 ( g) for all p�P0 and g�G0 . We then define f�V by f (lk) 4 f0 (k
.
). It is

routine to check that f0 O f gives a unitary equivalence. The last statement fol-
lows by transitivity of induction. r

Of course IndZK 8
G x 8 is trivial on Z , and it will be convenient to work with the

corresponding representation IndK 9
H x 9 , where K 9 is the image of K 8 in H4

PGL(2 , F), and x 9 is the character kZOx 8 (k) of K 9 .
Studying IndK 9

H x 9 leads us to consider the set H×x 9 of equivalence classes of
irreducible continuous unitary representations p of H for which Hp , x 94 ]j�
Hp : p(k) j4x 9 (k) j for all k�K 9( is non-zero. We also need to consider the
space H94 H(H//K 9 , x 9) consisting of compactly supported functions f on H
for which

f (k1 hk2 ) 4 x 9 (k1 k2 ) f (h)(4.1)

for all h�H and k1 , k2�K 9 . It is easy to see that if f1 , f2�H 9 , then f1 ˜f2�H 9

and f1*� H 9 , where f1*(h)4f (h 21 ). The algebra H 9 is an example of a t-spher-
ical Hecke algebra, described in [7, Appendix 1], for example.

To study H9 , it is convenient to work with the space H8 of continuous func-
tions f : GKC of compact support such that

f (k18 gk28 ) 4 x 8 (k18 k28 ) f ( g)(4.2)

for all g�G and k18 , k28�K 8 . It is also an example of a t-spherical Hecke
algebra.

Define L : Cc (G) K Cc (H) by

(Lf )( gZ) 4s
Z

f ( gz) dz4 s
F 3

fgggx
0

0
x
hh dx

NxN
,

where dz refers to Haar measure on Z . Then L is a linear surjection [1, Propo-
sition 4.3.4]. It is clear that L maps H8 into H9 . In fact, L(H8 ) 4 H9 , for if
f� H9 and if f0 � Cc (G) satisfies L( f0 ) 4 f , then setting

f1 ( g) 4s
K 8

s
K 8

x 8 (k18 k28 ) f0 (k1 gk28 ) dk18 dk28 ,(4.3)

where dk 8 refers to normalized Haar measure on K 8 , we have f1 � H8 and
L( f1 ) 4 f too.
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It is easy to see that L is a ˜-algebra homomorphism.
Define matrices

gm , n »4g+ m

0
0

+ nh (m , n�Z), and w0 »4g0
1

1
0
h .

LEMMA 4.2. – Let P be the group of upper-triangular matrices in G. Then
we may write G as a disjoint union of double cosets in the following two
ways: G4PK 8NPw0 K 8 , and

G4 0
m , n�Z

K 8 gm , n K 8N 0
m , n�Z

K 8 w0 gm , n K 8 .(4.3)

PROOF. – Suppose that g4ga
c

b
d
h�G has determinant D . If ord (c) D

ord (d), then

ga
c

b
d
h4gD/d

0
b
d
hg 1

c/d
0
1
h

exhibits g as an element of PK 8 . If ord (c) Gord (d), then

ga
c

b
d
h4g2D/c

0
a
c
hg0

1
1
0
hg1

0
d/c
1
h

exhibits g as an element of Pw0 K 8 . Hence G4PK 8NPw0 K 8 . To see that
these double cosets are disjoint, we must check that w0 �PK 8 . But if

k4g a
+c

b
d
h�K 8 , then

w0 k4g0
1

1
0
hg a

+c
b
d
h4g+c

a
d
b
h�P .

To show (4.3), it is enough to show that if p4ga
0

b
d
h�P , then both p and pw0

are in the union on the right in (4.3), which is easily seen to be disjoint. There
are several cases:

(i) If either ord (b) F ord (a) or ord (b) F ord (d), let m4 ord (a) and n4

ord (d). Then p�K 8 gm , n K 8 because

ga
0

b
d
h4ga/+ m

0
0

d/+ nhg+ m

0
0

+ nhg1
0

b/a
1
h

and

ga
0

b
d
h4g1

0
b/d
1
hg+ m

0
0

+ nhga/+ m

0
0

d/+ nh .

