Bollettino

Unione Matematica Italiana

Donald I. Cartwright, Gabriella Kuhn
 Restricting cuspidal representations of the group of automorphisms of a homogeneous tree

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 6-B (2003), n.2, p. 353-379.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2003_8_6B_2_353_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2003.

Restricting Cuspidal Representations of the Group of Automorphisms of a Homogeneous Tree.

Donald I. Cartwright - Gabriella Kuhn

Abstract

Sunto. - Sia \mathfrak{X} un albero omogeneo dove a ogni vertice si incontrano $q+1(q \geqslant 2)$ spigoli. Sia $\mathfrak{A}=\operatorname{Aut}(\mathfrak{X})$ il gruppo di automorfismi di \mathfrak{X} e H un sottogruppo chiuso isomorfo a PGL(2,F) (F campo locale il cui campo residuo ha ordine q). Sia π una rappresentazione continua unitaria e irriducibile di $\mathfrak{A} e$ si consideri π_{H}, la sua restrizione ad H. \grave{E} noto che se π è una rappresentazione sferica o speciale π_{H} rimane irriducibile. In questo lavoro si mostra che quando π è cuspidale la situazione è molto più complessa. Si studia in dettaglio il caso in cui il sottoalbero minimale associato a π sia il più piccolo possibile, ottenendo una esplicita decomposizione di π_{H}.

Summary. - Let \mathfrak{X} be a homogeneous tree in which every vertex lies on $q+1$ edges, where $q \geqslant 2$. Let $\mathfrak{G}=\operatorname{Aut}(\mathfrak{X})$ be the group of automorphisms of \mathfrak{X}, and let H be the its subgroup $P G L(2, F)$, where F is a local field whose residual field has order q. We consider the restriction to H of a continuous irreducible unitary representation π of \mathfrak{A}. When π is spherical or special, it was well known that π remains irreducible, but we show that when π is cuspidal, the situation is much more complicated. We then study in detail what happens when the minimal subtree of π is the smallest possible.

1. - Introduction.

Continuing the notation in the abstract, \mathcal{C} is a locally compact totally disconnected unimodular topological group with the topology of pointwise convergence. Fix a vertex o of \mathfrak{X} and a vertex o^{\prime} adjacent to o. A classification of the irreducible continuous unitary representations π of \mathcal{G} was given by Ol'shanskii [11, 12], and is described in [4], the notation of which we shall basically be following. They are parametrized by (orbits of) finite complete subtrees \mathfrak{x} of \mathfrak{X} (a subtree \mathfrak{x} is complete if for every vertex v of \mathfrak{x} not in the boundary of \mathfrak{x}, all of the $q+1$ neighbours of v are also in \mathfrak{x}). For such a subtree, let $K(\mathfrak{x})$ denote the compact group of $g \in \mathcal{G}$ for which $g v=v$ for all vertices v of \mathfrak{x}, and let $\widetilde{K}(\mathfrak{c})=\{g \in \mathcal{Q}: g \mathfrak{x}=\mathfrak{x}\}$. We write $K_{o}=\{g \in \mathcal{O}: g o=o\}=K(\{o\})$. If π has non-zero $K(\mathfrak{y})$-fixed vectors, but no non-zero $K(\mathfrak{y})$-fixed vectors for any finite complete subtree \mathfrak{y} with fewer vertices than \mathfrak{x}, we call \mathfrak{x} a minimal sub-
tree for π. If \mathfrak{x} is a minimal subtree for π, then so is $g \mathfrak{x}$ for any $g \in \mathcal{G}$. If π has a minimal subtree with only one vertex, which we may assume is o, then π is called spherical. If π has a minimal subtree with exactly 2 vertices, which we may assume are o and o^{\prime}, then π is called special. If π has a larger minimal subtree \mathfrak{x}, i.e., $\operatorname{diam}(\mathfrak{x}) \geqslant 2$, then π is called cuspidal. These are obtained by induction from $\widetilde{K}(\mathfrak{y})$ to \mathcal{G} of irreducible representations σ of $\widetilde{K}(\mathfrak{y})$ which are trivial on $K(\mathfrak{y})$ and which have no non-zero $K(\mathfrak{y})$-fixed vectors for any of the maximal proper complete subtrees \mathfrak{y} of \mathfrak{x} (note that $K(\mathfrak{y}) \subset K(\mathfrak{y}) \subset \widetilde{K}(\mathfrak{r})$ for such a \mathfrak{y}). The set of equivalence classes of these «standard» representations of $\widetilde{K}(\mathfrak{x})$ is denoted $(\widetilde{K}(\mathfrak{x}))_{0}$. Because any automorphism of \mathfrak{x} can be extended to an automorphism of \mathfrak{X}, the map $g \mapsto g_{\mid \mathfrak{x}}$ induces an isomorphism $\widetilde{K}(\mathfrak{x}) / K(\mathfrak{x}) \cong$ Aut (\mathfrak{y}), and so the representations of $\widetilde{K}(\mathfrak{c})$ satisfying the above conditions correspond to certain irreducible representations of Aut(と), which we also refer to as standard.

Note that in Ol'shanskii's papers, the representations classified were the algebraically irreducible admissible ones. If π is a cuspidal irreducible continuous unitary representation on a Hilbert space \mathcal{T}_{π}, let V_{π} denote the space of vectors $\xi \in \mathcal{H}_{\pi}$ which are $K(\mathfrak{y})$-invariant for some finite complete subtree \mathfrak{y}. This a dense invariant subspace of \mathcal{C}_{π}. Let $\pi^{\circ}: \mathcal{G} \rightarrow G L\left(V_{\pi}\right)$ be the representation of \mathcal{G} obtained from π. Then π° is admissible and algebraically irreducible [4, p. 115]. Conversely, if $\pi^{\prime}: \mathcal{G} \rightarrow G L(V)$ is an admissible and algebraically irreducible representation of \mathfrak{A}, which has minimal subtree of diameter at least 2 , then π^{\prime} is unitarizable [12, § 2.6], and extends to irreducible continuous unitary representation.

Let F be a commutative non-archimedean local field. Let ord : $\mathrm{F} \rightarrow \mathbb{Z} \cup$ $\{\infty\}$ be the valuation on F. Let $\mathfrak{D}=\{x \in F$: ord $(x) \geqslant 0\}$ be the valuation ring of F, and let $\varpi \in \mathfrak{D}$ be an element of valuation 1 . Let $\mathfrak{D}^{\times}=\{x \in \mathfrak{D}: \operatorname{ord}(x)=0\}$ denote the group of invertible elements of the ring \mathfrak{O}. Let q be the order of the residual field $\subseteq / \varpi \subseteq$, which equals p^{r} for some prime p and some integer $r \geqslant 1$. Let $A \subset \subseteq$ be a set of q elements, one of them 0 , such that the canonical $\operatorname{map} \mathfrak{D} \rightarrow \Im / \varpi \Im$, restricted to A, is a bijection. Each element of \subseteq is expressible uniquely as the sum of a series $a_{0}+a_{1} \varpi+a_{2} \varpi^{2}+\ldots$, where each a_{i} is in A.

Recall the construction of the Bruhat-Tits tree \mathfrak{X} associated with $G=$ $G L(2, F)\left[16\right.$, p. 69; 4, p. 127]. Let $V=F^{2}$ denote the space of all column vectors of length 2 with entries in F. A lattice in V is a subset of V of the form $\left\{t_{1} v_{1}+t_{2} v_{2}: t_{1}, t_{2} \in \mathfrak{D}\right\}$, where $\left\{v_{1}, v_{2}\right\}$ is a basis of V over F. If $\left\{v_{1}, v_{2}\right\}$ is the usual basis of V, then the corresponding lattice is \mathfrak{D}^{2}, and is denoted L_{0}. If L is a lattice and if $g \in G$, then $g(L)$ is a lattice, and so G acts on the set of lattices. This action is clearly transitive, and the stabilizer of L_{0} is the group $K=$ $G L(2, \mathfrak{D})$ of matrices with entries in \mathfrak{D} and having determinant in \mathfrak{D}^{\times}. Two lattices L, L^{\prime} are called equivalent if $L^{\prime}=\lambda L$ for some $\lambda \in F^{\times}$. Let [L] denote the equivalence class of the lattice L. The Bruhat-Tits tree \mathfrak{X} has as vertex set
the set of equivalence classes of lattices. Two distinct lattice classes [L] and [L^{\prime}] are adjacent if representative lattices L and L^{\prime} can be found such that $\varpi L{ }_{\neq}^{\subset} L^{\prime}{ }_{\neq}^{C} L$. The tree \mathfrak{X} is homogeneous of degree $q+1$.

The above action of G on \mathfrak{X} gives a homomorphism $\varphi: G \rightarrow \mathcal{C}$ with kernel $Z=\left\{\lambda I: \lambda \in F^{\times}\right\}$. We write H for the image of φ. Thus $P G L(2, F) \cong H \leqslant \mathcal{Q}$. It is natural to ask how the irreducible unitary representations π of \mathfrak{G} behave when restricted to H. When π is spherical or special, the restriction is known to remain irreducible [4, p. 117]. We are concerned here only with the cuspidal case.

We identify H and $P G L(2, F)$ throughout. The representations of H correspond to, and are here frequently identified with, representations of G which are trivial on Z. Everything we shall need about the representations of G is contained in Bump's book [1].

Let π be an irreducible unitary representation of \mathcal{G} with minimal subtree \mathfrak{x}, where $\operatorname{diam}(\mathfrak{y}) \geqslant 2$. In Section 2 we prove some general results, showing in particular that the restriction of π to H is a direct sum of induced representations. Then in Sections 3 and 4 we discuss in detail the case when \mathfrak{x} is as small as possible: o together with its $q+1$ neighbours. Except for the one example with $q=2$, the restriction of π to H is then never irreducible, and we give for it an explicit decomposition as a direct integral of irreducible representations.

We thank Tim Steger for useful conversations on the subject of this paper.

2. - Restricting cuspidal representations to $P G L(2, F)$.

Let $\mathcal{A}, G, K, Z, \varphi: G \rightarrow \mathcal{G}$ and $H \cong G / Z=P G L(2, F)$ be as above.
Now let \mathfrak{x} be a finite complete subtree of \mathfrak{X}, with $\operatorname{diam}(\mathfrak{c}) \geqslant 2$. Let $\sigma \in$ $(\widetilde{K}(\mathfrak{y}))_{0}^{\sim}$ have representation space \mathcal{H}_{σ} (finite dimensional, of course). Let $\pi=$ $I n d_{\bar{K}(\mathfrak{Y})}^{\mathcal{Q}} \sigma$. Because we are inducing from an open subgroup, the definition of an induced representation is particularly simple here. Counting measure on the discrete set $\mathcal{A} / \widetilde{K}(\mathfrak{y})$ is an invariant measure, and so the representation space of π is the space \mathcal{H}_{π} of functions $f: \mathcal{G} \rightarrow \mathcal{H}_{\sigma}$ such that
(i) $f(k g)=\sigma(k)(f(g))$ for all $g \in \mathcal{Q}$ and $k \in \widetilde{K}(\mathfrak{y})$, and
(ii) $\sum_{\alpha}\left\|f\left(g_{\alpha}\right)\right\|^{2}<\infty$,
and we define $\|f\|$ to be the square root of the sum in (ii). Here $\left\{g_{\alpha}\right\}$ is any set of coset representatives for $\widetilde{K}(\mathfrak{y})$ in \mathcal{G}. Notice that we do not have to add measurability conditions, because any $f \in \mathcal{C}_{\pi}$ is left $K(\mathfrak{y})$-invariant, and therefore is locally constant. For $g \in \mathcal{G}$, the action of $\pi(g)$ on $f \in \mathcal{H}_{\pi}$ is right translation:
$(\pi(g) f)\left(g^{\prime}\right)=f\left(g^{\prime} g\right)$. Because $\widetilde{K}(\mathfrak{c})$ is also compact, if $f \in \mathcal{T}_{\pi}$, then the integral of $\|f(g)\|^{2}$ over \mathcal{G} with respect to a Haar measure m is $m(\widetilde{K}(\mathfrak{y}))$ times the sum in (ii) above.

Notice that in [4], the induced representation is defined so that \mathcal{T}_{π} consists of functions satisfying $f(g k)=\sigma\left(k^{-1}\right)(f(g))$ for all $g \in \mathcal{Q}$ and $k \in \widetilde{K}(\mathfrak{y})$, with $\pi(g)$ being left translation. The intertwining operator $f \mapsto \check{f}$, where $\check{f}(x)=$ $f\left(x^{-1}\right)$, shows that the two definitions give equivalent representations.

The algebraically irreducible admissible representation π° corresponding to π is just the representation obtained from σ by compact induction (see, for example, [1, p. 470]). To see this, let $f \in V_{\pi}$, the representation space of π°. Then $f \in \mathscr{C}_{\pi}$ is right $K(\mathfrak{y})$-invariant for some finite complete subtree \mathfrak{y} of \mathfrak{X}. So for any $\xi \in \mathcal{H}_{\sigma}$, the function $g \mapsto\langle\check{f}(g), \xi\rangle$ is in $S(\mathfrak{y})$ (see [4, p. 87]) and is left $K(\mathfrak{y})$-invariant, and so [4, Prop. III.3.2] is supported on the compact set $\{g \in$ $\mathfrak{A}: g \mathfrak{x} \subset \mathfrak{y}\}$, which is a finite union of cosets $g \widetilde{K}(\mathfrak{y})$. Hence f is supported on a finite union of cosets $\widetilde{K}(\mathfrak{y}) g$. Conversely, if $f \in \mathcal{H}_{\pi}$ is supported on the union of cosets $\widetilde{K}(\mathfrak{y}) g_{j}, j=1, \ldots, r$, choose a finite complete subtree \mathfrak{y} containing the union of the trees $g_{j}^{-1} \mathfrak{d}$. If $k \in K(\mathfrak{y})$, then $g_{j} k g_{j}^{-1} \in K(\mathfrak{y})$ and so $\sigma\left(g_{j} g g_{j}^{-1}\right)=I$ for each j. It follows that f is right $K(\mathfrak{y})$-invariant, and so in V_{π}.

We start with two quite general results. In the first one, the hypotheses $\operatorname{diam}(\mathfrak{y}) \geqslant 2$ and $\sigma \in(\widetilde{K}(\mathfrak{y}))_{0}$ are not needed.

