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Bollettino U. M. I.
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G-Convergence of Constrained Dirichlet Functionals.

GIAN PAOLO LEONARDI

Sunto. – Dato V%R n aperto, limitato e connesso, con frontiera Lipschitziana e volume
NVN , si prova che la successione Fk di funzionali di Dirichlet definiti in
H 1 (V ; R d ), con vincoli di volume v k su mF2 insiemi di livello prescritti, tali che

!
i41

m

v k
i ENVN per ogni k , G-converge, quando v kKv con !

i41

m

vi4NVN , al quadrato

della variazione totale in BV(V ; R d ), con vincoli di volume v sui medesimi insie-
mi di livello.

Summary. – Given an open, bounded and connected set V%R n with Lipschitz bound-
ary and volume NVN , we prove that the sequence Fk of Dirichlet functionals defined
on H 1 (V ; R d ), with volume constraints v k on mF2 fixed level-sets, and such that

!
i41

m

v k
i ENVN for all k , G-converges, as v kKv with !

i41

m

vi4NVN , to the squared total

variation on BV(V ; R d ), with v as volume constraint on the same level-sets.

1. – Introduction.

Ambrosio et al. considered in [3] a class of variational problems (which we
shall refer to as «Dirichlet-type problems with volume constraints on level-
sets») motivated by recent studies on models for immiscible fluids systems
(see [11]), and also related to heat flow in materials with two or more phases
(see [1]). More precisely, they were concerned with the following (type of)
problem: given an open, bounded and connected Lipschitz domain V%Rn , m
vectors z1 , R , zm �Rd and m positive real numbers v1 , R , vm with the prop-
erty !vi ENVN (here, N QN denotes the Lebesgue measure in Rn), mini-
mize

s
V

N˜uN2 dx(1.1)

among u�W 1, 2 (V ; Rd ) satisfying the constraints N]u4zi (N4vi for all i4

1, R , m . Therefore, the unknowns of the problem are essentially the level-
sets ]v4zi ( of a solution v , since v has to be harmonic on the complement of
the level-sets (at least in a weak sense).

Existence results in the vector case have been established in [3], even
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though a quite restrictive hypothesis is assumed on z1 , R , zm (i.e., they need
to be extremal points of their convex hull), so that in the scalar-valued case
(d41) only 2 levels are allowed. However, more general existence and regu-
larity results have been later obtained by Tilli [15] and by Mosconi-Tilli [13]
for the scalar case, while new results for the general vector-valued case, that
do not require the extremality of the prescribed levels, have been recently
found by Tilli and the author. In [3] it is also proved that a sequence of (suit-
ably rescaled) functionals of type (1.1), in the scalar case with only two pre-
scribed levels and with the measures of level-sets tending to some limit values
v1 , v2 , for which v1 1v2 4NVN , G-converges to the squared total variation in
the space BVz , v (V) of piecewise-constant BV-functions u : VK ]z1 , z2 ( satis-
fying the constraints N]u4z1 (N4v1 and N]u4z2 (N4v2 (see also [14]).

The G-convergence has not yet been considered in its full generality, i.e., in
the vector case with m generic levels. The aim of this paper is, therefore, to
prove such a general result, which is done in Section 3 (Theorem 3.1) after
some preliminary lemmas. Actually, the most remarkable part is the proof of
the lim sup inequality (see Section 2 for the definition of G-convergence), while
the lim inf inequality follows easily by the same argument used in [3].

The technique used to prove the lim sup inequality consists of several
steps. First of all, we make use of an approximation result due to Baldo (see
Lemma 2.1 and [5]) to restrict the verification of the lim sup inequality to func-
tions u�BVz , v (V) such that the underlying partition of finite perimeter P,
whose components are precisely the m level-sets of u , is «polyhedral» and
«transverse» to ¯V (see Remark 3.2). To prove the inequality in the polyhe-
dral case, we need to define the approximating sequence (uk )k in such a way
that uk belongs to W 1, 2 (V), it has an «almost constant» slope (varying as k
varies) near the interfaces of P (see Lemma 3.4), and moreover it verifies the
volume constraints, which is indeed the most delicate part of the proof (see, in
particular, Lemma 3.6). We defer the precise statement and the proof of G-
convergence after some basic definitions and results, collected in the following
section.