(ii) If ord (b) E ord (a), ord (d), let m4 ord (a)1ord (d)2ord (b) and n4
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ord (b). Then

ga
0

b
d
h4g 1

d/b
0
1
hg0

1
1
0
hg+ m

0
0

+ nhg2ad/b+ m

a/+ n
0

b/+ nh
shows that p�K 8 w0 gm , n K 8 .

(iii) If ord (b) D ord (a), let m4 ord (d) and n4 ord (a). Then

ga
0

b
d
hg0

1
1
0
h4ga/+ n

0
0

d/+ mhg0
1

1
0
hg+ m

0
0

+ nhg 1
b/a

0
1
h

shows that pw0 �K 8 w0 gm , n K 8 .
(iv) If ord (b) F ord (d), then again let m4 ord (d) and n4 ord (a).

Then

ga
0

b
d
hg0

1
1
0
h4g1

0
b/d
1
hg0

1
1
0
hg+ m

0
0

+ nhgd/+ m

0
0

a/+ nh
shows that pw0 �K 8 w0 gm , n K 8 .

(v) If ord (b) G ord (a) and ord (b) E ord (d), let m4 ord (b) and n4

ord (a)1ord (d)2ord (b). Then

ga
0

b
d
hg0

1
1
0
h4g 1

d/b
0
1
hg+ m

0
0

+ nhgb/+ m

0
a/+ m

2ad/b+ nh
shows that pw0 �K 8 gm , n K 8 . r

LEMMA 4.3. – Any function f satisfying (4.2) must satisfy f (w0 gm , n ) 40 for
all m , n�Z.

PROOF. – Let a�A3 , let a
.

denote its image in Fq
3 , and evaluate f at

ga
0

0
1
hg0

1
1
0
hg+ m

0
0

+ nh4g0
1

1
0
hg+ m

0
0

+ nhg1
0

0
a
h .

Then we must have x 0 (a
.
) f (w0 gm , n ) 4 f (w0 gm , n ) x 0 (a

. 21 ). Since x 0
2
c1, we

can choose a so that x 0 (a
.
) cx 0 (a

. 21 ). Hence f (w0 gm , n ) 40. r

Thus H8 is spanned by the functions Fm , n defined by

Fm , n ( g) 4
.
/
´

x 8 (k18 k28 )
0

if g4k18 gm , n k28�K 8 gm , n K 8 ,
if g�K 8 gm , n K 8 .

It is convenient to normalize these functions as follows:

Gm , n 4q min ]m , n( Fm , n for m , n�Z .(4.5)



RESTRICTING CUSPIDAL REPRESENTATIONS ETC. 371

It is also convenient to work below with Haar measure on G normalized
so that K 8 has measure 1.

PROPOSITION 4.4. – For all m , n , r , s�Z ,

Gm , n ˜Gr , s 4Gm1r , n1s .(4.6)

Hence the convolution algebras H8 and Cc (Z2 ) are isomorphic, as are H9 and
Cc (Z).

PROOF. – We first derive the formula

(Fm , n ˜Fr , s )( g) 4q Nr2sNs
K 8

Fm , n ( gk 8 gr , s
21 ) x 8 (k 8 ) dk 8 ,(4.7)

where dk 8 refers to normalized Haar measure on K 8 . By the unimodularity of
G ,

(Fm , n ˜Fr , s )( g) 4s
G

Fm , n ( gx 21 ) Fr , s (x) dx4 s
K 8 gr , s K 8

Fm , n ( gx 21 ) Fr , s (x) dx .

Now K 8 gr , s K 8 is the union of N cosets ga K 8 , where N is the index of K 8O
gr , s K 8 gr , s

21 in K 8 . It is easy to see that N4q Nr2sN . Writing ga4k18 gr , s k28 ,

s
ga K 8

Fm , n ( gx 21 ) Fr , s (x) dx4s
K 8

Fm , n ( gx 21 ga
21 ) Fr , s ( ga x) dx

4s
K 8

Fm , n ( gk 821 k28
21 gr , s

21 k18
21 ) Fr , s (k18 gr , s k28 k 8 ) dk 8

4s
K 8

Fm , n ( gkgr , s
21 )x 8 (k) dk ,

using (4.2) and setting k4k 821 k28
21 . As the integral is independent of a , (4.7)

follows.
We can write Fm , n ˜Fr , s as a linear combination

Fm , n ˜Fr , s 4 !
a , b�Z

ca , b Fa , b

of Fa , b’s, and the coefficient ca , b equals (Fm , n ˜Fr , s )( ga , b ), which we calculate
using the integral on the right in (4.7), with g4ga , b .

