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Bollettino U. M. I.
(8) 6-B (2003), 323-337

Non-Markovian Quadratic Forms Obtained by Homogenization.

MARC BRIANE

Sunto. – Questo articolo riguarda il comportamento asintotico delle forme quadratiche
definite in L 2 . Più precisamente consideriamo la G-convergenza di questi funzio-
nali per la topologia debole di L 2 . Noi diamo un esempio in cui certe forme limite
non sono Markoviane e quindi la formula di Beurling-Deny non si applica. Questo
esempio è ottenuto tramite l’omogeneizzazione di un materiale stratificato compo-
sto da strati sottili isolanti.

Summary. – This paper is devoted to the asymptotic behaviour of quadratic forms de-
fined on L 2 . More precisely we consider the G-convergence of these functionals for
the L 2-weak topology. We give an example in which some limit forms are not
Markovian and hence the Beurling-Deny representation formula does not hold.
This example is obtained by the homogenization of a stratified medium composed
of insulating thin-layers.

1. – Introduction.

In this paper we study the asymptotic behaviour of some quadratic forms
on L 2 (V) (where V is a bounded open subset of R2) of type

.
/
´

Fe (u) »4s
V

ae N˜uN2

Fe (u) »41Q

if u�H 1
0 (V)

if u�L 2 (V)0H 1
0 (V) ,

(1.1)

in particular when ae is a sequence of positive measurable functions, which is
uniformly bounded from above but not from below. This kind of homogeniza-
tion problem has been already studied and leads to non-classical limit prob-
lems: the double porosity effect in [1] and more generally coupled systems
in [11], [8], [6] and [3].

An important question is to know if there exists a general (integral) repre-
sentation of the asymptotic quadratic forms of the sequences (1.1). In fact that
strongly depends on the topology which defines the limit process.
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Thanks to the theory of the Dirichlet forms introduced by Beurling, De-
ny [4], [5] and extended in [9], [12], Mosco [13] proved that such a representa-
tion is available by considering the G-convergence of the forms for the L 2 (V)-
strong topology – recall that the sequence of functionals Fe G-converges to F
for the L 2 (V)-strong topology if

.
/
´

F(u) G lim inf
eK0

Fe (ue )

F(u) 4 lim sup
eK0

Fe (ue )

for any

for some

ueKu strongly in L 2 (V) ,

ueKu strongly in L 2 (V) .
(1.2)

More precisely in the particular case of quadratic forms of type (1.1) the Mosco
result is the following. Let Fe be a sequence of forms (1.1) which is asymptoti-
cally regular, i . e . for any u�C0

1 (V),

lim inf
eK0

Fe (ue ) E1Q for some ueKu strongly in L 2 (V) .(1.3)

Then Fe G-converges for the L 2 (V)-strong topology, up to a subsequence, to a
densily defined Dirichlet form F . This means that F is a quadratic form on
L 2 (V) which satisfies the three properties:

l F is densely defined, i . e . the domain of F

DF »4 ]u�L 2 (V) /F(u) E1Q( is dense into L 2 (V);(1.4)

l F is closed, i.e.

DF is complete provided with the norm VuVF »4 (F(u)1VuV

2
L 2 (V))

1/2
;(1.5)

l F is Markovian, i.e. for any contraction T : RKR such that

T(0) 40 and ( x , y�R , NT(x)2T(y)NGNx2yN ,

one has

( u�DF , T(u) �DF and F(T(u) ) GF(u) .(1.6)

In fact the Markovian property is less restrictive than (1.6) but it is equivalent
to (1.6) in the case of a densely form (see [9]). Such a Dirichlet form F then
satisfies the Beurling-Deny representation formula, i . e . for any u�C 1

0 (V),

F(u) 4s
V

A(dx) ˜u Q˜u1s
V

u 2 k(dx)1 s
V3V0diag

(u(x)2u(y) )2 j(dx , dy) ,(1.7)

where A is a symmetric positive matrix-valued measure on V , k a positive
mesure on V and j a positive measure on V3V0diag. Moreover the Dirichlet
form F is said to be regular if