Proposition 2.1. - Let \mathfrak{x} be a finite complete subtree of \mathfrak{X} satisfying $\operatorname{diam}(\mathfrak{x}) \geqslant 2$. Then \mathcal{G} is a finite disjoint union

$$
\begin{equation*}
\mathfrak{A}=\bigcup_{j=1}^{r} \widetilde{K}(\mathfrak{c}) g_{j} H, \tag{2.1}
\end{equation*}
$$

of double cosets $\widetilde{K}(\mathfrak{y}) g H$. Let $\sigma \in(\widetilde{K}(\mathfrak{y}))_{0}^{-}$, and let $\pi=\operatorname{Ind}_{\widetilde{K}(\mathfrak{y})}^{\mathfrak{Q}} \sigma$. Then the restriction of π to H is unitarily equivalent to the representation

$$
\begin{equation*}
\bigoplus_{j=1}^{W} \operatorname{Ind}_{g_{j}{ }^{-1} \tilde{K}(\mathrm{x}) g_{j} \cap H}^{H} \sigma_{j} \tag{2.2}
\end{equation*}
$$

where $\sigma_{j}(k)=\sigma\left(g_{j} k g_{j}^{-1}\right)$ for $k \in g_{j}^{-1} \widetilde{K}(\mathfrak{c}) g_{j} \cap H$. In particular, if $r \geqslant 2$, then this restriction is reducible.

Proof. - Fix any vertex $v_{0} \in \mathfrak{x}$. There are only finitely many subtrees of \mathfrak{X} containing v_{0} and of the form $g(\mathfrak{x})$ for some $g \in \mathcal{Q}$. Write these $\gamma_{j}(\mathfrak{y}), j=$ $1, \ldots, m$. If $g \in \mathcal{A}$, then as H acts transitively on the vertices of \mathfrak{X}, there is an $h \in H$ such that $g^{-1}\left(v_{0}\right)=h^{-1}\left(v_{0}\right)$. Thus $h g^{-1}\left(v_{0}\right)=v_{0}$, so that $h g^{-1}(\mathfrak{x})=\gamma_{j}(\mathfrak{x})$ for some j. Thus $g \in \widetilde{K}(\mathfrak{c}) \gamma_{j}^{-1} h$. Hence there are only finitely many distinct double cosets $\widetilde{K}(\mathfrak{c}) g H$, so that (2.1) holds for some g_{1}, \ldots, g_{r}.

We may write $\widetilde{K}(\mathfrak{y}) g_{j} H$ as a union of disjoint cosets $\widetilde{K}(\mathfrak{y}) g_{j} h_{j, v}$, where the $h_{j, \nu}$'s are in H. Hence, for each j, H is the union of the disjoint cosets
$\left(g_{j}^{-1} \widetilde{K}(\mathfrak{r}) g_{j} \cap H\right) h_{j, v}$. Let \mathscr{U}_{π} be defined as above, and let \mathfrak{S} denote the representation space of the representation (2.2), i.e., the space of r-tuples $\left(f_{1}, \ldots, f_{r}\right)$ of functions $f_{j}: H \rightarrow \mathcal{H}_{\sigma}$ which satisfy
(i) $f_{j}(k h)=\sigma\left(g_{j} k g_{j}^{-1}\right)\left(f_{j}(h)\right)$ for all $h \in H$ and $k \in g_{j}^{-1} \widetilde{K}(\mathfrak{y}) g_{j} \cap H$, and
(ii) $\sum_{j, v}\left\|f_{j}\left(h_{j, v}\right)\right\|^{2}<\infty$.

Given $F \in \mathcal{H}_{\pi}$, let $f_{j}(h)=F\left(g_{j} h\right)$ for $h \in H$. It is clear that the map $T: F \mapsto\left(f_{1}, \ldots, f_{r}\right)$ is an isometry $\mathcal{C}_{\pi} \rightarrow \mathfrak{F}$. Moreover, this map is surjective, because if $\left(f_{1}, \ldots, f_{r}\right) \in \mathfrak{F}$, then we may define $F \in \mathcal{C}_{\pi}$ by setting $F\left(k g_{j} h\right)=$ $\sigma(k)\left(f_{j}(h)\right)$ for all $h \in H, k \in \widetilde{K}(x)$, and all j. It is routine to check that F is welldefined and that $\left(f_{1}, \ldots, f_{r}\right)=T(F)$.

Let π be as in Proposition 2.1. The following result, while not used in the sequel, is of interest because it guarantees that any irreducible subrepresentation of the restriction π_{H} of π to H occurs with only finite multiplicity. Since π_{H} is still square integrable as a representation of H, standard arguments show that it is a subrepresentation of the sum of infinitely many copies of the left regular representation λ_{H} of H. In fact, we can show more:

Proposition 2.2. - Let π be as in Proposition 2.1. Then for some $n<\infty$, the restriction to H of π is contained in the sum $n \lambda_{H}$ of n copies of the left regular representation of H.

Proof. - Let \mathcal{C}_{π} be the representation space of π and let M be the space of $K(\mathfrak{r})$-fixed vectors in \mathcal{C}_{π}. Notice that if $f_{1} \in M$ and $k \in \widetilde{K}(\mathfrak{y})$, then $\pi(k) f_{1} \in M$ because $K(\mathfrak{y})$ is normal in $\widetilde{K}(\mathfrak{y})$. Let g_{1}, \ldots, g_{r} be as in (2.1). Suppose that $\left\langle f, \pi(h) \pi\left(g_{j}^{-1}\right) f_{1}\right\rangle=0$ for all $f_{1} \in M$, all $h \in H$ and all j. Then $f=0$. To see this, pick any $f_{0} \in M \backslash\{0\}$. For if $g \in \mathcal{G}$, we can write $g=h g_{j}^{-1} k$ for some j, and some $h \in H$ and $k \in \widetilde{K}(\mathfrak{y})$. Then $\left\langle f, \pi(g) f_{0}\right\rangle=\left\langle f, \pi(h) \pi\left(g_{j}^{-1}\right)\left(\pi(k) f_{0}\right)\right\rangle=0$. But f_{0} is a cyclic vector for π, and so $f=0$.

Now M is finite dimensional because $M \subset V_{\pi}$ and π° is admissible (cf. [4, p. 112]). Let M^{\prime} be the sum of the subspaces $\pi\left(g_{j}^{-1}\right) M, j=1, \ldots, r$. Let f_{1}, \ldots, f_{n} be any basis of M^{\prime}. For each i, let $\left(T_{i} f\right)(h)=\left\langle f, \pi(h) f_{i}\right\rangle$. Then $T_{i} f \in L^{2}(H)$ by [4, Lemma 3.12]. Define $T: \mathcal{H}_{\pi} \rightarrow L^{2}(H) \oplus \ldots \oplus L^{2}(H)$ (n copies) by $T f=\left(T_{1} f, \ldots, T_{n} f\right)$. It is easily checked that T intertwines π and $n \lambda_{H}$. Moreover, T has kernel $\{0\}$ by the first paragraph of this proof. Now $T^{*} T: \mathcal{H}_{\pi} \rightarrow \mathcal{H}_{\pi}$ must intertwine π with itself, and so be $c I$ for some $c \geqslant 0$. As T is injective, we have $c \neq 0$. Hence $c^{-1 / 2} T$ is an isometry embedding \mathcal{T}_{π} in $L^{2}(H) \oplus \ldots \oplus L^{2}(H)$ and intertwining π and $n \lambda_{H}$.

We shall henceforth only be concerned with the case when the r in (2.1) is 1 . In this case, Proposition 2.1 takes the following simpler form:

Corollary 2.3. - Let \mathfrak{x} be a finite complete subtree of \mathfrak{X} satisfying $\operatorname{diam}(\mathfrak{x}) \geqslant 2$ for which

$$
\begin{equation*}
\mathfrak{Q}=\widetilde{K}(\mathfrak{r}) H \tag{2.3}
\end{equation*}
$$

Let $\sigma \in(\widetilde{K}(\mathfrak{c}))_{0}$, and let $\pi=\operatorname{Ind}_{\widetilde{K}(\mathfrak{e})}^{\mathfrak{Q}} \sigma$. Then the restriction of π to H is unitarily equivalent to the representation

$$
\begin{equation*}
\operatorname{Ind}_{\tilde{K}(\mathfrak{x}) \cap H}^{H} \sigma_{\mid \tilde{K}(\mathfrak{y}) \cap H} \tag{2.4}
\end{equation*}
$$

obtained by inducing from $\widetilde{K}(\mathfrak{c}) \cap H$ to H the restriction of σ to $\widetilde{K}(\mathfrak{c}) \cap H$.
Notice that the hypothesis (2.3) is satisfied by $\mathfrak{x}=\mathfrak{x}_{n}=\{v \in \mathfrak{X}: d(v, o) \leqslant n\}$, because $\widetilde{K}\left(x_{n}\right)=K_{o}$, and (2.3) holds because H acts transitively on the set of vertices of \mathfrak{X}.

Another example in which (2.3) holds is $\mathfrak{x}=\mathfrak{x}_{n}^{\prime}$, the subtree whose vertices are those at distance at most n from o or o^{\prime} (recall that o^{\prime} is a neighbour of o). Here $n \geqslant 1$. Clearly $\widetilde{K}\left(\mathfrak{C}_{n}^{\prime}\right)=\left\{g \in \mathcal{G}: g\left\{o, o^{\prime}\right\}=\left\{o, o^{\prime}\right\}\right\}$ for any n. Since G acts transitively on the vertices of \mathfrak{X}, (2.3) holds because $K=G L(2, \supset)$ acts transitively on the set of neighbours of o. See the beginning of the next section.

Here is an example for which (2.3) is not true, i.e., $r>1$ in (2.1). Assume that $q \geqslant 4$, and let x_{1}, \ldots, x_{5} be 5 distinct neighbours of o. For each j, let v_{j} be a vertex at distance $j+1$ from o such that x_{j} is on the geodesic from o to v_{j}. Let \mathfrak{x} be the smallest complete subtree having all the vertices v_{j} as interior points. Choose a $g \in K_{o}$ which interchanges x_{1} and x_{2}, but leaves the other neighbours of o fixed. Then any $h \in G$ which satisfies $g \mathbb{x}=h \mathfrak{x}$ must interchange x_{1} and x_{2}, and fix x_{3}, x_{4} and x_{5}. But an $h \in G$ which fixes three neighbours of o must fix them all by Lemma 3.1 below.

In the context of Corollary 2.3, it is convenient to work with representations of $G=G L(2, F)$ instead of H, and so we transfer the last lemma to that setting:

Lemma 2.4. - With notation and hypotheses of Corollary 2.3, the representation of G obtained from the representation (2.4) of H by composing with $\varphi: G \rightarrow H$ is

$$
\begin{equation*}
\operatorname{Ind}_{\tilde{K}_{G}(\mathfrak{x})}^{G} \sigma^{\prime} \tag{2.5}
\end{equation*}
$$

where $\widetilde{K}_{G}(\mathfrak{y})=\{g \in G: \varphi(g) \in \widetilde{K}(\mathfrak{y})\}$ and where σ^{\prime} is the representation of
$\widetilde{K}_{G}(\mathfrak{y})$ obtained from $\sigma_{\mid \widetilde{K}(x) \cap H}$ by composing with the restriction of φ to $\widetilde{K}_{G}(\mathfrak{y})$.

Proof. - Write G as a disjoint union of cosets $\widetilde{K}_{G}(\mathfrak{r}) g_{\alpha}$. Then H is the disjoint union of the cosets $(\widetilde{K}(\mathfrak{r}) \cap H) \varphi\left(g_{\alpha}\right)$. It is easy to see that $f \mapsto f \circ \varphi$ is an isometric isomorphism from the representation space $\mathfrak{5}$ of the representation (2.4) to that of (2.5).

Let $K_{G}(\mathfrak{y})=\{g \in G: \varphi(g) \in K(\mathfrak{g})\}$. Then φ induces an embedding

$$
\begin{equation*}
\widetilde{K}_{G}(\mathfrak{x}) / K_{G}(\mathfrak{y}) \hookrightarrow \widetilde{K}(\mathfrak{x}) / K(\mathfrak{x}) \cong \operatorname{Aut}(\mathfrak{x}), \tag{2.6}
\end{equation*}
$$

and σ^{\prime} corresponds to a representation of $\widetilde{K}_{G}(\mathfrak{x}) / K_{G}(\mathfrak{x})$, obtained by restricting the irreducible standard representation σ of $\operatorname{Aut}(\mathfrak{y})$. So σ^{\prime} will in general be a finite sum

$$
\begin{equation*}
\sigma^{\prime}=\sigma_{1}^{\prime}+\ldots+\sigma_{m}^{\prime} \tag{2.7}
\end{equation*}
$$

of irreducible representations of $\widetilde{K}_{G}(\mathfrak{y}) / K_{G}(\mathfrak{y})$. Thus (2.5) will be the sum of the corresponding induced representations.

Obtaining the decomposition (2.7) is a non-trivial problem in the representation theory of the finite group $\operatorname{Aut}(\mathfrak{y})$, even for the simplest of \mathfrak{x} 's.
3. - The case $\mathfrak{x}=\mathfrak{x}_{1}$.

Recall that A denotes a set of q elements in \supseteq containing 0 such that the map $a \mapsto a+\varpi \supseteq$ is a bijection $A \rightarrow \mathfrak{D} / \varpi \supseteq$. The neighbours of $o=\left[L_{0}\right]$ are the vertices [$g_{\infty} L_{0}$] and [$g_{a} L_{0}$], $a \in A$, where

$$
g_{\infty}=\left[\begin{array}{cc}
1 & 0 \tag{3.1}\\
0 & \varpi
\end{array}\right] \quad \text { and } \quad g_{a}=\left[\begin{array}{cc}
\varpi & a \\
0 & 1
\end{array}\right],
$$

Clearly $\widetilde{K}_{G}\left(\mathfrak{x}_{1}\right)=Z K=Z \cdot G L(2, \mathfrak{D})$, and it is easy to see that $K_{G}\left(\mathfrak{x}_{1}\right)$ equals

$$
\left\{\lambda(I+\varpi M): \lambda \in F^{\times} \text {and } M \in M_{2 \times 2}(\mathfrak{O})\right\},
$$

where $M_{2 \times 2}(\mathfrak{D})$ is the space of 2×2 matrices with entries in \mathfrak{D}. Since $\{I+$ $\left.\varpi M: M \in M_{2 \times 2}(\mathfrak{D})\right\}$ is the kernel of the natural map $G L(2, \mathfrak{D}) \rightarrow$ $G L(2, \mathfrak{D} / \varpi \mathfrak{D})$, we see that $\widetilde{K}_{G}\left(\mathfrak{x}_{1}\right) / K_{G}\left(\mathfrak{x}_{1}\right) \cong P G L\left(2, \mathbb{F}_{q}\right)$, where $\mathbb{F}_{q} \cong \mathfrak{D} / \varpi \supseteq$ is the field with q elements. Thus the $\sigma_{j}^{\prime \prime} \mathrm{s}$ in (2.7) can be thought of as representations of $P G L\left(2, \mathbb{F}_{q}\right)$. The map $G L(2, \mathfrak{D}) \rightarrow G L\left(2, \mathbb{F}_{q}\right)$ induced by the surjection $\mathfrak{D} \rightarrow \mathfrak{D} / \mathbb{D} \cong \mathbb{F}_{q}$ naturally gives rise to a surjection

$$
\begin{equation*}
Z K \mapsto P G L\left(2, \mathbb{F}_{q}\right) \tag{3.2}
\end{equation*}
$$

which is trivial on Z. So the σ_{j}^{\prime} 's can be thought of as representations of $Z K$.