To evaluate this integral, we write a typical k 8�K 8 as the product

k 84g 1
+u 8

0
1
hgt1

0
0
t2
hg1

0
v
1
h ,

where u 8 , v�A and t1 , t2 �A3 . According to [1, p. 466], the normalized Haar
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measure on K 8 is then du 8 dv dt1 dt2 , where du 8 and dv are the normalized
Haar measures on the compact additive group A , and dt1 and dt2 are the nor-
malized Haar measures on the compact multiplicative group A3 . Hence

ga , b k 8 gr , s
21 4g + a2r t1

+ b2r11 t1 u 8

+ a2s t1 v
+ b2s (t2 1 t1 u 8 v+)

h
4gt1

0
0

t2 (11uv+)
hg + a2r

+ b2r11 uA
+ a2s v
+ b2s h ,

where u4 t1 t2
21 u 8 and uA 4u/(11uv+). So

Fm , n ( ga , b k 8 gr , s
21 ) x 8 (k 8 ) 4Fm , ngg + a2r

+ b2r11 uA
+ a2s v
+ b2s hh .

On making the change of variable u 8 Ou , as the integrand is then indepen-
dent of t1 and t2 , we have

(4.8) s
K 8

Fm, n (ga, bk 8gr, s
21) x 8(k 8) dk 84s

A

s
A

Fm, ngg + a2r

+ b2r11uA
+ a2sv
+ b2s hh du dv.

Notice that ord (uA) 4 ord (u) for all u�A . We now break the integral in (4.8)
into integrals over six (non-disjoint) subsets A1 , R , A6 , the first four covering
the cases Cu 4 max ]ord (u)1s2r , ord (u)1b2a( F0 and Cv 4

max ]ord (v)1r2s , ord (v)1a2b( F0, and the last two sets covering the
cases Cu E0 and Cv E0. In each case we express

M4M(u , v) 4g + a2r

+ b2r11 uA
+ a2s v
+ b2s h

as an element in a double K 8 coset. In the first four cases, (4.2) shows that the
integrand in (4.8) is 1 or 0 according as (a , b) 4 (m1r , n1s) or not.

A1 : ord (v)1r2sF0 and ord (u)1b2aF0. Then

M4g 1
+ b2a11 uA

0
1
hg+ a2r

0
0

+ b2shg1
0

+ r2s v
12+uA v

h .

A2 : ord (v)1r2sF0 and ord (u)1s2rF0. Then

M4g+ a2r

0
0

+ b2shg 1
+ s2r11 uA

+ r2s v
1

h .

A3 : ord (u)1s2rF0 and ord (v)1a2bF0. Then

M4g1
0

+ a2b v
1

hg+ a2r

0
0

+ b2shg 12+uA v
+ s2r11 uA

0
1
h .
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A4 : ord (u)1b2aF0 and ord (v)1a2bF0. Then

M4g 1
+ b2a11 uA

+ a2b v
1

hg+ a2r

0
0

+ b2sh .

In the remaining two cases, (4.2) show that the integrand in (4.8) is 0.
A5 : ord (u)1s2rE0 and ord (u)1b2aE0. Let i4 ord (u). Then

M4g2+ i uA21

0
+ a2b2i21

+ 2i uA
hg0

+

1
0
hg+ b2r1i

0
0

+ a2s2i21hg1
0

+ r2s21 uA21

12+uA v
h .

A6 : ord (v)1r2sE0 and ord (v)1a2bE0. Let j4 ord (v). Then

M4g 1
+ b2a v 21

0
12+uA v

hg0
+

1
0
hg+ b2r2j21

0
0

+ j1a2shg2+ j v 21

+ s2r2j
0

+ 2j v
h .

Now A5 c¯ if and only if sEr and bEa , while A6 c¯ if and only if rEs
and aEb . So at least one of the sets A5 and A6 is empty.