2. – Preliminary definitions and results.

By Rn we denote the real Euclidean space of dimension nF2. Br (x) de-
notes the open Euclidean n-ball centered at x�Rn with radius rD0; we use Br

in place of Br (0). We write v n for the Lebesgue measure Ln of the unit ball of
Rn . Then, the volume of Br is NBrN4v n r n (we use NAN instead of Ln (A)). We
also denote by H n21 the (n21)-dimensional Hausdorff measure in Rn (see,
e.g., [12] and [7] for definition and properties). We then denote by [S]e the
e-tubular neighbourhood of a set S%R t , with eD0, and by M n21 (S) the
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(n21)-dimensional Minkowski content in Rn . One has the following property
(for a proof, see [4], Theorem 2.106): if S is a compact subset of Rn21 and
f : Rn21 KRn is a Lipschitz mapping, then

M n21 ( f (S) ) 4 H n21 ( f (S) ) .(2.1)

The Sobolev and BV spaces are denoted, respectively, by W 1, p (V) and BV(V).
We also consider the vector-valued spaces W 1, p (V ; Rd ) and BV(V ; Rd ), de-
fined by taking the d-power of the corresponding scalar spaces (see, for in-
stance, [9] and [4]).

Given a Borel set E , its characteristic function is x E (x). We define the
perimeter of E in V as

P(E , V) »4 supm s
EOV

div g(x) dx : g�C 1
0 (V ; Rn ), Ng(x)NG1n .

We say that E has finite perimeter (or, is a set of finite perimeter) in V if
P(E , V) E1Q . In particular, if x E �L 1 (V) then E has finite perimeter in V
if and only if x E �BV(V). Moreover, this notion of perimeter agrees with the
(n21)-dimensional area of the boundary of E , when ¯E is of class C 1 or Lips-
chitz. As for the notation, we write P(E) instead of P(E , Rn ) when V4Rn .
For further details about BV-spaces and perimeter, see, e.g., [2], [4], [7], and
[10].

The notion of partition of finite perimeter used here is that of a finite col-
lection F 4 (Fi )i41

m of Borel subsets of V , such that

(i) Fi has locally finite perimeter in V;

(ii) NFi OFjN40 whenever ic j;

(iii) NV0 0
i41

m

FiN 40.

Given F as above, we define the perimeter of F in V as

P(F, V) 4
1

2
!

i
P(Fi , V) .

A class of partitions of finite perimeter which is relevant for our purposes
is that of polyhedral partitions P, whose components Pi are such that ¯Pi O
V4Ni OV , where Ni is a (n21)-dimensional polyhedron (PL manifold) in
Rn , for all i41, R , m . For such P we denote by Sij the (n21)-dimensional
regular interface between Pi and Pj within V , that is,

Sij »4N *i ON *j OV

(here, N * is the set of points of the (n21)-dimensional polyhedron N that do
not belong to the (n22)-skeleton of N). Then, we conveniently define the sin-
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gular set S as the following subset of V:

S»4 ]x� V : x� Sij for some iE j(0 0
iE j

Sij .

Hence, the perimeter of a polyhedral partition is precisely the sum of the
area of the regular interfaces Sij . On the other hand, S contains, for example,
corner points or multiple points where three or more interfaces meet inside V ,
plus the set S*4SO¯V of «singular boundary points», which is a compact
subset of ¯V , for which M n21 (S*) 4 H n21 (S*) holds as a consequence of
(2.1). Finally, we will say that P is transverse to ¯V if

M n21 (S*) 4 H n21 (S*) 40 ,

and in this case it turns out also that

M n21 (S) 4 H n21 (S) 40 .(2.2)

We now state an approximation result of a generic partition of finite
perimeter in V by means of a sequence of polyhedral, transverse partitions
(see [5], Lemma 3.1).