It is also clear that $\operatorname{Aut}\left(\mathfrak{x}_{1}\right) \cong \widetilde{\Im}_{q+1}$, the symmetric group on $q+1$ letters. So in this case the embedding (2.6) gives us an embedding of the group $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right)$, which has order $(q+1) q(q-1)$, into \mathbb{S}_{q+1}. This embedding is equivalent to the following well-known construction. Let $\mathrm{P}^{1}\left(\mathrm{~F}_{q}\right)$ be the projective line over \mathbb{F}_{q}, i.e., the set of equivalence classes of non-zero vectors $v=\binom{\alpha}{\beta}$ in \mathbb{F}_{q}^{2}, where $v \sim v^{\prime}$ if $v^{\prime}=\lambda v$ for some $\lambda \in \mathbb{F}_{q}^{\times}$. Let $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ be the equivalence class of $\binom{\alpha}{\beta}$. The natural action of $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right)$ on $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$, which has $q+1$ elements, is faithful. This gives an embedding of $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right)$ into \mathbb{S}_{q+1}. We can define a bijection from $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ to the set of neighbours of o by mapping $\left[\begin{array}{l}a \\ 1\end{array}\right]$ to $\left[g_{a} L_{0}\right]$, $a \in A$, and mapping $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ to [$\left.g_{\infty} L_{0}\right]$. One may check that this is an isomorphism of $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right)$-spaces. The following is a well-known and easily checked fact about the action of $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right)$ on $\mathrm{P}^{1}\left(\mathbb{F}_{q}\right)$ (see, for example, [15, Theorem 10.6.7]).

Lemma 3.1. - If u_{1}, u_{2}, u_{3} are three distinct neighbours of o, and if also v_{1}, v_{2}, v_{3} are three distinct neighbours of o, then there is a unique $g \in$ $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right)$ such that $g u_{j}=v_{j}$ for each j.

It is well-known that the irreducible representations of $\operatorname{Aut}\left(\mathfrak{x}_{1}\right) \cong \mathbb{S}_{q+1}$ are in one to one correspondence with the partitions of $q+1$ [8, Theorem 2.1.11]. We next identify which of them are standard.

Lemma 3.2. - Of the irreducible representations of $\mathfrak{\Im}_{q+1}$, only two are nonstandard, namely the trivial representation and the q dimensional representation of $\mathbb{S}_{q+{ }_{q+1}}$ obtained from the natural action of \mathbb{S}_{q+1} on $V=$ $\left\{\left(t_{1}, \ldots, t_{q+1}\right): \sum_{i=1} t_{i}=0\right\}$.

Proof. - Any maximal proper subtree of \mathfrak{x}_{1} consists of o and a neighbour of o. So given any two maximal proper subtrees \mathfrak{y}_{1} and \mathfrak{y}_{2} of \mathfrak{x}_{1}, there is a $g \in$ Aut $\left(\mathfrak{x}_{1}\right)$ such that $g\left(\mathfrak{y}_{1}\right)=\mathfrak{y}_{2}$. Thus to check whether a representation of Aut $\left(\mathfrak{x}_{1}\right)$ is non-standard, we need only check when it has a non-zero $K(\mathfrak{y})$-fixed vector for any particular maximal proper subtree \mathfrak{y}. The subgroup $K(\mathfrak{y})$ corresponds to the subgroup \mathbb{S}_{q} of \mathbb{S}_{q+1} which fixes a particular one of the letters $1, \ldots, q+1$. The irreducible representations of $\mathbb{\Im}_{q+1}$ having a non-zero $\mathbb{\Im}_{q^{-}}$ fixed vector are just the subrepresentations of the quasi-regular representation λ^{\prime}, say, of $\widetilde{\Im}_{q+1}$ on $\widetilde{\Im}_{q+1} / \widetilde{S}_{q}$ (see [4, p. 104]). But it is easy to see that λ^{\prime} is equivalent to the representation obtained from the natural representation of \widetilde{S}_{q+1} on \mathbb{C}^{q+1}, which is the sum of one copy of the trivial representation (be-
cause of the constant $q+1$-tuple ($1,1, \ldots, 1$), and the above q-dimensional representation on the orthogonal complement V of $(1,1, \ldots, 1)$.

The two non-standard representations of $\mathbb{\Im}_{q+1}$ appearing above correspond to the partitions $(q+1)$ and ($q, 1$), respectively, of $q+1$ (see [8, Lemma 2.2.19(iii)]).

The irreducible representations of $P G L\left(2, \mathbb{F}_{q}\right)$ are also well-known. In [14] and $[1, \S 4.1]$, for example, the irreducible representations of $G_{0}=G L\left(2, \mathbb{F}_{q}\right)$ are described, and those of $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right)$ are just the ones which are trivial on the centre $Z_{0}=\left\{\lambda I: \lambda \in \mathbb{F}_{q}^{\times}\right\}$of G_{0}. If q is odd, there are 2 characters, 2 «special» representations of degree $q,(q-3) / 2$ «principal series» representations (all of degree $q+1$), and $(q-1) / 2$ «cuspidal» representations of degree $q-1$. If $q>2$ is even, there is only 1 character, and 1 special representation of degree q, and there are $(q-2) / 2$ principal series representations (all of degree $q+1$), and $q / 2$ cuspidal representations of degree $q-1$. If $q=2$, there are 2 characters and 1 representation of degree 2.

Thus for $\mathfrak{x}=\mathfrak{x}_{1}$, the problem of describing the representation (2.4), or equivalently, (2.5), becomes the following: Firstly, take an irreducible representation σ of \mathbb{S}_{q+1}, not one of the two non-standard ones described in Lemma 3.2, and consider its restriction σ^{\prime} to $P G L\left(2, \mathbb{F}_{q}\right)$, embedded in \mathbb{S}_{q+1} as described before Lemma 3.1.
(a) Decompose σ^{\prime} into the sum (2.7) of irreducibles $\sigma_{j}^{\prime}, j=1, \ldots, m$.
(b) Regard each σ_{j}^{\prime} as a representation on $Z K$ via (3.2), and determine $\operatorname{Ind}_{Z K}^{G} \sigma_{j}^{\prime}$.

We are able to perform step (a) explicitly for any particular small q. If $q \leqslant 3$, then $(q+1) q(q-1)=(q+1)!$, and so $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right) \cong \widetilde{\Im}_{q+1}$. Thus m in (2.7) is 1 . By Lemma 3.2, if $q=2$, then only the sign character ε is standard. If $q=3$, then \Im_{q+1} has trivial character, the sign character $\varepsilon, 1$ representation of degree 2 , and two of degree 3 (see, for example, [8, p. 349]). Thus the standard representations are ε, and one each of degrees 2 and 3 . These must «restrict» to a non-trivial character, a cuspidal and a special representation, respectively, of $\operatorname{PGL}\left(2, \mathbb{F}_{3}\right)$.

For somewhat larger q 's, we first use [14, §1.5] to determine the conjugacy classes C_{i} in $P G L\left(2, \mathbb{F}_{q}\right)$. Then for each i, after choosing a representative g_{i} of C_{i}, it is easy to calculate the cycle type of the permutation of $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ induced by g_{i}. Then we use the character tables in [8, pp.349-355], and routine calculations to find the decomposition into irreducibles of the restriction to $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right)$ of each irreducible representation of \mathbb{S}_{q+1}. By way of example, the result for case $q=7$ is given in the table below. It is the smallest case in which multiplicities greater than 1 occur. The first row of the table gives the degree of each irreducible representation of S_{q+1}, in the order used in [8]. In the first column, χ_{j} is a character, and c_{j}, p_{j} and s_{j} refer to cuspidal, principal
series, and special representations, respectively. The next two columns refer to the two non-standard representations of S_{q+1}, and so do not concern us here.

The case $q=7$.

We now turn to step (b) in the procedure for describing the representation (2.4): finding $\operatorname{Ind}_{Z K}^{G} \sigma_{j}^{\prime}$ for each j. There are four cases, according to whether $\tau=\sigma_{j}^{\prime}$ is cuspidal, a character, special or principal series.

Proposition 3.3. - When τ is cuspidal, then $\operatorname{Ind}_{Z K}^{G} \tau$ is an irreducible supercuspidal representation of G.

Proof. - This is a special case of a result of Kutzko [9], which is stated and proved in exactly our situation in [1, Theorem 4.8.1], with the central character being trivial in our case. A word is needed about the various types of induced representations used here and in [1]. Let us call the type defined at the beginning of Section 2 unitary induction. In [1], ordinary induction is defined as in our definition above, but without the condition (ii) there; compact induction is defined with (ii) replaced by the condition that $f\left(g_{\alpha}\right) \neq 0$ for only finitely many α 's. If the representation spaces of $\operatorname{Ind}_{Z K}^{G} \tau$ are V_{2}, V^{\prime} and V, respectively, for these three representations, then $V \subset V_{2} \subset V^{\prime}$. In the proof of irreducibility in Theorem 4.8 .1 in [1], it is shown that $\operatorname{Hom}_{G}\left(V, V^{\prime}\right)$ is one-dimensional, and since there is a natural injection $\operatorname{Hom}_{G}\left(V_{2}, V_{2}\right) \rightarrow \operatorname{Hom}_{G}\left(V, V^{\prime}\right)$, the irreducibility of the representation on V_{2} follows. The representation on V_{2} is the completion of the representation on V, which is shown to be supercuspidal and admissible in [1].

Before dealing with the case when τ is a character, we first need to give some properties of the spherical principal series representations π_{s} of \mathcal{G} studied in [4], for example. Recall the boundary Ω of \mathfrak{X} consists of equivalence classes of infinite geodesics in \mathfrak{X}. If $\left(x_{0}, x_{1}, \ldots\right)$ and $\left(y_{0}, y_{1}, \ldots\right)$ are both in the
class ω, with $x_{0}=x$ and $y_{0}=y$, there is an $h \in \mathbb{Z}$ such that $y_{n}=x_{n+h}$ for all sufficiently large n. We write $h(x, y ; \omega)=h$. There is a natural topology on Ω making it a totally disconnected compact space. Let $\mathcal{C}^{\infty}(\Omega)$ denote the space of locally constant functions $\Omega \rightarrow \mathrm{C}$. There is also a natural action of \mathcal{G} on Ω. For non-zero $s \in \mathbb{C}$, we can define a representation of \mathfrak{G} on $\mathcal{C}^{\infty}(\Omega)$ by

$$
\left(\pi_{s}(g) F\right)(\omega)=F\left(g^{-1} \omega\right)\left(\frac{s}{\sqrt{q}}\right)^{h(g o, o ; \omega)}
$$

The factor \sqrt{q} on the right is a normalization so that, when $|s|=1, \pi_{s}$ is unitarizable with respect to the inner product $\left\langle F_{1}, F_{2}\right\rangle=\int_{\Omega} F_{1}(\omega) \overline{F_{2}(\omega)} d v_{o}(\omega)$ on $\mathcal{C}^{\infty}(\Omega)$. Here ν_{o} is the natural probability on Ω associated with the vertex o [4, p. 34]. The representations π_{s} are irreducible for $|s|=1$, and make up the spherical principal series of representations of \mathcal{G}. They remain irreducible when restricted to H, and are also so named in that context.

Let $\chi_{s}: F^{\times} \rightarrow \mathbb{C}^{\times}$be the quasi-character $a \mapsto s^{\text {ord }(a)}$ of F^{\times}. Then it is routine to see that the restriction of π_{s} to H, regarded as a representation of G, is the principal series representation $\varrho_{s}=\mathscr{B}\left(\chi_{s}, \chi_{s^{-1}}\right)$ defined in [1, p. 471]. Indeed, let ω_{0} be the class of the geodesic $\left(g_{0} o, g_{1} o, \ldots\right)$, where $g_{n}=\left(\begin{array}{cc}1 & 0 \\ 0 & w^{n}\end{array}\right)$ for $n \in \mathbb{N}$. The set of $g \in G$ such that $g \omega_{0}=\omega_{0}$ is the set P of upper-triangular matrices in G. We define $T: \mathfrak{C}^{\infty}(\Omega) \rightarrow V_{s}$, the representation space of ϱ_{s} by

$$
(T F)(g)=F\left(g^{-1} \omega_{0}\right)\left(\frac{s}{\sqrt{q}}\right)^{h\left(g o, o ; \omega_{0}\right)} .
$$

It is not hard to show that T is a bijection, intertwining π_{s} and ϱ_{s} on H.
The following is well-known. See [3]; cf. [4, Corollary II.6.5]. We include a proof for the convenience of the reader.

Proposition 3.4. - Let λ be the unitary representation of \mathfrak{G} on $l^{2}(\mathfrak{X})$ obtained from the natural action of \mathfrak{G} on \mathfrak{X}. Then λ is unitarily equivalent to $\operatorname{Ind}_{K_{o}}^{\mathfrak{Q}} 1$, and λ is the direct integral of the representations $\pi_{s},|s|=1$. The same is true when we restrict λ and the π_{s} 's to H.

Proof. - Firstly, λ is unitarily equivalent to $\operatorname{Ind}_{K_{o}}^{\mathfrak{Q}} 1$. To see this, for each vertex $x \in \mathfrak{X}$, choose $g_{x} \in \mathcal{G}$ such that $g_{x} x=o$. Then \mathcal{C} is the disjoint union of the cosets $K_{o} g_{x}, x \in \mathfrak{X}$. For $f \in l^{2}(\mathfrak{X})$, define $F: \mathcal{Q} \rightarrow \mathrm{C}$ by $F\left(k g_{x}\right)=f(x)$ for all $k \in K_{o}$ and $x \in \mathfrak{X}$. Then F is in the representation space of $\operatorname{Ind}_{K_{o}}^{\mathfrak{Q}} 1$, and it is easy to check that this defines a unitary map intertwining λ and $\operatorname{Ind}_{K_{0}}^{\mathfrak{Q}} 1$.