Also, the integrand on the right in (4.8) is 1 for all u , v�A0(A5 NA6 ) if
(a , b) 4 (m1r , n1s), and 0 for all u , v�A for any other (a , b). Hence
Fm , n ˜Fr , s 4cFm1r , n1s , where c4q Nr2sN (12m(A5 )2m(A6 ) ).

The Haar measure of the set of u�A such that ord (u) 4 i is (q21) /q i11 ,
and hence the measure of ]u�A : ord (u) E l( equals 121/q l for all lF0.

To complete the proof of Proposition 4.4, we again we need to consider
cases. Firstly, if r4s , then A5 4A6 4¯ , and so c41. Also, in this case,
min ]m1r , n1s( 4 min ]m , n(1min ]r , s(, and (4.6) follows. We now
consider the case rcs . Write a4m1r and b4n1s .

1. If rDs and mDn , then n1sEm1r and a2b4m2n1r2sDr2s .
So m(A5)4121/q r2s, m(A6)40 and c41. Thus Gm , n˜Gr , s4q n1s Fm , n˜Fr , s4

q n1s Fm1r , n1s 4Gm1r , n1s .
2(a). If rDs , mGn and n1sEm1r , then 0Ea2b4(r2s)2(n2m)G

r2s . So m(A5)4121/q a2b, m(A6 ) 40 and c4q r2s /q a2b4q n2m . Thus
Gm,n˜Gr,s4q m1sFm,n˜Fr,s4q m1sq n2mFm1r, n1s4q n1sFm1r, n1s4Gm1r, n1s.

2(b). If rDs , mGn and m1rGn1s , then a2bG0. So m(A5 ) 4

m(A6 ) 40 and c4q r2s . Thus Gm , n ˜Gr , s 4q m1s Fm , n ˜Fr , s 4

q m1s q r2s Fm1r , n1s 4q m1r Fm1r , n1s 4Gm1r , n1s .
3. If rEs and mEn , then m1rEn1s and b2a4n2m1s2rDs2

r . So m(A5 ) 40, m(A6 ) 4121/q s2r and c41. Thus Gm , n ˜Gr , s 4

q m1r Fm , n ˜Fr , s 4q m1r Fm1r , n1s 4Gm1r , n1s .
4(a). If rEs, mFn and m1rEn1s, then 0Eb2a4(s2r)2(m2n)Gs2r.

So m(A5)40, m(A6)4121/q b2a and c4q s2r/q b2a4q m2n. Thus
Gm, n˜Gr, s4q n1r Fm, n˜Fr, s4q n1r q m2nFm1r, n1s4q m1r Fm1r, n1s4Gm1r, n1s.
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4(b). If rEs , mFn and n1sGm1r , then b2aG0. So m(A5 ) 4

m(A6 ) 40 and c4q s2r . Thus Gm , n ˜Gr , s 4q n1r Fm , n ˜Fr , s 4

q n1r q s2r Fm1r , n1s 4q n1s Fm1r , n1s 4Gm1r , n1s . r

COROLLARY 4.5. – For any p� H×, the space Hp , x 9 is at most one-dimen-
sional.

PROOF. – If f� H9 , then it is easy to see that p( f ) maps Hp , x 9 into itself.
Hence we obtain a representation of the commutative algebra H9 on Hp , x 9 . If
Hp , x 9 had dimension greater than 1, there would be a non-zero proper sub-
space W of Hp , x 9 invariant under p( f ) for all f� H9 . Choose h� Hp , x 9 of
norm 1 such that h�W » . If f� Cc (H), define f1 : HKC by

f1 (h) 4s
K 9

s
K 9

x 9 (k1 k2 ) f (k1 hk2 ) dk1 dk2 ,

where dk1 and dk2 refer to normalized Haar measure on K 9 . Then f1 � H9 , and
for any j�W we have

ap( f ) h , jb 4 ap( f1 ) h , jb 4 ah , p( f1*) jb 40 .

Hence ]p( f ) h : f� Cc (H)( is a subset of W » , and so its closure is a non-zero
proper H-invariant subspace of Hp , contradicting the irreducibility of p . r

For each z�T , we get a character x z of F 3 by setting

x z (ap r ) 4x 0 (a
.
) z r for a�A3 and r�Z ,

where a
.

is as usual the image of a in Fq . Define a character x z8 of P by
setting

x z8gga
0

b
d
hh4x z (a/d) .