LEMMA 2.1. – Let V%Rn be open, bounded and Lipschitz, and let F be a
partition of finite perimeter in V . Then there exists a sequence (P h )h of poly-
hedral, transverse partitions of finite perimeter in V , such that NP h

i N4NFiN

for all i , h , x P h
i

converges to x Fi
in L 1 (V) for all i , and P(P h , V) converges to

P(F, V), for hK1Q .

Given m vectors z 1 , R , z m �Rd and a vector v�Rm , whose components
are m positive numbers v1 , R , vm , we define

H 1
z , v (V) »4 ]u�W 1, 2 (V ; Rd ) : N]u4z i (N4vi for all i41, R , m( ,

and BVz , v (V) is defined in a similar way. Of course, H 1
z , v (V) is non-empty if

and only if !
i

vi ENVN , while BVz , v (V) is significative also in the case !
i

vi 4

NVN , where it coincides with the space of piecewise-constant, vector-valued
BV-functions that can be represented as !

i
z i x Ui

, where U 4 (Ui )i41
m is a par-

tition with finite perimeter, verifying the volume constraints NUiN4vi for all i .
In this case, one can show that

s
V

NDuN4 !
iE j

Nz i 2z jN H n21 (Sij )(2.3)

(see [4], Theorem 3.78).
We recall the definition of G-convergence (see [6]), with respect to the L 1-

topology: let F , Fk be functionals defined on L 1 (V) with values in RN ]1Q(,
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for all k�N . Then, we say that Fk G-converges to F as kK1Q if and only if,
for all u�L 1 (V), the following relations hold:

( uk Ku in L 1 (V) we have F(u) G lim inf
k

Fk (uk ) ,(2.4)

) uk Ku in L 1 (V) such that F(u) F lim sup
k

Fk (uk ) .(2.5)

We finally conclude this section with some basic definitions and notations
about networks. A network is a pair (G , A), where G is a finite set of nodes
]1, R , m(, that are «connected» by some oriented arcs (elements of A). The
arc a�A going from node i to node j (which i and j «belong to») is represented
by iK j , or even by a2Ka1 , with the obvious meaning for a2 and a1 . The set
A of all arcs of G is, in fact, a subset of G3G . A path of length s in a network
(G , A) is an s-tuple of nodes s4 (i1 , R , is ), such that ir and ir11 are connect-
ed by some arc a�A (regardless of orientation): more precisely, we will write
a�s and 2a�s if, respectively, a4 ir K ir11 and a4 ir11 K ir . A network
(G , A) is said to be connected if any pair of nodes can be joined by a path,
while it is called simple if any two nodes are connected by at most one arc, and
if there are no arcs of type iK i . For more details on the subject, see, for in-
stance, [8].

3. – The G-convergence result.

Let us take an open, bounded and connected set V%Rn with Lipschitz
boundary, a set of mF2 vectors z1 , R , zm �Rd , and a vector v with m real
components v1 , R , vm D0, such that !

i
vi 4NVN . Let (vk )k�N be a sequence of

vectors in Rm verifying

(i) for all k�N , !
s41

m

v k
s ENVN and v k

i D0 for all i41, R , m;

(ii) lim
k

v k
i 4vi for all i41, R , m .

We can now state the following theorem:

THEOREM 3.1 (G-convergence). – Under the previous hypotheses, we con-
sider the following sequence of functionals: for u�L 1 (V) and k�N ,

Fk (u) 4
.
/
´

gNVN2!
i

v k
i hs

V

N˜u(x)N2 dx

1Q

if u�H 1
z , vk (V),

otherwise .
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Then, the sequence Fk G-converges to the functional

F(u) 4
.
/
´

g s
V

NDuNh2

1Q

if u�BVz , v (V),

otherwise

with respect to the L 1-topology. Moreover, any sequence (uk )k %L 1 (V), such
that Fk (uk ) GCE1Q , is relatively compact in L 1 (V).