The remaining statements are well-known, and implicit in [FN, Theorem 6.4], and we omit the proof. Proposition 4.7 below is a similar but
somewhat less well-known fact, and we prove that for the convenience of the reader.

Proposition 3.5. - When τ is a character, and $q>2$, then $\operatorname{Ind}_{Z K}^{G} \tau$, as a representation of $H=P G L(2, F)$, is the product of a character of H and the direct integral of the spherical principal series representations of H. When τ is a character and $q=2$, then $\operatorname{Ind}_{Z K}^{G} \tau$ is an irreducible supercuspidal representation of G.

Proof. - Our τ comes from a character of $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right)$, and hence a character of $G_{0}=G L\left(2, \mathbb{F}_{q}\right)$ trivial on the centre Z_{0} of G_{0}. So when $q \neq 2$, it is of the form $g Z_{0} \mapsto \chi_{0}(\operatorname{det}(g))$, where χ_{0} is a character of $\mathbb{F}_{q}^{\times}[14],[1, \S 4.1]$. For triviality on Z_{0}, χ_{0} must take only values 1 and -1 . Using $\mathfrak{D} / \varpi \subseteq \cong \mathbb{F}_{q}, \chi_{0}$ lifts to a character of \mathfrak{D}^{\times}, and then to a character χ of F^{\times}by setting $\chi(\varpi)=1$. So τ is the restriction to $Z K$ of the character $\tilde{\chi}: g \mapsto \chi(\operatorname{det}(g))$ of $G L(2, F)$, which is trivial on Z. Then

$$
\operatorname{Ind}_{Z K}^{G} \tau=\operatorname{Ind}_{Z K}^{G} \tilde{\chi}_{\mid Z K} \cong \tilde{\chi} \cdot \operatorname{Ind}_{Z K}^{G} 1
$$

Now $\operatorname{Ind}_{Z K}^{G} 1$ is clearly trivial on Z, and so factors through the representation $\operatorname{Ind}_{K_{0} \cap H}^{H} 1$ of H, which is the restriction to H of the representation $\operatorname{Ind}_{K_{o}}^{\mathfrak{Q}} 1$ of \mathcal{G}.

Let λ be as in Proposition 3.4. Then $\operatorname{Ind}_{K_{o}}^{\mathfrak{a}} 1$ is equivalent to λ. Hence by Proposition 3.4, $\operatorname{Ind}_{K_{o} \cap H}^{H} 1$, regarded as a representation of G, is the direct integral of the representations $\mathcal{B}\left(\chi_{s}, \chi_{s^{-1}}\right),|s|=1$.

The product of the character $\tilde{\chi}: g \mapsto \chi(\operatorname{det}(g))$ and $\mathscr{B}\left(\chi_{s}, \chi_{s^{-1}}\right)$ is equivalent to $\mathscr{B}\left(\chi \chi_{s}, \chi \chi_{s^{-1}}\right)$ [1, p. 490], and so $\operatorname{Ind}_{Z K}^{G} \tau$ is the direct integral of these principal series representations, which are not in the spherical series if χ_{0} is non-trivial.

Finally, suppose that $q=2$, and that τ is the non-trivial character of $P G L\left(2, \mathbb{F}_{2}\right) \cong \widetilde{\Xi}_{3}$. Then $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ fixes $\binom{1}{0}$ and interchanges $\binom{0}{1}$ and $\binom{1}{1}$. So it is an odd permutation of $\mathrm{P}^{1}\left(\mathbb{F}_{2}\right)$, and the value of τ there is -1 . Hence there is no non-zero linear functional $\phi: \mathrm{C} \rightarrow \mathrm{C}$ such that $\phi\left(\tau\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right) v\right)=\phi(v)$ for all $v \in \mathrm{C}$. So τ satisfies the condition of being cuspidal (though it is usually not thought of as such), and the proof of Theorem 4.8.1 in [1] goes through without change, taking $V_{0}=\mathrm{C}$ and $\pi_{0}=\tau$. So $\operatorname{Ind}_{Z K}^{G} \tau$ is irreducible and supercuspidal.

The case when τ is special.
When τ is special we are led to consider the representation π of \mathcal{G} obtained from its natural action on the set \mathcal{E} of (undirected) edges of \mathfrak{X}. We also consider the natural action on the set δ^{d} of directed edges of \mathfrak{X}. If $e=(x, y)$ is a di-
rected edge, let e^{\prime} denote the edge (y, x). If $f: \delta^{d} \rightarrow \mathrm{C}$ is a function, let $f^{\prime}: \delta^{d} \rightarrow$ C be defined by $f^{\prime}(e)=f\left(e^{\prime}\right)$. We call f even if $f^{\prime}=f$, and odd if $f^{\prime}=-f$. Let $l^{2}(\mathcal{E})$ and $l^{2}\left(\mathcal{E}^{d}\right)$ denote the spaces of square summable functions on δ and \mathscr{E}^{d}, respectively. Let $l_{\mathrm{e}}^{2}\left(\delta^{d}\right)$ and $l_{0}^{2}\left(\delta^{d}\right)$ denote the spaces of even and odd elements of $l^{2}\left(\delta^{d}\right)$, respectively. Clearly, the $\operatorname{map} f \mapsto\left(\left(f+f^{\prime}\right) / 2,\left(f-f^{\prime}\right) / 2\right)$ is an isomorphism $l^{2}\left(\delta^{d}\right) \rightarrow l_{\mathrm{e}}^{2}\left(\delta^{d}\right) \oplus l_{0}^{2}\left(\mathcal{E}^{d}\right)$. Also, $(T f)(\{x, y\})=\sqrt{2} f((x, y))$ defines an isomorphism $T: l_{\mathrm{e}}^{2}\left(\mathcal{E}^{d}\right) \rightarrow l^{2}(\mathcal{\delta})$.

The group \mathcal{G} acts on \mathcal{E} and $\mathscr{\delta}^{d}$ in a natural way, and hence on each of the spaces $l^{2}(\mathcal{\delta}), l^{2}\left(\delta^{d}\right), l_{\mathrm{e}}^{2}\left(\delta^{d}\right)$ and $l_{0}^{2}\left(\delta^{d}\right)$. Let $\pi, \pi^{d}, \pi_{\mathrm{e}}^{d}$ and π_{0}^{d} denote the corresponding representations of \mathcal{G}.

Lemma 3.6. - Let $\chi: \mathfrak{Q} \rightarrow\{-1,1\}$ denote the non-trivial character $g \mapsto(-1)^{d(o, g o)}$ of \mathcal{G}. Then we have the following unitary equivalences.
(i) $\pi^{d} \cong \pi_{\mathrm{e}}^{d} \oplus \pi_{\mathrm{o}}^{d}$,
(ii) $\pi_{\mathrm{e}}^{d} \cong \pi$, and
(iii) $\pi_{0}^{d} \cong \chi \otimes \pi_{\mathrm{e}}^{d}$.

Proof. - The equivalences in (i) and (ii) are given by the bijections $l^{2}\left(\delta^{d}\right) \rightarrow l_{\mathrm{e}}^{2}\left(\delta^{d}\right) \oplus l_{0}^{2}\left(\delta^{d}\right)$ and $l_{\mathrm{e}}^{2}\left(\delta^{d}\right) \rightarrow l^{2}(\delta)$ defined above. To see (iii), fix a vertex $o \in \mathfrak{X}$, and define $S: l_{0}^{2}\left(\mathcal{E}^{d}\right) \rightarrow l_{\mathrm{e}}^{2}\left(\mathcal{E}^{d}\right)$ by $(S f)((x, y))=(-1)^{d(o, x)} f((x, y))$. This is easily checked to be a well-defined map. For $g \in \mathcal{G}$,

$$
\begin{aligned}
\left(S\left(\pi_{0}^{d}(g) f\right)\right)((x, y)) & =(-1)^{d(o, x)}\left(\pi_{0}^{d}(g) f\right)((x, y)) \\
& =(-1)^{d(o, x)} f\left(\left(g^{-1} x, g^{-1} y\right)\right) \\
& =(-1)^{d(o, g o)}(-1)^{d\left(o, g^{-1} x\right)} f\left(\left(g^{-1} x, g^{-1} y\right)\right) \\
& =\chi(g)(S f)\left(\left(g^{-1} x, g^{-1} y\right)\right) \\
& =\left(\chi(g) \pi_{\mathrm{e}}^{d}(g)(S f)\right)((x, y))
\end{aligned}
$$

If $e=(x, y) \in \delta^{d}$, let $i(e)$ denote the initial vertex x of e. The space V_{e} of $f \in l_{\mathrm{e}}^{2}\left(\mathcal{E}^{d}\right)$ which satisfy $\sum_{e: i(e)=x} f(e)=0$ for each $x \in \mathfrak{X}$ is invariant under π_{e}^{d}, and so gives a subrepresentation sp_{e} of π_{e}^{d}. In the same way, we can define a subrepresentation sp_{0} of π_{0}^{d} on $V_{0} \subset l_{0}^{2}\left(\delta^{d}\right)$. The representations sp_{e} and sp_{0} are known to be irreducible, and are called the special representations of \mathfrak{C} (see [4, § III.2]). By part (iii) of the above lemma, $\mathrm{sp}_{o} \cong \chi \otimes \mathrm{sp}_{\mathrm{e}}$.

Lemma 3.7. - Let λ denote the unitary representation of \mathfrak{G} on $l^{2}(\mathfrak{X})$ obtained by the natural action of \mathcal{G} on \mathfrak{X}. Then $\pi_{0}^{d} \cong \mathrm{sp}_{0} \oplus \lambda$, and so $\pi_{\mathrm{e}}^{d} \cong \mathrm{sp}_{\mathrm{e}} \oplus(\chi \otimes \lambda)$.

Proof. - Define $T: l^{2}(\mathfrak{X}) \rightarrow l_{0}^{2}\left(\mathscr{C}^{d}\right)$ by $(T f)((x, y))=f(y)-f(x)$. It is easy to check that T is continuous, with norm at most $2 \sqrt{q+1}$, and intertwines λ and π_{0}^{d}. Let $T=U A$ be the polar decomposition of T. Thus A is a positive hermitian operator on $l^{2}(\mathfrak{X})$, and U is a partial isometry, inducing an isometric isomorphism of $M=\operatorname{ker}(T)^{\perp}$ onto $N=\operatorname{ker}\left(T^{*}\right)^{\perp}$ (cf. [13, Theorem 3.2.17]). From the construction of this decomposition, it is clear that U intertwines λ and π_{0}^{d}. Clearly T is injective, and so $M=l^{2}(\mathfrak{X})$, and thus the restriction of π_{0}^{d} to N is unitarily equivalent to λ. Also, for $F \in l_{0}^{2}\left(\mathscr{\delta}^{d}\right),\left(T^{*} F\right)(x)=$ $-2 \sum_{e \in \delta^{d}: i(e)=x} F(e)$, and so $\operatorname{ker}\left(T^{*}\right)=V_{0}$. Hence $N=V_{0}^{\perp}$, and so $l_{0}^{2}\left(\delta^{d}\right)=V_{0} \oplus N$. The first statement in the lemma has now been proved, and the second one follows from Lemma 3.6, since $\chi^{-1}=\chi$.

Recall that o^{\prime} is a vertex adjacent to o. Notice that π^{d} is the representation obtained by inducing to \mathcal{G} the trivial character on $K\left(\left\{o, o^{\prime}\right\}\right)=\{g \in \mathcal{A}: g o=o$ and $\left.g o^{\prime}=o^{\prime}\right\}$. This is because \mathcal{A} acts transitively on \mathfrak{X} and K_{o} acts transitively on the set of neighbours of o, so that \mathcal{G} acts transitively on $\mathscr{\delta}^{d}$.

If we take $o^{\prime}=\left[g_{1} L_{0}\right]$ for $g_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & \varpi\end{array}\right)$, then the preimage in G of $K\left(\left\{o, o^{\prime}\right\}\right)$ is $Z K^{\prime}$, where K^{\prime} is the set of all matrices

$$
\left(\begin{array}{cc}
a & b \\
\varpi c & d
\end{array}\right),
$$

where $a, d \in \mathfrak{D}^{\times}$and $b, c \in \mathfrak{O}$. Since G also acts transitively on \mathfrak{X} and K acts transitively on the set of neighbours of o, the restriction of π^{d} to H, regarded as a representation of G, is $\operatorname{Ind}_{Z K^{\prime}}^{G} 1$.

There is a special representation of $G_{0}=G L\left(2, \mathbb{F}_{q}\right)$ corresponding to each character χ of \mathbb{F}_{q}^{\times}, obtained by inducing the character $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \mapsto \chi(a d)$ of P_{0} from P_{0} to G_{0}, and taking a q-dimensional subrepresentation. For this to be trivial on the centre Z_{0} of G_{0}, we need χ^{2} to be trivial. When q is even, this forces χ to be trivial, but when q is odd, there is a unique character χ_{1} of \mathbb{F}_{q}^{\times}of order 2. Let τ_{0} and τ_{1} be the special representations of $P G L\left(2, \mathbb{F}_{q}\right)$ corresponding to the trivial character and to χ_{1}, respectively. We can lift χ_{1} to a character $\tilde{\chi}_{1}$ of F^{\times}by first lifting to \mathfrak{D}^{\times}using the surjection $\mathfrak{\Im} \rightarrow \mathfrak{D} \varpi \mathfrak{\Im} \cong \mathbb{F}_{q}$, then to F^{\times}by mapping ϖ to 1 .

Proposition 3.8. - Let τ_{0} and τ_{1} be the special representations of $P G L\left(2, \mathbb{F}_{q}\right)$, as above (the latter existing only when q is odd). Lift these to $Z K$ using (3.2). Then $\operatorname{Ind}_{Z K}^{G} \tau_{0}$, regarded as a representation of H, is unitarily equivalent to the direct sum of the restrictions to H of $\chi \otimes \lambda, s p_{\mathrm{e}}$ and $s p_{0}$. For q odd, $\operatorname{Ind}_{Z K}^{G} \tau_{1}$ is equivalent to the product of $\operatorname{Ind}_{Z K}^{G} \tau_{0}$ by the character $g \mapsto \tilde{\chi}_{1}(\operatorname{det}(g))$.

Proof. - We have $\operatorname{Ind}_{P_{0}}^{G_{0}} 1=1 \oplus \tau_{0}$, where the 1's on the left and right denote the trivial characters of P_{0} and G_{0}, respectively.