Let s z be the unitary representation of G obtained by unitarily inducing
x z8 from P to G . Thus the representation space Hz of s z consists of the comple-
tion of the space Hz

0 of locally constant functions f : GKC such that
f (pg) 4d(p)1/2 x z8 (p) f ( g) for all p�P and g�G with respect to the norm
V f V4 gs

K
Nf (k)Ndkh1/2

, and (s z ( g) f )( g 8 ) 4 f ( g 8 g) for f� Hz
0 [1, pp. 469, 507].

Here d is the modular quasi-character of P , defined by

s
P

f ( gp) dg4d(p)s
P

f ( g) dg for any f� Cc (P) and p�P ,

where dg refers to left Haar measure on P . So d(p) 4q ord (d/a) if p4ga
0

b
d
h [1,

p. 426]. Note that d(p) is denoted 1 /D(p) in [5, p. 46].
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PROPOSITION 4.6. – The representations s z are irreducible, and trivial on
Z. Regarding s z � H×, we have s z � H×x 9 , and every p� H×x 9 is equivalent to ex-
actly one of the s z .

PROOF. – On the uncompleted space Hz
0 , s z is B(x z , x z

21 ), and so is (alge-
braically) irreducible [1, Theorem 4.5.1] and unitarizable [1, Proposi-
tion 4.6.11]. It follows that s z is irreducible on the completed space Hz . For if
T is a continuous linear operator which commutes with each s z ( g), then for
each compact open subgroup K0 of G , T commutes with QK0

4 s
K0

s z (k) dk ,

which is the orthogonal projection of the space Hz (K0 ) of right K0-invariant
elements of Hz . So T maps each Hz (K0 ) into itself, and hence their union, Hz

0 ,
into itself. By algebraic irreducibility, T must be a multiple of the identity op-
erator. So s z is irreducible.

By the first part of Lemma 4.2, and since d(p) 41 and x 8 (p) 4x z8 (p) for all
p�POK 8 ,

fz ( g) 4
.
/
´

d(p)1/2 x z8 (p) x 8 (k 8 )
0

if g4pk 8�PK 8 ,
if g�Pw0 K 8 .

well-defines a function fz � Hz such that s z (k 8 ) fz 4x 8 (k 8 ) fz for all k 8�K 8

and such that f (1) 41. It follows that the representation of H corresponding
to s z is in H×x 9 .

Any f� Hz such that s z (k 8 ) f4x 8 (k 8 ) f for all k 8�K 8 must be a multiple
of fz . This is immediate from Corollary 4.5, but can easily be seen directly as

follows: taking p4ga
0

0
1
h and p 84g1

0
0
a
h , where a�A3 , we have p�POK 8 ,

pw0 4w0 p 8 , d(p) 41 and x z8 (p) 4x 8 (p). Thus

x 8 (p) f (w0 ) 4 f (pw0 ) 4 f (w0 p 8 ) 4x 8 (p 8 ) f (w0 ) ,

which means that x 0 (a
. 21 ) f (w0 ) 4x 0 (a

.
) f (w0 ). Since x 0

2
c1, there is an a�A3

such that x 0 (a
. 21 ) cx 0 (a

.
). Hence f (w0 ) 40. Since f is determined by f (1) and

f (w0 ), we must have f4cfz for c4 f (1).
For any F� H8 , f4p(F)( fz ) satisfies s z (k 8 ) f4x 8 (k 8 ) f for all k 8�K 8 ,

and so f4cfz for c4 f (1). We next show that if F4Fm , n , then c4

q Nm2nN/2 z m2n . Since Fm , n* 4F2m , 2n , we may assume that mGn . Now

c4 (s z (Fm , n ) fz )(1)4s
G

Fm , n (x) fz (x) dx4(q11)s
P
gs

K

Fm , n (pk) fz (pk) dkh dp

by [1, Proposition 2.1.5(ii)]. Here dk denotes normalized Haar measure mK on
K and dp denotes left Haar measure on P , normalized so that POK has mea-
sure 1. The factor q11 is to normalize the Haar measure dx on G so that K 8

has measure 1.
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Now K is the union of the cosets w0 K 8 and ga K 8 , where a�A and

ga4g1
a

0
1
h . Notice that

ga4g21/a
0

1/a
1
hg0

1
1
0
hga

0
1
1
h�Pw0 K 8

for all a�A0]0(, so that fz (pk) 40 for p�P and k�K0K 8 . If k�K 8 ,
then

Fm , n (pk) fz (pk) 4Fm , n (p) x 8 (k)x 8 (k) fz (p) 4Fm , n (p) fz (p) .