Here comes the proof of Theorem 3.1. Compactness of sequences that are
bounded in energy, together with lim inf inequality (2.4), are shown hereafter
by following the same argument of [3], while the lim sup inequality (2.5) will be
proved after some preliminary lemmas.

Proof of compactness and lim inf inequality.

We fix a function u�L 1 (V) and a sequence (uk )k , such that uk �H 1
z , vk (V)

(all these spaces of functions are vector-valued, but we adopt a shorter
notation), and suppose that there exists a constant CD0 such that

Fk (uk ) GC ( k .

By Schwartz’s inequality, we get

g s
V

N˜ukNh2

4u s
V00

i
]uk4z i(

N˜ukNv2

G Fk (uk ) GC .(3.1)

Moreover, we know that N]uk 4z 1 (NFv1 /2 for k sufficiently large, hence
by Poincaré’s inequality we also get that (uk )k is bounded in L 1 (V). Therefore,
(uk )k is bounded in W 1, 1 (V), hence compact in L 1 (V), which proves the
last statement of Theorem 3.1. In particular, there exists a subsequence
uks

converging in L 1 (V) to a BV-function v . At this point, to prove (2.4)
we suppose that uk Ku in L 1 (V), hence u4v a.e. on V , that is, u�BV(V).
Moreover, by the semicontinuity property of the BV-norm and by (3.1),
we obtain:

lim inf
k

Fk (uk ) F lim inf
k

g s
V

N˜ukNh2

Fg s
V

NDuNh2

.

Finally, the fact that u belongs to BVz , v (V) follows by noticing that,
up to subsequences, uk (x) Ku(x) for almost all x�V , hence, by Fatou’s
inequality, we get

vi 4 lim sup
k

N]uk 4z i (NGN]u4z i (N ( i41, R , m ,
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but this is possible only if N]u4z i (N4vi for all i . Therefore, u satisfies
the level-set constraints, as wanted. r

Proof of limsup inequality.

The proof will proceed by several steps. The first one is a remark pointing
out a relevant consequence of the density of polyhedral partitions, in the sense
of Lemma 2.1.

REMARK 3.2. – It is well-known that the inequality (2.5) needs only to be
proved for a subset of functions that is dense in energy. Hence, thanks to
Lemma 2.1, we can confine ourselves to the case of piecewise-constant BV-
functions whose underlying partition is polyhedral and transverse.

Therefore, it is sufficient to prove the following theorem:

THEOREM 3.3 (Polyhedral case). – Let u�BVz , v (V) have an associated
polyhedral and transverse partition P. Then there exists a sequence (uk )k

such that uk �H 1
z , vk (V) for all k , uk converges to u in L 1 (V) and

lim sup
k

Fk (uk ) G F(u) .

To prove this theorem we need some preliminary lemmas.

LEMMA 3.4 (The function c e ). – Let u and P be as in Theorem 3.3. Then, for
a given eD0, there exists a function c e (x) and a constant KD0 depending
only on ]z 1 , R , z m (, such that

(i) c e�W 1, Q (V) and V˜c e VQGK/e;

(ii) c e takes the constant value z i on Pi 0 0
i 8E j 8

[Si 8 j 8 ]e i 8 j 8
, where e i 8 j 84

Nz i 82z j 8 Ne;

(iii) there exist c , e 0 D0 depending only on P and ]z i (, such that for
0 EeEe 0 we have N˜c e (x)N4 (2e)21 for almost all x�VO
g 0

i 8E j 8
[Si 8 j 8 ]e i 8 j 8

0 [S]ceh . Here, S is the singular set defined in Section 2.