Next observe that when we lift $\operatorname{Ind}_{P_{0}}^{G_{0}} 1$ to $Z K$ using (3.2), we get $\operatorname{Ind}_{Z K^{\prime}}^{Z K}, 1$, where K^{\prime} is defined above. This is because K^{\prime} is the preimage of P_{0} in G_{0} under the natural map $K \rightarrow G L\left(2, \mathbb{F}_{q}\right)$. Hence

$$
\operatorname{Ind}_{Z K^{\prime}}^{Z K}, 1 \cong 1 \oplus \tau_{0}
$$

regarding the representations on the right as defined on $Z K$. Hence by transitivity of induction, we have

$$
\operatorname{Ind}_{Z K}^{G} 1 \oplus \operatorname{Ind}_{Z K}^{G} \tau_{0} \cong \operatorname{Ind}_{Z K^{\prime}}^{G} 1
$$

Now $\operatorname{Ind}_{Z K}^{G} 1$ regarded as a representation of H, is the restriction to H of λ, as we saw in the proof of Proposition 3.5. Also, $\operatorname{Ind}_{Z K^{\prime}}^{G} 1$ regarded as a representation of H, is the restriction to H of π^{d}, as we saw above. So by Lemma 3.7 and parts (i) and (iii) of Lemma 3.6 we have

$$
\lambda \oplus \operatorname{Ind}_{Z K}^{G} \tau_{0} \cong \lambda \oplus(\chi \otimes \lambda) \oplus \mathrm{sp}_{\mathrm{e}} \oplus \mathrm{sp}_{0}
$$

with the λ on the left and the representations on the right restricted to G. Since the representations on both sides are all finite in the sense of [10] (see pp. 33, 45 and 120-122 there), we can cancel λ from both sides, obtaining the stated decomposition of $\operatorname{Ind}_{Z K}^{G} \tau_{0}$. Starting from

$$
\chi_{1}^{\prime} \oplus \tau_{1}=\operatorname{Ind}_{P_{0}}^{G_{0}} \chi_{1} \cong \chi_{1}^{\prime} \otimes \operatorname{Ind}_{P_{0}}^{G_{0}} 1
$$

where $\chi_{1}^{\prime}(g)=\chi_{1}(\operatorname{det}(g))$, it is easy to prove the statement about $\operatorname{Ind}_{Z K} \tau_{1}$.

4. - The case when τ is principal series.

There is a principal series representation $\mathscr{B}\left(\chi_{1}, \chi_{2}\right)$ of $G_{0}=G L\left(2, \mathbb{F}_{q}\right)$ corresponding to each pair $\left(\chi_{1}, \chi_{2}\right)$ of distinct characters of F_{q}^{\times}, obtained by inducing the character $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \mapsto \chi_{1}(a) \chi_{2}(d)$ of P_{0} from P_{0} to $G_{0}[14, \S 8]$, [1, \S 4.1]. Its dimension is $q+1$. The representations $\mathcal{B}\left(\chi_{1}, \chi_{2}\right)$ and $\mathcal{B}\left(\chi_{2}, \chi_{1}\right)$ are equivalent. For $\mathcal{B}\left(\chi_{1}, \chi_{2}\right)$ to be trivial on the centre Z_{0} of G_{0}, we need $\chi_{2}=\chi_{1}^{-1}$.

So we start with a character χ_{0} of \mathbb{F}_{q}^{\times}such that χ_{0}^{2} is non-trivial. We define a character $\chi_{0}^{\prime}:\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \mapsto \chi_{0}(a / d)$ of P_{0}, then form $\tau_{0}=\mathscr{B}\left(\chi_{0}, \chi_{0}^{-1}\right)=\operatorname{Ind}_{P_{0}}^{G_{0}} \chi_{0}^{\prime}$. This lifts to a $q+1$-dimensional representation τ of $Z K$ in the usual way: for $\lambda \in F^{\times}$and $k \in K$, set $\tau(\lambda k)=\tau_{0}(\dot{k})$, where \dot{k} denotes the image of k in G_{0}.

Lemma 4.1. - The above representation τ of $Z K$ is unitarily equivalent to $\operatorname{Ind}_{Z K}^{Z K} \chi^{\prime}$, where χ^{\prime} is the character $\lambda k \mapsto \chi_{0}^{\prime}(\dot{k})$ of $Z K^{\prime}$. Hence $\operatorname{Ind}_{Z K}^{G} \tau \cong$ $\operatorname{Ind}_{Z K^{\prime}}^{G} \chi^{\prime}$.

Proof. - Let V_{0} and V be the representation spaces of τ and $\operatorname{Ind}_{Z K}^{Z K} \chi^{\prime}$, respectively. If $f_{0} \in V_{0}$, then $f_{0}: G_{0} \rightarrow \mathrm{C}$ is a function such that $f_{0}(p g)=$ $\chi_{0}^{\prime}(p) f_{0}(g)$ for all $p \in P_{0}$ and $g \in G_{0}$. We then define $f \in V$ by $f(\lambda k)=f_{0}(\dot{k})$. It is routine to check that $f_{0} \mapsto f$ gives a unitary equivalence. The last statement follows by transitivity of induction.

Of course $\operatorname{Ind}_{Z K^{\prime}}^{G} \chi^{\prime}$ is trivial on Z, and it will be convenient to work with the corresponding representation $\operatorname{Ind}_{K^{\prime \prime}}^{H} \chi^{\prime \prime}$, where $K^{\prime \prime}$ is the image of K^{\prime} in $H=$ $\operatorname{PGL}(2, F)$, and $\chi^{\prime \prime}$ is the character $k Z \mapsto \chi^{\prime}(k)$ of $K^{\prime \prime}$.

Studying $\operatorname{Ind}_{K^{\prime \prime}}^{H} \chi^{\prime \prime}$ leads us to consider the set $\widehat{H}_{\chi^{\prime \prime}}$ of equivalence classes of irreducible continuous unitary representations π of H for which $\mathcal{H}_{\pi, \chi^{\prime \prime}}=\{\xi \in$ $\mathcal{T}_{\pi}: \pi(k) \xi=\chi^{\prime \prime}(k) \xi$ for all $\left.k \in K^{\prime \prime}\right\}$ is non-zero. We also need to consider the space $\mathscr{C}^{\prime \prime}=\mathscr{H}\left(H / / K^{\prime \prime}, \overline{\chi^{\prime \prime}}\right)$ consisting of compactly supported functions f on H for which

$$
\begin{equation*}
f\left(k_{1} h k_{2}\right)=\overline{\chi^{\prime \prime}\left(k_{1} k_{2}\right)} f(h) \tag{4.1}
\end{equation*}
$$

for all $h \in H$ and $k_{1}, k_{2} \in K^{\prime \prime}$. It is easy to see that if $f_{1}, f_{2} \in \mathcal{C}^{\prime \prime}$, then $f_{1} * f_{2} \in \mathcal{C}^{\prime \prime}$ and $f_{1}^{*} \in \mathcal{C}^{\prime \prime}$, where $f_{1}^{*}(h)=\overline{f\left(h^{-1}\right)}$. The algebra $\mathcal{C}^{\prime \prime}$ is an example of a τ-spherical Hecke algebra, described in [7, Appendix 1], for example.

To study $\mathscr{C}^{\prime \prime}$, it is convenient to work with the space \mathcal{C}^{\prime} of continuous functions $f: G \rightarrow \mathrm{C}$ of compact support such that

$$
\begin{equation*}
f\left(k_{1}^{\prime} g k_{2}^{\prime}\right)=\overline{\chi^{\prime}\left(k_{1}^{\prime} k_{2}^{\prime}\right)} f(g) \tag{4.2}
\end{equation*}
$$

for all $g \in G$ and $k_{1}^{\prime}, k_{2}^{\prime} \in K^{\prime}$. It is also an example of a τ-spherical Hecke algebra.

Define $\Lambda: \mathfrak{C}_{c}(G) \rightarrow \mathcal{C}_{c}(H)$ by

$$
(\Lambda f)(g Z)=\int_{Z} f(g z) d z=\int_{F^{\times}} f\left(g\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right)\right) \frac{d x}{|x|}
$$

where $d z$ refers to Haar measure on Z. Then Λ is a linear surjection [1, Proposition 4.3.4]. It is clear that Λ maps \mathcal{C}^{\prime} into $\mathcal{C}^{\prime \prime}$. In fact, $\Lambda\left(\mathcal{C}^{\prime}\right)=\mathscr{\mathcal { C } ^ { \prime \prime }}$, for if $f \in \mathscr{\mathcal { C } ^ { \prime \prime }}$ and if $f_{0} \in \mathcal{C}_{c}(G)$ satisfies $\Lambda\left(f_{0}\right)=f$, then setting

$$
\begin{equation*}
f_{1}(g)=\int_{K^{\prime}} \int_{K^{\prime}} \chi^{\prime}\left(k_{1}^{\prime} k_{2}^{\prime}\right) f_{0}\left(k_{1} g k_{2}^{\prime}\right) d k_{1}^{\prime} d k_{2}^{\prime} \tag{4.3}
\end{equation*}
$$

where $d k^{\prime}$ refers to normalized Haar measure on K^{\prime}, we have $f_{1} \in \mathcal{H} \mathcal{C}^{\prime}$ and $\Lambda\left(f_{1}\right)=f$ too.

It is easy to see that Λ is a $*$-algebra homomorphism.
Define matrices

$$
g_{m, n}:=\left(\begin{array}{cc}
\varpi^{m} & 0 \\
0 & \varpi^{n}
\end{array}\right) \quad(m, n \in \mathbb{Z}), \quad \text { and } \quad w_{0}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Lemma 4.2. - Let P be the group of upper-triangular matrices in G. Then we may write G as a disjoint union of double cosets in the following two ways: $G=P K^{\prime} \cup P w_{0} K^{\prime}$, and

$$
\begin{equation*}
G=\bigcup_{m, n \in \mathbb{Z}} K^{\prime} g_{m, n} K^{\prime} \cup \bigcup_{m, n \in \mathbb{Z}} K^{\prime} w_{0} g_{m, n} K^{\prime} \tag{4.3}
\end{equation*}
$$

Proof. - Suppose that $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ has determinant D. If $\operatorname{ord}(c)>$ ord (d), then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
D / d & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
c / d & 1
\end{array}\right)
$$

exhibits g as an element of $P K^{\prime}$. If $\operatorname{ord}(c) \leqslant \operatorname{ord}(d)$, then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-D / c & a \\
0 & c
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & d / c \\
0 & 1
\end{array}\right)
$$

exhibits g as an element of $P w_{0} K^{\prime}$. Hence $G=P K^{\prime} \cup P w_{0} K^{\prime}$. To see that these double cosets are disjoint, we must check that $w_{0} \notin P K^{\prime}$. But if $k=\left(\begin{array}{cc}a & b \\ w c & d\end{array}\right) \in K^{\prime}$, then

$$
w_{0} k=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a & b \\
\varpi c & d
\end{array}\right)=\left(\begin{array}{cc}
\varpi c & d \\
a & b
\end{array}\right) \notin P
$$

To show (4.3), it is enough to show that if $p=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in P$, then both p and $p w_{0}$ are in the union on the right in (4.3), which is easily seen to be disjoint. There are several cases:
(i) If either $\operatorname{ord}(b) \geqslant \operatorname{ord}(a)$ or $\operatorname{ord}(b) \geqslant \operatorname{ord}(d)$, let $m=\operatorname{ord}(a)$ and $n=$ $\operatorname{ord}(d)$. Then $p \in K^{\prime} g_{m, n} K^{\prime}$ because

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a / \varpi^{m} & 0 \\
0 & d / \varpi^{n}
\end{array}\right)\left(\begin{array}{cc}
\varpi^{m} & 0 \\
0 & \varpi^{n}
\end{array}\right)\left(\begin{array}{cc}
1 & b / a \\
0 & 1
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
1 & b / d \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\varpi^{m} & 0 \\
0 & \varpi^{n}
\end{array}\right)\left(\begin{array}{cc}
a / \varpi^{m} & 0 \\
0 & d / \varpi^{n}
\end{array}\right) .
$$

(ii) If $\operatorname{ord}(b)<\operatorname{ord}(a), \operatorname{ord}(d)$, let $m=\operatorname{ord}(a)+\operatorname{ord}(d)-\operatorname{ord}(b)$ and $n=$
ord (b). Then

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
d / b & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\varpi^{m} & 0 \\
0 & \varpi^{n}
\end{array}\right)\left(\begin{array}{cc}
-a d / b \varpi^{m} & 0 \\
a / \varpi^{n} & b / \varpi^{n}
\end{array}\right)
$$

shows that $p \in K^{\prime} w_{0} g_{m, n} K^{\prime}$.
(iii) If $\operatorname{ord}(b)>\operatorname{ord}(a)$, let $m=\operatorname{ord}(d)$ and $n=\operatorname{ord}(a)$. Then

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
a / \varpi^{n} & 0 \\
0 & d / \varpi^{m}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\varpi^{m} & 0 \\
0 & \varpi^{n}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
b / a & 1
\end{array}\right)
$$

shows that $p w_{0} \in K^{\prime} w_{0} g_{m, n} K^{\prime}$.
(iv) If $\operatorname{ord}(b) \geqslant \operatorname{ord}(d)$, then again let $m=\operatorname{ord}(d)$ and $n=\operatorname{ord}(a)$. Then

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & b / d \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\varpi^{m} & 0 \\
0 & \varpi^{n}
\end{array}\right)\left(\begin{array}{cc}
d / \varpi^{m} & 0 \\
0 & a / \varpi^{n}
\end{array}\right)
$$

shows that $p w_{0} \in K^{\prime} w_{0} g_{m, n} K^{\prime}$.
(v) If $\operatorname{ord}(b) \leqslant \operatorname{ord}(a)$ and $\operatorname{ord}(b)<\operatorname{ord}(d)$, let $m=\operatorname{ord}(b)$ and $n=$ $\operatorname{ord}(a)+\operatorname{ord}(d)-\operatorname{ord}(b)$. Then

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
d / b & 1
\end{array}\right)\left(\begin{array}{cc}
\varpi^{m} & 0 \\
0 & \varpi^{n}
\end{array}\right)\left(\begin{array}{cc}
b / \varpi^{m} & a / \varpi^{m} \\
0 & -a d / b \varpi^{n}
\end{array}\right)
$$

shows that $p w_{0} \in K^{\prime} g_{m, n} K^{\prime}$.
Lemma 4.3. - Any function f satisfying (4.2) must satisfy $f\left(w_{0} g_{m, n}\right)=0$ for all $m, n \in \mathbb{Z}$.