Since mK (K 8 ) 41/(q11),

s
K

Fm , n (pk) fz (pk) dk4s
K 8

Fm , n (pk) fz (pk) dk4Fm , n (p) fz (p) /(q11) .

Hence c4 s
P

Fm , n (p) fz (p) dp .

Now P is the product of the two closed groups D and U , where D consists

of the diagonal matrices ga1

0
0
a2
h , where a1 , a2 �F 3 and U consists of the

matrices g1
0

x
1
h , where x�F . So by [1, Proposition 2.1.5(ii)] again, for any

W� Cc (P),

s
P

W(p) dp4C s
F 3

s
F 3

s
F

Wgga1

0
a1 x
a2
hh da1

Na1N

da2

Na2N
dx ,(4.9)

for some CD0, where da1 , da2 and dx refer to additive Haar measure mF on F ,
normalized so that A has measure 1. The number C is determined by the
condition that POK has measure 1. Taking W to be the indicator function of

POK , and using the fact that ga1

0
a1 x
a2
h�POK if and only if a1 , a2 �A3 and

x�A , the right hand side of (4.9) is

C s
A3

s
A3

s
A

Wgga1

0
a1 x
a2
hh da1 da2 dx4C(q21)2 /q 2 .

Thus C4q 2 /(q21)2 .
Recall that we are assuming that mGn . For a1 , a2 �F 3 and x�F ,

ga1

0
a1 x
a2
h�K 8 gm , n K 8 if and only if a1 /+ m �A3 , a2 /+ n �A3 and x�A ,



RESTRICTING CUSPIDAL REPRESENTATIONS ETC. 377

as is clear from the cases (i) and (ii) considered in the proof of Lemma 4.2.
Hence

(4.10) c4C s
F 3

s
F 3

s
F

(Fm , n Q fz )gga1

0
a1 x
a2
hh da1

Na1N

da2

Na2N
dx

4C s
F 3

s
F 3

s
F

(Fm , n Q fz )gg+ m a1

0
+ m a1 x
+ n a2

hh da1

Na1N

da2

Na2N
dx

4C s
A3

s
A3

s
A

(Fm , n Q fz )gg+ m a1

0
+ m a1 x
+ n a2

hh da1 da2 dx .

If a1 , a2 �A3 and x�A , then p4ga1

0
a1 x
a2
h�POK 8 , and so

(Fm , n Q fz )gg+ m a1

0
+ m a1 x
+ n a2

hh4 (Fm , n Q fz )( gm , n p) 4 (Fm , n Q fz )( gm , n ) ,

since Fm , n ( gm , n p) 4 x 8 (p) and fz ( gm , n p) 4x 8 (p) fz ( gm , n ). This equals

fz ( gm , n ) 4d( gm , n )1/2 x z8 ( gm , n ) 4q (n2m) /2 x z (+ m2n ) 4q (n2m) /2 z m2n .

Hence the integrand in (4.10) equals the constant q (n2m) /2 z m2n , so that

c4CmF (A3 )2 mF (A)q (n2m) /2 z m2n 4q (n2m) /2 z m2n .

Let p� H×x 9 . Since Hp , x 9 is 1-dimensional, if f� H9 , then p ( f )(j) is a multi-
ple l p ( f ) j of j . Then l p : H9KC is a ˜-algebra homomorphism. It does not
depend on the choice of j , nor on the equivalence class of p . The map pOl p is
injective from the set H×x 9 into the set of ˜-algebra homomorphisms on H9 [7,
Appendix 1].