PROOF. – The function c e can be constructed in various ways. Our choice
here is to define c e by means of a combination of distance functions from the
interfaces, which is quite simple from a computational point of view and re-
quires, at the same time, neither «a priori» localization (i.e., choice of e small
enough), nor the use of any further Lipschitz extension near singular points.
First of all, we define dij (x) 4dist(x , Sij ) and e ij 4eNz i 2z jN , then put
hij (x) 4 max (12e ij

21 dij (x), 0 ). On each (open) Pi , we consider the function
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f i : Pi KRd defined as

f i (x) 4z i Q»
jc i

(12hij (x) )1 !
i 8E j 8

z i 81z j 8

2
hi 8 j 8 (x) ,

and finally construct, for x�V ,

c e (x) 4

.
/
´

f i (x)

!
i 8E j 8

z i 81z j 8

2
hi 8 j 8 (x)

if x�Pi

otherwise .

We claim that c e satisfies our requirements.
(i) By definition, c e is a K/e-Lipschitz function on each Pi (for a suitable K

depending only on ]z1 , R , zm (, hence it only remains to observe that it is con-
tinuous along every interface Sij , which is true since

f iNSij
4 !

i 8E j 8

z i 81z j 8

2
hi 8 j 84f jNSij

.

(ii) This follows easily by the definition.
(iii) This can be easily seen by the following argument: first, we can take

0 Ee 0 E
d

2 max
i , j

Nli 2 ljN
, where d denotes the minimum distance between pairs of

disjoint, closed (n21)-dimensional faces of the polyhedral interface set
(which, of course, contains only a finite number of such faces). If eEe 0 , then
one can easily prove that

x� [Sij ]e ij
O [Shk ]e hk

for (i , j) c (h , k),

implies

dist(x , S) Ece ,

where cD0 is a constant depending only on the data of the problem and on the
partition P (in particular, on the fact that all possible dihedral angles, formed
by each pair of faces meeting at some point of S , are non-zero and hence can-
not be smaller than some positive lower bound). Hence, if x� (Pi O
[Sij ]e ij

)0[S]ce , then

c e (x) 4z i (12hij (x) )1
z i 1z j

2
hij (x) ,

and the claim follows from the definition of hij and from the fact that
N˜dij (x)N41 almost everywhere. r
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At this point, we need to choose e k D0 such that

N0
i
]c e k

(x) 4z i ( N 4!
i

v k
i .(3.2)

This can be done, thanks to the continuity of N[Sij ]e ij
OVN with respect to e ,

and up to the elimination of possibly existing portions of level-sets contained
in the intersection of two or more tubular neighbourhoods, which can be ac-
complished, for example, by adding a suitable Lipschitz function whose sup-
port contains the undesired pieces of level-sets and whose slope is larger than
K/e . Anyway, volume adjustments will be, in general, necessary to let each lev-
el-set ]c e k

4z k ( satisfy the volume constraints v k
i . This is actually a crucial

point of the proof, and indeed one can argue the need of choosing «good» ad-
justments, i.e., adjustments with a low energy cost that will vanish in the limit.
Therefore, we are going to prove that this kind of adjustments can be per-
formed by slightly perturbing c e k

near the interfaces of the partition P associ-
ated to the function u (see Lemma 3.6).

The following lemma, whose proof is omitted, is a standard flow-type result
on networks (see [8] and Section 2 for related definitions) and allows us to per-
form «virtual» adjustments of volumes.

LEMMA 3.5 (Tuning flow). – Let (G , A) be a connected and simple graph,
with mF2 nodes, and let f0 , f1 : GK (0 , Q) be such that

!
i�G

( f0 (i)2 f1 (i) ) 40 .(3.3)

Now, define d4 !
i�G

Nf0 (i)2 f1 (i)N . Then there exists a «tuning flow» T : AK

R such that max ]NT(a)N : a�A( Gd/2 and «f1 4 f0 1T», i.e.,

f1 (i) 4 f0 (i)1 !
a : a14 i

T(a)2 !
a : a24 i

T(a) ( i�G .