C 1
0 (V) is dense into (DF , V QV) .(1.8)
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The natural question is now to know if the Beurling-Deny representation
(1.7) still holds true if we replace the L 2 (V)-strong topology by the L 2 (V)-
weak topology in the G-convergence of the forms. Note that the weak topology
is the most adapted for studying the degenerate problems, in particular for
the forms (1.1) in which the sequence ae is not uniformly elliptic. Indeed the
loss of ellipticity implies a loss of compactness in L 2 (V). In this framework
Bellieud and Bouchitté [3] gave examples of limit forms which satisfy the rep-
resentation formula (1.7) with explicit measures jc0.

However it seems difficult to obtain the same general representation for
the weak topology of the forms. Indeed contrary to the strong topology the
weak topology does not commute with the contractions. So the Markovian
property (1.6) is not clearly satisfied by any limit form obtained by weak con-
vergence. In this paper we prove that in general there is no Beurling-Deny
representation of the G-limits of Dirichlet forms for the L 2 (V)-weak topology.
We give an example of a sequence of forms (1.1) which G-converges for the
L 2 (V)-weak topology to a closed (1.5), densely defined (1.4) and regular (1.8)
quadratic form, but this form is not Markovian (1.6).

First we prove a homogenization result for an insulating thin-layered me-
dium. Then we prove that some of the limit forms are not Markovian.

2. – A homogenization result.

2.1. Statement of the result.

We consider a two-dimensional stratified medium composed of layers of
constant conductivity separated by thinner insulating layers.

More precisely let Y1,eNY2,eNQe be the partition of the torus Y (identified
to [0 , 1[2) defined by

.
`
/
`
´

Y1,e

Y2,e

Qe

»4 [0 , 1[3lre ,
12re

2
k

»4 [0 , 1[3l 11re

2
, 1k

»4 [0 , 1[3g[0 , re ]Nk 12re

2
,

11re

2
lh

0 Ereb 1 .(2.1)

Let Ae (x , y) be the positive function which is periodic Y-periodic with respect
to y and defined, for any x�V and y�Y , by

Ae (x , y) »4a1 (x) 1Y1,e
(y)1a2 (x) 1Y2,e

(y)1a e 1Qe
(y) ,(2.2)
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where a1 , a2 are two positive functions from C 0 (V) and 0 Ea eb 1. The con-
ductivity of the stratified medium is defined by rescaling Ae

ae (x) »4Aegx ,
x

e
h , x�V .(2.3)

Let V»4]0 , 1[2 , we study the asymptotic behaviour of the conduction
problem

.
/
´

2div (ae ˜ue )

ue

4 f

40

in V

on ¯V ,
(2.4)

where f�L 2 (V). The asymptotic behaviour of problem (2.4) is given by the fol-
lowing homogenization result.

THEOREM 2.1. – Assume that the parameters of the insulating thin-layers
medium satisfy the condition

4a e

e 2 re

K
eK0

d�R1* .(2.5)

Then the quadratic form defined by (1.1) and (2.3) is equicoercive in L 2 (V),
i.e. there exists a non-negative constant Cd such that

( u�H 1
0 (V), s

V

ae N˜uN2 FCd VuV

2
L 2 (V) .(2.6)

Moreover, let H be the Hilbert space defined by

(2.7) H»4L 2 (]0 , 1[x2
; H 1

0 (]0 , 1[x1
) )

provided with the norm VuVH »4 NN ¯u

¯x1
NN

L 2 (V)
.

Then the solution ue of the Dirichlet problem (2.4) weakly converges in L 2 (V)
to the function u1 1u2 where u1 , u2 are the solutions from H of the coupled
system

.
`
/
`
´

2
¯

¯x1
ga1

¯u1

¯x1
h1d(u1 2u2 ) 4

1

2
f in V

2
¯

¯x1
ga2

¯u2

¯x1
h1d(u2 2u1 ) 4

1

2
f in V .