Proof. - Let $a \in \Im^{\times}$, let $\dot{\alpha}$ denote its image in \mathbb{F}_{q}^{\times}, and evaluate f at

$$
\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\varpi^{m} & 0 \\
0 & \varpi^{n}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\varpi^{m} & 0 \\
0 & \varpi^{n}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & a
\end{array}\right) .
$$

Then we must have $\chi_{0}(\dot{a}) f\left(w_{0} g_{m, n}\right)=f\left(w_{0} g_{m, n}\right) \chi_{0}\left(\dot{a}^{-1}\right)$. Since $\chi_{0}^{2} \neq 1$, we can choose a so that $\chi_{0}(\dot{a}) \neq \chi_{0}\left(\dot{a}^{-1}\right)$. Hence $f\left(w_{0} g_{m, n}\right)=0$.

Thus \mathscr{X}^{\prime} is spanned by the functions $F_{m, n}$ defined by

$$
F_{m, n}(g)= \begin{cases}\overline{\chi^{\prime}\left(k_{1}^{\prime} k_{2}^{\prime}\right)} & \text { if } g=k_{1}^{\prime} g_{m, n} k_{2}^{\prime} \in K^{\prime} g_{m, n} K^{\prime} \\ 0 & \text { if } g \notin K^{\prime} g_{m, n} K^{\prime}\end{cases}
$$

It is convenient to normalize these functions as follows:

$$
\begin{equation*}
G_{m, n}=q^{\min \{m, n\}} F_{m, n} \quad \text { for } m, n \in \mathbb{Z} \tag{4.5}
\end{equation*}
$$

It is also convenient to work below with Haar measure on G normalized so that K^{\prime} has measure 1 .

Proposition 4.4. - For all $m, n, r, s \in \mathbb{Z}$,

$$
\begin{equation*}
G_{m, n} * G_{r, s}=G_{m+r, n+s} \tag{4.6}
\end{equation*}
$$

Hence the convolution algebras \mathcal{C}^{\prime} and $\mathfrak{C}_{c}\left(Z^{2}\right)$ are isomorphic, as are $\mathcal{C}^{\prime \prime}$ and $\mathcal{C}_{c}(\mathbb{Z})$.

Proof. - We first derive the formula

$$
\begin{equation*}
\left(F_{m, n} * F_{r, s}\right)(g)=q^{|r-s|} \int_{K^{\prime}} F_{m, n}\left(g k^{\prime} g_{r, s}^{-1}\right) \chi^{\prime}\left(k^{\prime}\right) d k^{\prime} \tag{4.7}
\end{equation*}
$$

where $d k^{\prime}$ refers to normalized Haar measure on K^{\prime}. By the unimodularity of G,

$$
\left(F_{m, n} * F_{r, s}\right)(g)=\int_{G} F_{m, n}\left(g x^{-1}\right) F_{r, s}(x) d x=\int_{K^{\prime} g_{r, s} K^{\prime}} F_{m, n}\left(g x^{-1}\right) F_{r, s}(x) d x .
$$

Now $K^{\prime} g_{r, s} K^{\prime}$ is the union of N cosets $g_{\alpha} K^{\prime}$, where N is the index of $K^{\prime} \cap$ $g_{r, s} K^{\prime} g_{r, s}^{-1}$ in K^{\prime}. It is easy to see that $N=q^{|r-s|}$. Writing $g_{\alpha}=k_{1}^{\prime} g_{r, s} k_{2}^{\prime}$,

$$
\begin{aligned}
\int_{g_{\alpha} K^{\prime}} F_{m, n}\left(g x^{-1}\right) F_{r, s}(x) d x & =\int_{K^{\prime}} F_{m, n}\left(g x^{-1} g_{\alpha}^{-1}\right) F_{r, s}\left(g_{\alpha} x\right) d x \\
& =\int_{K^{\prime}} F_{m, n}\left(g k^{\prime-1} k_{2}^{\prime-1} g_{r, s}^{-1} k_{1}^{\prime-1}\right) F_{r, s}\left(k_{1}^{\prime} g_{r, s} k_{2}^{\prime} k^{\prime}\right) d k^{\prime} \\
& =\int_{K^{\prime}} F_{m, n}\left(g k g_{r, s}^{-1}\right) \chi^{\prime}(k) d k
\end{aligned}
$$

using (4.2) and setting $k=k^{\prime-1} k_{2}^{\prime-1}$. As the integral is independent of α, (4.7) follows.

We can write $F_{m, n} * F_{r, s}$ as a linear combination

$$
F_{m, n} * F_{r, s}=\sum_{\alpha, \beta \in \mathbb{Z}} c_{\alpha, \beta} F_{\alpha, \beta}
$$

of $F_{\alpha, \beta}$'s, and the coefficient $c_{\alpha, \beta}$ equals $\left(F_{m, n} * F_{r, s}\right)\left(g_{\alpha, \beta}\right)$, which we calculate using the integral on the right in (4.7), with $g=g_{\alpha, \beta}$.

To evaluate this integral, we write a typical $k^{\prime} \in K^{\prime}$ as the product

$$
k^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
\varpi u^{\prime} & 1
\end{array}\right)\left(\begin{array}{cc}
t_{1} & 0 \\
0 & t_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & v \\
0 & 1
\end{array}\right)
$$

where $u^{\prime}, v \in \mathfrak{D}$ and $t_{1}, t_{2} \in \mathfrak{D}^{\times}$. According to [1, p. 466], the normalized Haar
measure on K^{\prime} is then $d u^{\prime} d v d t_{1} d t_{2}$, where $d u^{\prime}$ and $d v$ are the normalized Haar measures on the compact additive group \mathfrak{D}, and $d t_{1}$ and $d t_{2}$ are the normalized Haar measures on the compact multiplicative group \Im^{\times}. Hence

$$
\begin{aligned}
g_{\alpha, \beta} k^{\prime} g_{r, s}^{-1} & =\left(\begin{array}{cc}
\varpi^{\alpha-r} t_{1} & \varpi^{\alpha-s} t_{1} v \\
\varpi^{\beta-r+1} t_{1} u^{\prime} & \varpi^{\beta-s}\left(t_{2}+t_{1} u^{\prime} v \varpi\right)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
t_{1} & 0 \\
0 & t_{2}(1+u v \varpi)
\end{array}\right)\left(\begin{array}{cc}
\varpi^{\alpha-r} & \varpi^{\alpha-s} v \\
\varpi^{\beta-r+1} \tilde{u} & \varpi^{\beta-s}
\end{array}\right),
\end{aligned}
$$

where $u=t_{1} t_{2}^{-1} u^{\prime}$ and $\tilde{u}=u /(1+u v \varpi)$. So

$$
F_{m, n}\left(g_{\alpha, \beta} k^{\prime} g_{r, s}^{-1}\right) \chi^{\prime}\left(k^{\prime}\right)=F_{m, n}\left(\left(\begin{array}{cc}
\varpi^{\alpha-r} & \varpi^{\alpha-s} v \\
\varpi^{\beta-r+1} \tilde{u} & \varpi^{\beta-s}
\end{array}\right)\right)
$$

On making the change of variable $u^{\prime} \mapsto u$, as the integrand is then independent of t_{1} and t_{2}, we have

$$
\int_{K^{\prime}} F_{m, n}\left(g_{\alpha, \beta} k^{\prime} g_{r, s}^{-1}\right) \chi^{\prime}\left(k^{\prime}\right) d k^{\prime}=\int_{D} \int_{D} F_{m, n}\left(\left(\begin{array}{cc}
\varpi^{\alpha-r} & \varpi^{\alpha-s} v \tag{4.8}\\
\varpi^{\beta-r+1} \tilde{u} & \varpi^{\beta-s}
\end{array}\right)\right) d u d v
$$

Notice that $\operatorname{ord}(\tilde{u})=\operatorname{ord}(u)$ for all $u \in \mathfrak{D}$. We now break the integral in (4.8) into integrals over six (non-disjoint) subsets A_{1}, \ldots, A_{6}, the first four covering the cases $C_{u}=\max \{\operatorname{ord}(u)+s-r, \operatorname{ord}(u)+\beta-\alpha\} \geqslant 0$ and $C_{v}=$ $\max \{\operatorname{ord}(v)+r-s, \operatorname{ord}(v)+\alpha-\beta\} \geqslant 0$, and the last two sets covering the cases $C_{u}<0$ and $C_{v}<0$. In each case we express

$$
M=M(u, v)=\left(\begin{array}{cc}
\varpi^{\alpha-r} & \varpi^{\alpha-s} v \\
\varpi^{\beta-r+1} \tilde{u} & \varpi^{\beta-s}
\end{array}\right)
$$

as an element in a double K^{\prime} coset. In the first four cases, (4.2) shows that the integrand in (4.8) is 1 or 0 according as $(\alpha, \beta)=(m+r, n+s)$ or not.
$A_{1}: \operatorname{ord}(v)+r-s \geqslant 0$ and $\operatorname{ord}(u)+\beta-\alpha \geqslant 0$. Then

$$
M=\left(\begin{array}{cc}
1 & 0 \\
\varpi^{\beta-\alpha+1} \tilde{u} & 1
\end{array}\right)\left(\begin{array}{cc}
\varpi^{\alpha-r} & 0 \\
0 & \varpi^{\beta-s}
\end{array}\right)\left(\begin{array}{cc}
1 & \varpi^{r-s} v \\
0 & 1-\varpi \tilde{u} v
\end{array}\right) .
$$

$A_{2}: \operatorname{ord}(v)+r-s \geqslant 0$ and $\operatorname{ord}(u)+s-r \geqslant 0$. Then

$$
M=\left(\begin{array}{cc}
\varpi^{\alpha-r} & 0 \\
0 & \varpi^{\beta-s}
\end{array}\right)\left(\begin{array}{cc}
1 & \varpi^{r-s} v \\
\varpi^{s-r+1} \tilde{u} & 1
\end{array}\right)
$$

$A_{3}: \operatorname{ord}(u)+s-r \geqslant 0$ and $\operatorname{ord}(v)+\alpha-\beta \geqslant 0$. Then

$$
M=\left(\begin{array}{cc}
1 & \varpi^{\alpha-\beta} v \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\varpi^{\alpha-r} & 0 \\
0 & \varpi^{\beta-s}
\end{array}\right)\left(\begin{array}{cc}
1-\varpi \tilde{u} v & 0 \\
\varpi^{s-r+1} \tilde{u} & 1
\end{array}\right)
$$

$A_{4}: \operatorname{ord}(u)+\beta-\alpha \geqslant 0$ and $\operatorname{ord}(v)+\alpha-\beta \geqslant 0$. Then

$$
M=\left(\begin{array}{cc}
1 & \varpi^{\alpha-\beta} v \\
\varpi^{\beta-\alpha+1} \tilde{u} & 1
\end{array}\right)\left(\begin{array}{cc}
\varpi^{\alpha-r} & 0 \\
0 & \varpi^{\beta-s}
\end{array}\right) .
$$

In the remaining two cases, (4.2) show that the integrand in (4.8) is 0.
$A_{5}: \operatorname{ord}(u)+s-r<0$ and $\operatorname{ord}(u)+\beta-\alpha<0$. Let $i=\operatorname{ord}(u)$. Then
$M=\left(\begin{array}{cc}-\varpi^{i} \tilde{u}^{-1} & \varpi^{\alpha-\beta-i-1} \\ 0 & \varpi^{-i} \tilde{u}\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ \varpi & 0\end{array}\right)\left(\begin{array}{cc}\varpi^{\beta-r+i} & 0 \\ 0 & \varpi^{\alpha-s-i-1}\end{array}\right)\left(\begin{array}{cc}1 & \varpi^{r-s-1} \tilde{u}^{-1} \\ 0 & 1-\varpi \tilde{u} v\end{array}\right)$.
$A_{6}: \operatorname{ord}(v)+r-s<0$ and $\operatorname{ord}(v)+\alpha-\beta<0$. Let $j=\operatorname{ord}(v)$. Then
$M=\left(\begin{array}{cc}1 & 0 \\ \varpi^{\beta-\alpha} v^{-1} & 1-\varpi \tilde{u} v\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ \varpi & 0\end{array}\right)\left(\begin{array}{cc}\varpi^{\beta-r-j-1} & 0 \\ 0 & \varpi^{j+\alpha-s}\end{array}\right)\left(\begin{array}{cc}-\varpi^{j} v^{-1} & 0 \\ \varpi^{s-r-j} & \varpi^{-j} v\end{array}\right)$.
Now $A_{5} \neq \emptyset$ if and only if $s<r$ and $\beta<\alpha$, while $A_{6} \neq \emptyset$ if and only if $r<s$ and $\alpha<\beta$. So at least one of the sets A_{5} and A_{6} is empty.

Also, the integrand on the right in (4.8) is 1 for all $u, v \in \mathfrak{O} \backslash\left(A_{5} \cup A_{6}\right)$ if $(\alpha, \beta)=(m+r, n+s)$, and 0 for all $u, v \in \mathfrak{D}$ for any other (α, β). Hence $F_{m, n} * F_{r, s}=c F_{m+r, n+s}$, where $c=q^{|r-s|}\left(1-m\left(A_{5}\right)-m\left(A_{6}\right)\right)$.

The Haar measure of the set of $u \in \mathfrak{\Im}$ such that ord $(u)=i$ is $(q-1) / q^{i+1}$, and hence the measure of $\{u \in \mathfrak{O}: \operatorname{ord}(u)<l\}$ equals $1-1 / q^{l}$ for all $l \geqslant 0$.

To complete the proof of Proposition 4.4, we again we need to consider cases. Firstly, if $r=s$, then $A_{5}=A_{6}=\emptyset$, and so $c=1$. Also, in this case, $\min \{m+r, n+s\}=\min \{m, n\}+\min \{r, s\}$, and (4.6) follows. We now consider the case $r \neq s$. Write $\alpha=m+r$ and $\beta=n+s$.

1. If $r>s$ and $m>n$, then $n+s<m+r$ and $\alpha-\beta=m-n+r-s>r-s$. So $m\left(A_{5}\right)=1-1 / q^{r-s}, m\left(A_{6}\right)=0$ and $c=1$. Thus $G_{m, n} * G_{r, s}=q^{n+s} F_{m, n} * F_{r, s}=$ $q^{n+s} F_{m+r, n+s}=G_{m+r, n+s}$.