LEMMA 3.6 (Volume adjustments). – Under the hypotheses of Theorem 3.3,
let u�BVz , v (V) have an associated polyhedral, transverse partition P, and
let k�N , e k be as in (3.8), and c e k

be as in Lemma 3.4. Then, for k large
enough, there exists c×k such that

(a) c×k satisfies the volume constraints on the level-sets;

(b) c×k tends to u in L 1 (V) as kKQ;

(c) the difference between the (rescaled) Dirichlet energies of c e k
and

c×k tends to 0 as kKQ .

PROOF. – Let us start by choosing points xij �V and rD0, such that every
xij lies on the polyhedral interface Sij of P, that the ball B4r (xij ) is contained in
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V0 0
(h , k) c (i , j)

[Shk ]e hk
and cuts a flat (n21)-dimensional disc 4Dij out of Sij . We

stress that such xij and r exist for any polyhedral partition and depend only
upon P, ]zi ( and u; moreover, for e4e k sufficiently small (or, equivalently, k
large enough) they can be fixed once for all.

Now, we focus on each ball B2r (xij ) and choose k so large that

eE
r

max
iE j

Nz i 2z j N
.

This implies that the portion of the boundary of [Sij ]e ij
cut by B2r (xij ) is the

union of two flat (n21)-dimensional discs parallel to 4Dij , lying on opposite
sides at a distance less than r from Sij , and whose radius is greater than r . Let
us denote by p ij the orthogonal projection of Rn onto the hyperplane g con-
taining Dij (the disc of radius r which is concentric to 4Dij) and by n ij the corre-
sponding normal, pointing from Pi toward Pj . Therefore, any x�Rn can be
represented with a suitable coordinate system obtained by adding n ij to an or-
thogonal (n21)-dimensional frame having center xij and axes lying on g: we
will henceforth write x4 (x 8 , xn ), where x 84 (x1 , R , xn21 ) represents p ij (x)
on the hyperplane g and xn is the component of x2p ij (x) with respect to n ij .
Now, we denote by B 8r the ball of radius r contained in Rn21 and centered in 0 ,
then take b�C Q

0 (B 8r ; [0 , 1 ] ) not identically zero, and write b for the L 1-norm
of b . For tij � (2r/2 , r/2 ) we clearly have that the graphs of the two functions
tij b(x 8 )2e ij , tij b(x 8 )1e ij are contained in B2r .

Therefore, given t4 (tij )ij as above, we define c× t
k as follows:

c× t
k (x) 4

.
`
/
`
´

c e k
(x2 tij b(x 8 ) n ij )

z i

z j

c e k
(x)

if x 8�B 8r and xn � (mt (x 8 ), Mt (x 8 ) ),

if x 8�B 8r and xn Gmt (x 8 ),

if x 8�B 8r and xn FMt (x 8 ),

otherwise ,

where x 84p ij (x) and, with a little abuse of notation, mt (x 8 ) 4 tij b(x 8 )2e ij

and Mt (x 8 ) 4 tij b(x 8 )1e ij .
Now, we can compute ˜c× t

k (x) with respect to the local coordinate system.
Indeed, by the chain rule, one gets

˜c× t
k (x) 4˜c e (x 8 , xn 2 tij b(x 8 ) )1

¯c e

¯xn

7 (2tij ˜b(x 8 ), 0 )

for x 8�Br (xij ) and xn � (mt (x 8 ), Mt (x 8 ) ), with u7v being, as usual, the (m3

n) matrix defined by (u7v)(w) 4 av , wbu as a linear operator from Rn to Rm .
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Hence, by recalling the definition of c e (x), we observe that, for such x ,

˜c×t
k (x) 4g0, R , 0,

¯c e

¯xn
h1

¯c e

¯xn

7 (2tij ˜b(x 8 ), 0 )

4
¯c e

¯xn

(x 8 , xn 2 tij b(x 8 ) )7 (2tij ˜b(x 8 ), 1 ),

where 0 denotes the null (column) vector in Rm . Finally, by noting that
Nu7vN4NuVvN , by integrating over V and by using a change of variables to-
gether with Fubini’s theorem, we deduce that