Let fn 4L(F0, n ) � H9 for n�Z . Thus fn ( gZ) 4 x 8 (k1 k2 ) if gZ4k1 g0, n k2 Z
for some k1 , k2 �K 8 , and H9 is spanned by the fn’s. Then fn*4L(F0, n* ) 4

L(F0, 2n ) 4 f2n , and by Proposition 4.4, fn is the n-th convolution power
of f1 for all nF1. Also, f0 ˜f0 4 f0 , and f1 ˜f1*4 f1 ˜f21 4qf0 , since
F0, 1 ˜F0, 1* 4F0, 1 ˜F0, 21 4G0, 1 ˜qG0, 21 4qG0, 0 4qF0, 0 . Let l be a ˜-alge-
bra homomorphism on H9 . Then l is determined by l( f1 ), and we have l( f0 ) 4

1, and Nl( f1 )N2 4q . It follows that l4l s z
for some z�T . Hence if p� H×x 9 then

l p4l s z
for some z , and so p must be equivalent to this s z . r

PROPOSITION 4.7. – The representation IndK 9
H x 9 is unitarily equivalent to

the direct integral s
T

5

s z dz of the representations s z , NzN41.

PROOF. – Let p be an irreducible unitary representation of H , and let
H S(Hp ) denote the space of Hilbert-Schmidt operators on the representation
space Hp of p . It is a Hilbert space with inner product aS , Tb 4Trace (T * S),
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and p gives a unitary representation p 8 on H S(Hp ) by p 8 ( g)(T) 4p( g) T . If
f�L 1 (H)OL 2 (H), let f×(p) denote the operator s

H
f (x) p(x 21 ) dx . Let H× de-

note the set of equivalence classes of irreducible representations of H . The
Plancherel Theorem [5, p. 234], [2, p. 327] states that there is a measure m on
H× so that the map fO (f×(p) ) extends to an isometry of L 2 (H) onto

s
H×

5

H S(Hp ) dm(p) which intertwines the right regular representation r of H and

the direct integral of the representations p 8 .
Let f0 � H9 be as defined at the end of the last proof. It is easy to see that if

p� H×, then f×0 (p) is the orthogonal projection Pp , x 9 of Hp onto Hp , x 9 .
Let V denote the representation space of IndK 9

H x 9 . Then V4] f0 ˜f : f�
L 2 (H)(. If f�L 1 (H)OL 2 (H) is in V , then f4 f0 ˜f , and so f×(p) 4 f×(p) f×0 (p)4

f×(p) Pp , x9 . Hence, considering the above unitary map L2(H)Ks
H×

5

HS(Hp)dm(p),

the image in s
5

H S(Hp ) dm(p) of V%L 2 (H) is the space of fields (Sp ) of opera-
tors such that Sp4Sp Pp , x 9 for all p . Hence Sp40 unless Hp , x 9c ]0(. For
each p� H×x 9 , pick j p� Hp , x 9 of norm 1. An operator Sp on Hp such that
Sp4Sp Pp , x9 is completely determined by up4Sp(j p). In fact, Sp(tj p1h)4tup

if h� ]j p(» . Hence Sp is a Hilbert-Schmidt operator. If Sp4Sp Pp , x9 and
Tp4Tp Pp , x9 , let up4Sp(j p) and vp4Tp(j p). Then Trace (Tp* Sp)4aup , vp b.
Hence Sp OSp (j p ) defines an isometry of ]Sp� L(Hp ) : Sp4Sp Pp , x 9 ( onto
Hp . Hence fO (p( f )(j p ) ) is an isometry from the subspace V of L 2 (H) onto

s
H×x 9

5

Hp dm(p) which intertwines the right translation on V , i.e., IndK 9
H x 9 , with

s
H×x 9

5

p dm(p).

By Proposition 4.6, any p� H×x 9 is equivalent to one of the representations
s z , NzN41, and we can take j p4 fz if p4s z . Because q NnN d m , n 4 a fm , fn b
equals

s
T

a f×m (s z ) fz , F×m (s z ) fz b dm(s z ) 4s
T

a(s z )( f2m ) fz , (s z )( f2n ) fz b dm(s z )

4s
T

aq NmN/2 z m fz , q NnN/2 z n fz b dm(s z )

4q (NmN1NnN) /2s
T

z m2n dm(s z ),

the Plancherel measure induces the Haar measure on T via the embedding
zOs z . r
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