2(a). If $r>s, m \leqslant n$ and $n+s<m+r$, then $0<\alpha-\beta=(r-s)-(n-m) \leqslant$ $r-s$. So $m\left(A_{5}\right)=1-1 / q^{\alpha-\beta}, m\left(A_{6}\right)=0$ and $c=q^{r-s} / q^{\alpha-\beta}=q^{n-m}$. Thus $G_{m, n} * G_{r, s}=q^{m+s} F_{m, n} * F_{r, s}=q^{m+s} q^{n-m} F_{m+r, n+s}=q^{n+s} F_{m+r, n+s}=G_{m+r, n+s}$.

2(b). If $r>s, m \leqslant n$ and $m+r \leqslant n+s$, then $\alpha-\beta \leqslant 0$. So $m\left(A_{5}\right)=$ $m\left(A_{6}\right)=0 \quad$ and $\quad c=q^{r-s}$. Thus $G_{m, n} * G_{r, s}=q^{m+s} F_{m, n} * F_{r, s}=$ $q^{m+s} q^{r-s} F_{m+r, n+s}=q^{m+r} F_{m+r, n+s}=G_{m+r, n+s}$.
3. If $r<s$ and $m<n$, then $m+r<n+s$ and $\beta-\alpha=n-m+s-r>s-$ r. So $m\left(A_{5}\right)=0, m\left(A_{6}\right)=1-1 / q^{s-r}$ and $c=1$. Thus $G_{m, n} * G_{r, s}=$ $q^{m+r} F_{m, n} * F_{r, s}=q^{m+r} F_{m+r, n+s}=G_{m+r, n+s}$.

4(a). If $r<s, m \geqslant n$ and $m+r<n+s$, then $0<\beta-\alpha=(s-r)-(m-n) \leqslant s-r$. So $\quad m\left(A_{5}\right)=0, \quad m\left(A_{6}\right)=1-1 / q^{\beta-\alpha} \quad$ and $\quad c=q^{s-r} / q^{\beta-\alpha}=q^{m-n}$. Thus $G_{m, n} * G_{r, s}=q^{n+r} F_{m, n} * F_{r, s}=q^{n+r} q^{m-n} F_{m+r, n+s}=q^{m+r} F_{m+r, n+s}=G_{m+r, n+s}$.

4(b). If $r<s, m \geqslant n$ and $n+s \leqslant m+r$, then $\beta-\alpha \leqslant 0$. So $m\left(A_{5}\right)=$ $m\left(A_{6}\right)=0 \quad$ and $\quad c=q^{s-r}$. Thus $G_{m, n} * G_{r, s}=q^{n+r} F_{m, n} * F_{r, s}=$ $q^{n+r} q^{s-r} F_{m+r, n+s}=q^{n+s} F_{m+r, n+s}=G_{m+r, n+s}$.

Corollary 4.5. - For any $\pi \in \widehat{H}$, the space $\mathscr{H}_{\pi, \chi^{\prime \prime}}$ is at most one-dimensional.

Proof. - If $f \in \mathscr{C}^{\prime \prime}$, then it is easy to see that $\pi(f)$ maps $\mathcal{C}_{\pi, \chi^{\prime \prime}}$ into itself. Hence we obtain a representation of the commutative algebra $\mathcal{C}^{\prime \prime}$ on $\mathcal{H}_{\pi, \chi^{\prime \prime}}$. If $\mathcal{H}_{\pi, \chi^{\prime \prime}}$ had dimension greater than 1, there would be a non-zero proper subspace W of $\mathcal{G}_{\pi, \chi^{\prime \prime}}$ invariant under $\pi(f)$ for all $f \in \mathscr{\mathcal { C } ^ { \prime \prime }}$. Choose $\eta \in \mathcal{H}_{\pi, \chi^{\prime \prime}}$ of norm 1 such that $\eta \in W^{\perp}$. If $f \in \mathcal{C}_{c}(H)$, define $f_{1}: H \rightarrow \mathrm{C}$ by

$$
f_{1}(h)=\int_{K^{\prime \prime}} \int_{K^{\prime \prime}} \chi^{\prime \prime}\left(k_{1} k_{2}\right) f\left(k_{1} h k_{2}\right) d k_{1} d k_{2},
$$

where $d k_{1}$ and $d k_{2}$ refer to normalized Haar measure on $K^{\prime \prime}$. Then $f_{1} \in \mathscr{\mathcal { C } ^ { \prime \prime }}$, and for any $\xi \in W$ we have

$$
\langle\pi(f) \eta, \xi\rangle=\left\langle\pi\left(f_{1}\right) \eta, \xi\right\rangle=\left\langle\eta, \pi\left(f_{1}^{*}\right) \xi\right\rangle=0 .
$$

Hence $\left\{\pi(f) \eta: f \in \mathcal{C}_{c}(H)\right\}$ is a subset of W^{\perp}, and so its closure is a non-zero proper H-invariant subspace of \mathcal{C}_{π}, contradicting the irreducibility of π.

For each $z \in T$, we get a character χ_{z} of F^{\times}by setting

$$
\chi_{z}\left(a \pi^{r}\right)=\chi_{0}(\dot{a}) z^{r} \quad \text { for } a \in \mathfrak{S}^{\times} \text {and } r \in \mathbb{Z},
$$

where $\dot{\alpha}$ is as usual the image of a in \mathbb{F}_{q}. Define a character χ_{z}^{\prime} of P by setting

$$
\chi_{z}^{\prime}\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\right)=\chi_{z}(a / d)
$$

Let σ_{z} be the unitary representation of G obtained by unitarily inducing χ_{z}^{\prime} from P to G. Thus the representation space \mathcal{A}_{z} of σ_{z} consists of the completion of the space $\mathscr{\mathscr { A }}_{z}^{0}$ of locally constant functions $f: G \rightarrow \mathrm{C}$ such that $f(p g)=\delta(p)^{1 / 2} \chi_{z}^{\prime}(p) f(g)$ for all $p \in P$ and $g \in G$ with respect to the norm $\|f\|=\left(\int_{K}|f(k)| d k\right)^{1 / 2}$, and $\left(\sigma_{z}(g) f\right)\left(g^{\prime}\right)=f\left(g^{\prime} g\right)$ for $f \in \mathcal{C}_{z}^{0}$ [1, pp. 469, 507]. Here δ is the modular quasi-character of P, defined by

$$
\int_{P} f(g p) d g=\delta(p) \int_{P} f(g) d g \quad \text { for any } f \in \mathfrak{C}_{c}(P) \text { and } p \in P
$$

where $d g$ refers to left Haar measure on P. So $\delta(p)=q^{\operatorname{ord}(d / a)}$ if $p=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)[1$, p. 426]. Note that $\delta(p)$ is denoted $1 / \Delta(p)$ in [5, p. 46].

Proposition 4.6. - The representations σ_{z} are irreducible, and trivial on Z. Regarding $\sigma_{z} \in \widehat{H}$, we have $\sigma_{z} \in \widehat{H}_{\chi^{\prime \prime}}$, and every $\pi \in \widehat{H}_{\chi^{\prime \prime}}$ is equivalent to exactly one of the σ_{z}.

Proof. - On the uncompleted space $\mathcal{C}_{z}^{0}, \sigma_{z}$ is $\mathcal{B}\left(\chi_{z}, \chi_{z}^{-1}\right)$, and so is (algebraically) irreducible [1, Theorem 4.5.1] and unitarizable [1, Proposition 4.6.11]. It follows that σ_{z} is irreducible on the completed space \mathcal{C}_{z}. For if T is a continuous linear operator which commutes with each $\sigma_{z}(g)$, then for each compact open subgroup K_{0} of G, T commutes with $Q_{K_{0}}=\int_{K_{0}} \sigma_{z}(k) d k$, which is the orthogonal projection of the space $\mathscr{A}_{z}\left(K_{0}\right)$ of right K_{0}-invariant elements of \mathscr{C}_{z}. So T maps each $\mathscr{H}_{z}\left(K_{0}\right)$ into itself, and hence their union, \mathscr{C}_{z}^{0}, into itself. By algebraic irreducibility, T must be a multiple of the identity operator. So σ_{z} is irreducible.

By the first part of Lemma 4.2, and since $\delta(p)=1$ and $\chi^{\prime}(p)=\chi_{z}^{\prime}(p)$ for all $p \in P \cap K^{\prime}$,

$$
f_{z}(g)= \begin{cases}\delta(p)^{1 / 2} \chi_{z}^{\prime}(p) \chi^{\prime}\left(k^{\prime}\right) & \text { if } g=p k^{\prime} \in P K^{\prime} \\ 0 & \text { if } g \in P w_{0} K^{\prime}\end{cases}
$$

well-defines a function $f_{z} \in \mathcal{C}_{z}$ such that $\sigma_{z}\left(k^{\prime}\right) f_{z}=\chi^{\prime}\left(k^{\prime}\right) f_{z}$ for all $k^{\prime} \in K^{\prime}$ and such that $f(1)=1$. It follows that the representation of H corresponding to σ_{z} is in $\widehat{H}_{\chi^{\prime \prime}}$.

Any $f \in \mathcal{H}_{z}$ such that $\sigma_{z}\left(k^{\prime}\right) f=\chi^{\prime}\left(k^{\prime}\right) f$ for all $k^{\prime} \in K^{\prime}$ must be a multiple of f_{z}. This is immediate from Corollary 4.5 , but can easily be seen directly as follows: taking $p=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$ and $p^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)$, where $a \in \mathfrak{D}^{\times}$, we have $p \in P \cap K^{\prime}$, $p w_{0}=w_{0} p^{\prime}, \delta(p)=1$ and $\chi_{z}^{\prime}(p)=\chi^{\prime}(p)$. Thus

$$
\chi^{\prime}(p) f\left(w_{0}\right)=f\left(p w_{0}\right)=f\left(w_{0} p^{\prime}\right)=\chi^{\prime}\left(p^{\prime}\right) f\left(w_{0}\right),
$$

which means that $\chi_{0}\left(\dot{a}^{-1}\right) f\left(w_{0}\right)=\chi_{0}(\dot{a}) f\left(w_{0}\right)$. Since $\chi_{0}^{2} \neq 1$, there is an $a \in \mathfrak{D}^{\times}$ such that $\chi_{0}\left(\dot{a}^{-1}\right) \neq \chi_{0}(\dot{a})$. Hence $f\left(w_{0}\right)=0$. Since f is determined by $f(1)$ and $f\left(w_{0}\right)$, we must have $f=c f_{z}$ for $c=f(1)$.

For any $F \in \mathscr{H}^{\prime}, f=\pi(F)\left(f_{z}\right)$ satisfies $\sigma_{z}\left(k^{\prime}\right) f=\chi^{\prime}\left(k^{\prime}\right) f$ for all $k^{\prime} \in K^{\prime}$, and so $f=c f_{z}$ for $c=f(1)$. We next show that if $F=F_{m, n}$, then $c=$ $q^{|m-n| / 2} z^{m-n}$. Since $F_{m, n}^{*}=F_{-m,-n}$, we may assume that $m \leqslant n$. Now
$c=\left(\sigma_{z}\left(F_{m, n}\right) f_{z}\right)(1)=\int_{G} F_{m, n}(x) f_{z}(x) d x=(q+1) \int_{P}\left(\int_{K} F_{m, n}(p k) f_{z}(p k) d k\right) d p$
by [1, Proposition 2.1.5(ii)]. Here $d k$ denotes normalized Haar measure m_{K} on K and $d p$ denotes left Haar measure on P, normalized so that $P \cap K$ has measure 1 . The factor $q+1$ is to normalize the Haar measure $d x$ on G so that K^{\prime} has measure 1.

Now K is the union of the cosets $w_{0} K^{\prime}$ and $g_{\alpha} K^{\prime}$, where $\alpha \in A$ and $g_{\alpha}=\left(\begin{array}{ll}1 & 0 \\ \alpha & 1\end{array}\right)$. Notice that

$$
g_{\alpha}=\left(\begin{array}{cc}
-1 / \alpha & 1 / \alpha \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\alpha & 1 \\
0 & 1
\end{array}\right) \in P w_{0} K^{\prime}
$$

for all $\alpha \in A \backslash\{0\}$, so that $f_{z}(p k)=0$ for $p \in P$ and $k \in K \backslash K^{\prime}$. If $k \in K^{\prime}$, then

$$
F_{m, n}(p k) f_{z}(p k)=F_{m, n}(p) \overline{\chi^{\prime}(k)} \chi^{\prime}(k) f_{z}(p)=F_{m, n}(p) f_{z}(p)
$$

Since $m_{K}\left(K^{\prime}\right)=1 /(q+1)$,

$$
\int_{K} F_{m, n}(p k) f_{z}(p k) d k=\int_{K^{\prime}} F_{m, n}(p k) f_{z}(p k) d k=F_{m, n}(p) f_{z}(p) /(q+1) .
$$

Hence $c=\int_{P} F_{m, n}(p) f_{z}(p) d p$.
Now P is the product of the two closed groups D and U, where D consists of the diagonal matrices $\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right)$, where $a_{1}, a_{2} \in F^{\times}$and U consists of the matrices $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$, where $x \in F$. So by [1, Proposition 2.1.5(ii)] again, for any $\varphi \in \mathcal{C}_{c}(P)$,

$$
\int_{P} \varphi(p) d p=C \int_{F^{\times}} \int_{F^{\times}} \int_{F} \varphi\left(\left(\begin{array}{cc}
a_{1} & a_{1} x \tag{4.9}\\
0 & a_{2}
\end{array}\right)\right) \frac{d a_{1}}{\left|a_{1}\right|} \frac{d a_{2}}{\left|a_{2}\right|} d x,
$$

for some $C>0$, where $d a_{1}, d a_{2}$ and $d x$ refer to additive Haar measure m_{F} on F, normalized so that \subseteq has measure 1 . The number C is determined by the condition that $P \cap K$ has measure 1. Taking φ to be the indicator function of $P \cap K$, and using the fact that $\left(\begin{array}{cc}a_{1} & a_{1} x \\ 0 & a_{2}\end{array}\right) \in P \cap K$ if and only if $a_{1}, a_{2} \in \Im^{\times}$and $x \in \mathfrak{D}$, the right hand side of (4.9) is

$$
C \int_{\mathscr{D}^{\times}} \int_{\mathfrak{D}^{\times}} \int_{\mathfrak{D}} \varphi\left(\left(\begin{array}{cc}
a_{1} & a_{1} x \\
0 & a_{2}
\end{array}\right)\right) d a_{1} d a_{2} d x=C(q-1)^{2} / q^{2} .
$$