(3.4) s
V

N˜c e (x)N2 dxGs
V

N˜c×t
k (x)N2 dxG (11Q 2 max

i , j
tij

2 )s
V

N˜c e (x)N2 dx ,

where Q4 max
x 8�B 8r

N˜b(x 8 )N . At this point, we can immediately see that, since

e4e k is infinitesimal as kKQ , the difference D k between the vector of pre-
scribed volumes vk and the vector of actual volumes of the level-sets of c e is
infinitesimal, too. A consequence of this fact is that we can choose k sufficient-
ly large, such that ND k

i NErb/2 for all i41, R , m (we recall that b4VbVL 1 (B 8 )),
and hence a vector (bt ij )ij can be determined, with t ij � (2r/2 , r/2 ), to perform
the adjustment of volumes. Indeed, we can consider a simple network (G4

]1, R , m(, A), whose nodes represent the level-sets, i.e., the components of
P, and whose arcs represent the non-negligible interfaces between level-sets.
Thanks to the hypotheses on V and v , one can easily prove that the network
associated to u is connected: indeed, suppose by contradiction that N1 NN2 4

]1, R , m( and N1 ON2 4¯ with the property that, for all i�N1 and all j�N2 ,
neither iK j nor jK i belong to A; consequently, the pair m 0

i�N1
Pi , 0

j�N2
Pjn is a

bipartition of V with null perimeter, but this contradicts the relative isoperi-
metric inequality on V (we recall that V is a bounded, connected Lipschitz do-
main), since both components of the bipartition have positive volume.

We also define two functions f0 , f1 on G as f0 (i) 4N]c e4zi (N and f1 (i) 4

v k
i . By Lemma 3.5 we find a flow T whose value on the arc iK j corresponds

exactly to bt ij , that is, we can find t ij . Then, we set c×k 4 c×t
k (where t4 (t ij )ij)

and immediately get (a). Finally, t tends to 0 as D k K0 (that is, as kKQ),
therefore (b) holds (the sequence (c e k

)k is uniformly bounded in L Q (V) – see
the proof of Lemma 3.4 – and converges to u almost everywhere), while (c) is a
consequence of (3.4). r

REMARK 3.7. – The previous lemma says that we can, in some sense, forget
about the volume adjustments and perform our energy computations directly
on c e .
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PROOF OF THEOREM 3.3. – Let k0 be large enough, so that for all kFk0 the
corresponding e4e k D0 satisfying (3.2) is small and the conclusions of Lem-
ma 3.6 hold. Taking into account Remark 3.7, we only need to estimate

lim
kKQ

gNVN2!
i

v k
i hs

V

N˜ukN2 ,

where uk »4c e k
. We define S e

ij 4 [Sij ]e ij
0 [S]ce and get

NS e
ij NGN[Sij ]e ij

N42e ij H n21 (Sij )1o(e ij )(3.5)

thanks to (2.1), where o(e ij ) denotes an infinitesimal of higher order than e ij .
By taking into account (2.2), we also have

N[S]ceN4o(e),(3.6)

hence if we define r k 4NVN2! v k
i and split the Dirichlet integral into a sum

of integrals over S e
ij and [S]ce, by (3.5), (3.6), (2.3), Lemma 3.4, and by noting

that r k G !
iE j

N[Sij ]e ij
N, we obtain

r ks
V

N˜uk (x)N2 dxGr k !
iE j

s
Sij

e

N˜c e (x)N2 dx1r k s
[S]ceOV

N˜c e (x)N2 dx

G (2e)22 r kg!
iE j

[2e ij H n21 (Sij )1o(e ij ) ]1o(e)h

G g!
iE j

(Nz i 2z j N H n21 (Sij )1o(1) )h2
1o(1)

Gg s
V

NDuNh2

1o(1),

and this concludes the proof. r
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