Thus $C=q^{2} /(q-1)^{2}$.
Recall that we are assuming that $m \leqslant n$. For $a_{1}, a_{2} \in F^{\times}$and $x \in F$,

$$
\left(\begin{array}{cc}
a_{1} & a_{1} x \\
0 & a_{2}
\end{array}\right) \in K^{\prime} g_{m, n} K^{\prime} \text { if and only if } a_{1} / \varpi^{m} \in \mathfrak{S}^{\times}, a_{2} / \varpi^{n} \in \mathfrak{D}^{\times} \text {and } x \in \mathfrak{D}
$$

as is clear from the cases (i) and (ii) considered in the proof of Lemma 4.2. Hence

$$
\begin{align*}
c & =C \int_{F^{\times}} \int_{F^{\times}} \int_{F}\left(F_{m, n} \cdot f_{z}\right)\left(\left(\begin{array}{cc}
a_{1} & a_{1} x \\
0 & a_{2}
\end{array}\right)\right) \frac{d a_{1}}{\left|a_{1}\right|} \frac{d a_{2}}{\left|a_{2}\right|} d x \tag{4.10}\\
& =C \int_{F^{\times}} \int_{F^{\times}} \int_{F}\left(F_{m, n} \cdot f_{z}\right)\left(\left(\begin{array}{cc}
\varpi^{m} a_{1} & \varpi^{m} a_{1} x \\
0 & \varpi^{n} a_{2}
\end{array}\right)\right) \frac{d a_{1}}{\left|a_{1}\right|} \frac{d a_{2}}{\left|a_{2}\right|} d x \\
& =C \int_{\mathscr{O}^{\times}} \int_{\mathscr{D}^{\times}} \int_{\mathscr{D}}\left(F_{m, n} \cdot f_{z}\right)\left(\left(\begin{array}{cc}
\varpi^{m} a_{1} & \varpi^{m} a_{1} x \\
0 & \varpi^{n} a_{2}
\end{array}\right)\right) d a_{1} d a_{2} d x .
\end{align*}
$$

If $a_{1}, a_{2} \in \mathfrak{O}^{\times}$and $x \in \mathfrak{O}$, then $p=\left(\begin{array}{cc}a_{1} & a_{1} x \\ 0 & a_{2}\end{array}\right) \in P \cap K^{\prime}$, and so

$$
\left(F_{m, n} \cdot f_{z}\right)\left(\left(\begin{array}{cc}
\varpi^{m} a_{1} & \varpi^{m} a_{1} x \\
0 & \varpi^{n} a_{2}
\end{array}\right)\right)=\left(F_{m, n} \cdot f_{z}\right)\left(g_{m, n} p\right)=\left(F_{m, n} \cdot f_{z}\right)\left(g_{m, n}\right),
$$

since $F_{m, n}\left(g_{m, n} p\right)=\overline{\chi^{\prime}(p)}$ and $f_{z}\left(g_{m, n} p\right)=\chi^{\prime}(p) f_{z}\left(g_{m, n}\right)$. This equals

$$
f_{z}\left(g_{m, n}\right)=\delta\left(g_{m, n}\right)^{1 / 2} \chi_{z}^{\prime}\left(g_{m, n}\right)=q^{(n-m) / 2} \chi_{z}\left(\varpi^{m-n}\right)=q^{(n-m) / 2} z^{m-n} .
$$

Hence the integrand in (4.10) equals the constant $q^{(n-m) / 2} z^{m-n}$, so that

$$
c=C m_{F}\left(\Im^{\times}\right)^{2} m_{F}(\wp) q^{(n-m) / 2} z^{m-n}=q^{(n-m) / 2} z^{m-n} .
$$

Let $\pi \in \widehat{H}_{\chi^{\prime \prime}}$. Since $\mathcal{H}_{\pi, \chi^{\prime \prime}}$ is 1-dimensional, if $f \in \mathcal{H}^{\prime \prime}$, then $\pi(f)(\xi)$ is a multiple $\lambda_{\pi}(f) \xi$ of ξ. Then $\lambda_{\pi}: \mathscr{C}^{\prime \prime} \rightarrow \mathrm{C}$ is a $*$-algebra homomorphism. It does not depend on the choice of ξ, nor on the equivalence class of π. The map $\pi \mapsto \lambda_{\pi}$ is injective from the set $\widehat{H}_{\chi^{\prime \prime}}$ into the set of $*$-algebra homomorphisms on $\mathcal{C}^{\prime \prime}[7$, Appendix 1].

Let $f_{n}=\Lambda\left(F_{0, n}\right) \in \mathcal{C}^{\prime \prime}$ for $n \in \mathbb{Z}$. Thus $f_{n}(g Z)=\overline{\chi^{\prime}\left(k_{1} k_{2}\right)}$ if $g Z=k_{1} g_{0, n} k_{2} Z$ for some $k_{1}, k_{2} \in K^{\prime}$, and $\mathcal{C}^{\prime \prime}$ is spanned by the f_{n} s. Then $f_{n}^{*}=\Lambda\left(F_{0, n}^{*}\right)=$ $\Lambda\left(F_{0,-n}\right)=f_{-n}$, and by Proposition 4.4, f_{n} is the n-th convolution power of f_{1} for all $n \geqslant 1$. Also, $f_{0} * f_{0}=f_{0}$, and $f_{1} * f_{1}^{*}=f_{1} * f_{-1}=q f_{0}$, since $F_{0,1} * F_{0,1}^{*}=F_{0,1} * F_{0,-1}=G_{0,1} * q G_{0,-1}=q G_{0,0}=q F_{0,0}$. Let λ be a $*$-alge-
 1 , and $\left|\lambda\left(f_{1}\right)\right|^{2}=q$. It follows that $\lambda=\lambda_{\sigma_{z}}$ for some $z \in \mathbb{T}$. Hence if $\pi \in \widehat{H}_{\chi^{\prime \prime}}$ then $\lambda_{\pi}=\lambda_{\sigma_{z}}$ for some z, and so π must be equivalent to this σ_{z}.

Proposition 4.7. - The representation $\operatorname{Ind}_{K^{\prime \prime}}^{H} \chi^{\prime \prime}$ is unitarily equivalent to the direct integral $\int_{\mathrm{T}}^{\oplus} \sigma_{z} d z$ of the representations $\sigma_{z},|z|=1$.

Proof. - Let π be an irreducible unitary representation of H, and let $\mathcal{H} S\left(\mathcal{H}_{\pi}\right)$ denote the space of Hilbert-Schmidt operators on the representation space \mathscr{G}_{π} of π. It is a Hilbert space with inner product $\langle S, T\rangle=$ Trace $\left(T^{*} S\right)$,
and π gives a unitary representation π^{\prime} on $\mathscr{C} S\left(\mathcal{C}_{\pi}\right)$ by $\pi^{\prime}(g)(T)=\pi(g) T$. If $f \in L^{1}(H) \cap L^{2}(H)$, let $\widehat{f}(\pi)$ denote the operator $\int_{H} f(x) \pi\left(x^{-1}\right) d x$. Let \widehat{H} denote the set of equivalence classes of irreducible representations of H. The Plancherel Theorem [5, p. 234], [2, p. 327] states that there is a measure μ on \widehat{H} so that the map $f \mapsto(\widehat{f}(\pi))$ extends to an isometry of $L^{2}(H)$ onto $\int_{\bar{H}}^{\oplus} \mathcal{H} S\left(\mathcal{C}_{\pi}\right) d \mu(\pi)$ which intertwines the right regular representation ϱ of H and the direct integral of the representations π^{\prime}.

Let $f_{0} \in \mathscr{\mathcal { C } ^ { \prime \prime }}$ be as defined at the end of the last proof. It is easy to see that if $\pi \in \widehat{H}$, then $\widehat{f}_{0}(\pi)$ is the orthogonal projection $P_{\pi, \chi^{\prime \prime}}$ of \mathcal{H}_{π} onto $\mathcal{G}_{\pi, \chi^{\prime \prime}}$.

Let V denote the representation space of $\operatorname{Ind}_{K^{\prime \prime}}^{H} \chi^{\prime \prime}$. Then $V=\left\{f_{0} * f: f \in\right.$ $\left.L^{2}(H)\right\}$. If $f \in L^{1}(H) \cap L^{2}(H)$ is in V, then $f=f_{0} * f$, and so $\widehat{f}(\pi)=\widehat{f}(\pi) \widehat{f}_{0}(\pi)=$ $\widehat{f}(\pi) P_{\pi, \chi^{\prime \prime}}$. Hence, considering the above unitary map $L^{2}(H) \rightarrow \int_{\bar{H}}^{\oplus} \mathcal{H} S\left(\mathcal{H}_{\pi}\right) d \mu(\pi)$, the image in $\int^{\oplus} \mathscr{C} S\left(\mathcal{H}_{\pi}\right) d \mu(\pi)$ of $V \subset L^{2}(H)$ is the space of fields $\left(S_{\pi}\right)$ of operators such that $S_{\pi}=S_{\pi} P_{\pi, \chi^{\prime \prime}}$ for all π. Hence $S_{\pi}=0$ unless $\mathcal{H}_{\pi, \chi^{\prime \prime}} \neq\{0\}$. For each $\pi \in \widehat{H}_{\chi^{\prime \prime}}$, pick $\xi_{\pi} \in \mathcal{H}_{\pi, \chi^{\prime \prime}}$ of norm 1. An operator S_{π} on \mathcal{H}_{π} such that $S_{\pi}=S_{\pi} P_{\pi, \chi^{\prime \prime}}$ is completely determined by $u_{\pi}=S_{\pi}\left(\xi_{\pi}\right)$. In fact, $S_{\pi}\left(t \xi_{\pi}+\eta\right)=t u_{\pi}$ if $\eta \in\left\{\xi_{\pi}\right\}^{\perp}$. Hence S_{π} is a Hilbert-Schmidt operator. If $S_{\pi}=S_{\pi} P_{\pi, \chi^{\prime \prime}}$ and $T_{\pi}=T_{\pi} P_{\pi, \chi^{\prime \prime}}$, let $u_{\pi}=S_{\pi}\left(\xi_{\pi}\right)$ and $v_{\pi}=T_{\pi}\left(\xi_{\pi}\right)$. Then Trace $\left(T_{\pi}^{*} S_{\pi}\right)=\left\langle u_{\pi}, v_{\pi}\right\rangle$. Hence $S_{\pi} \mapsto S_{\pi}\left(\xi_{\pi}\right)$ defines an isometry of $\left\{S_{\pi} \in \mathscr{L}\left(\mathscr{C}_{\pi}\right): S_{\pi}=S_{\pi} P_{\pi, \chi^{\prime \prime}}\right\}$ onto \mathcal{H}_{π}. Hence $f \mapsto\left(\pi(f)\left(\xi_{\pi}\right)\right)$ is an isometry from the subspace V of $L^{2}(H)$ onto $\int_{\mathcal{H}_{\chi^{\prime \prime}}}^{\oplus} \mathcal{H}_{\pi} d \mu(\pi)$ which intertwines the right translation on V, i.e., $\operatorname{Ind}_{K^{\prime \prime}}^{H} \chi^{\prime \prime}$, with $\int_{\widetilde{H}_{x^{\prime \prime}}}^{\oplus} \pi d \mu(\pi)$.

By Proposition 4.6, any $\pi \in \widehat{H}_{\chi^{\prime \prime}}$ is equivalent to one of the representations $\sigma_{z},|z|=1$, and we can take $\xi_{\pi}=f_{z}$ if $\pi=\sigma_{z}$. Because $q^{|n|} \delta_{m, n}=\left\langle f_{m}, f_{n}\right\rangle$ equals

$$
\begin{aligned}
\int_{\mathbb{T}}\left\langle\widehat{f}_{m}\left(\sigma_{z}\right) f_{z}, \widehat{F}_{m}\left(\sigma_{z}\right) f_{z}\right\rangle d \mu\left(\sigma_{z}\right) & =\int_{\mathbb{T}}\left\langle\left(\sigma_{z}\right)\left(f_{-m}\right) f_{z},\left(\sigma_{z}\right)\left(f_{-n}\right) f_{z}\right\rangle d \mu\left(\sigma_{z}\right) \\
& =\int_{\mathrm{T}}\left\langle q^{|m| / 2} z^{m} f_{z}, q^{|n| / 2} z^{n} f_{z}\right\rangle d \mu\left(\sigma_{z}\right) \\
& =q^{(|m|+|n|) / 2} \int_{\mathrm{T}} z^{m-n} d \mu\left(\sigma_{z}\right),
\end{aligned}
$$

the Plancherel measure induces the Haar measure on T via the embedding $z \mapsto \sigma_{z}$.

REFERENCES

[1] D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics: 55, Cambridge University Press, 1997.
[2] J. Dixmier, Les C^{*}-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
[3] J. Faraut, Analyse harmonique sur les paires de Gelfand et les spaces hyperboliques, Analyse Harmonique Nancy 1980, CIMPA, Nice 1983.
[4] A. Figà-Talamanca - C. Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Mathematical Society Lecture Note Series 162, Cambridge University Press, Cambridge, 1991.
[5] G. B. Folland, A course in abstract harmonic analysis, CRC Press, Boca Raton, 1995.
[6] R. Howe, On the principal series of $G l_{n}$ over p-adic fields, Trans. Amer. Math Soc., 177 (1973), 275-296.
[7] R. Howe, Harish-Chandra Homomorphisms for \mathfrak{p}-adic groups, CBMS Regional Conference Series in Mathematics, No.59, American Mathematical Society, 1985.
[8] G. James - A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its applications, volume 16, Addison-Wesley, 1981.
[9] P. C. Kutzko, On the supercuspidal representations of $G l_{2}$, Amer. J. Math., 100 (1978), 43-60.
[10] G. W. Mackey, The theory of unitary group representations, University of Chicago Press, Chicago, 1976.
[11] G. I. OL'Shanski, Representations of groups of automorphisms of trees, Usp. Mat. Nauk, 303 (1975), 169-170.
[12] G. I. Ol'shanskir, Classification of irreducible representations of groups of automorphisms of Bruhat-Tits trees, Functional Anal. Appl., 11 (1977), 26-34.
[13] G. K. Pedersen, Analysis now, Graduate Texts in Mathematics 118, Springer Verlag (1989).
[14] I. Piatetski-Shapiro, Complex representations of $G L(2, K)$ for finite fields K, Contemporary Mathematics, Vol. 16, American Mathematical Society, Providence, 1983.
[15] W. R. Scott, Group theory, Prentice-Hall, 1964.
[16] J. P. Serre, Trees, Springer Verlag, Berlin Heidelberg New York, 1980.
Donald I. Cartwright: School of Mathematics and Statistics
University of Sydney, N.S.W. 2006, Australia
Gabriella Kuhn: Dipartimento di matematica e applicazioni, Università di Milano-Bicocca Viale Sarca 202, Edificio U7, 20126 Milano, Italy