(2.8)

In terms of G-convergence the previous result implies the following one.
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COROLLARY 2.2. – Under assumption (2.5) the Dirichlet form Fe defined by
(1.1) and (2.3) G-converges for the L 2 (V)-weak topology to the quadratic
form

.
/
´

F(u) »41Q

F(u) »42 s
V

a1g ¯u1

¯x1
h2

1a2g ¯u2

¯x1
h2

1d(u1 2u2 )2

if u�L 2 (V)0H

if u�H ,
(2.9)

where u1 , u2 �H are uniquely determined by the system

.
/
´

u4u1 1u2

2
¯

¯x1
ga1

¯u1

¯x1
h1d(u1 2u2 ) 42

¯

¯x1
ga2

¯u2

¯x1
h1d(u2 2u1 ) .

(2.10)

2.2. Proof of the homogenization result.

PROOF OF (2.6). – Let V i,e , i41, 2 , be the open subset of V obtained by
eY-repetition in V of eYi,e and let v e be the subset of V obtained by eY-repeti-
tion in V of eQe ; note that Nv eNK0. Let u�H 1

0 (V), we have for any
u�C 1

0 (V),

u(x1 , x2 ) 4s
0

x1

¯u

¯x1

(t , x2 ) dt , x�V 1,eNV 2,e ,

which yields by density the following L 2-estimate

VuVL 2 (V 1,eNV 2,e ) GV˜uVL 2 (V 1,eNV 2,e ) .(2.11)

On the other side we have for any function V�C 1 (Y),

V(y1 , y2 ) 4V(y1 , y2,e )1 s
y2,e

y2

¯v

¯x2

(y1 , t) dt , y�Qe and y2,e�mre ,
16re

2
n ,

whence, since Ny2 2y2,eNGre ,

VVVL 2 (Qe ) GcVVVL 2 (¯Qe ) 1ckreV˜VVL 2 (Qe ) .

By using a density argument and the imbedding from H 1 (Y1,eNY2,e ) into
L 2 (¯Qe ), we obtain

VVVL 2 (Qe ) GcVVVH 1 (Y1,eNY2,e ) 1ckreV˜VVL 2 (Qe ) ,
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where c is a constant. Then by e-rescaling in V the previous estimate we
obtain

VuVL 2 (v e ) GcVuVH 1 (V 1,eNV 2,e ) 1c ekreV˜uVL 2 (v e )

GcVuVH 1 (V 1,eNV 2,e ) 1cd Vka e˜uVL 2 (v e ) by (2.5),

which combined to (2.11) yields

VuVL 2 (V) G (112c)V˜uVL 2 (V 1,eNV 2,e ) 1cd Vka e˜uVL 2 (v e ) .

By the definition (2.3) of ae the previous estimate implies that

VuVL 2 (V) GCd Vkae˜uVL 2 (V)

where Cd is a constant, which yields (2.6).

PROOF OF THE HOMOGENIZATION RESULT. – The proof is an adaptation of [6]
by replacing thin bridges by insulating thin-layers. We thus give the main
steps of the proof without details.

Let ue be the solution of the Dirichlet problem (2.4). Thanks to estimate
(2.6) it is easy to check that ue is bounded in L 2 (V) and ˜ue is bounded in
L 2 (V 1,eNV 2,e ). Then, since the characteristic function 1V i,e

, i41, 2 , does not
depend on the variable x1 , we have up to a subsequence

1V i,e
ue � j i weakly in H ,(2.12)

where H is defined by (2.7) and

1V i,e
ae ˜ue � j i weakly in L 2 (V)2 .(2.13)

Moreover both limits (2.12) and Nv eNK0 imply that

ue � u1 1u2 �H weakly in L 2 (V) ,(2.14)

which also holds up to a subsequence.
Now we have to determine the functions ui and j i , i41, 2 .

FIRST STEP: construction of two test functions.
On the first side let us introduce a smooth function which allows us to se-
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parate both sets V 1,e and V 2,e . Let V×e be the function of H 1
J

(Y) defined by
(see (2.1))

.
`
/
`
´

V×e (y) »4
y2

re

V×e (y) »41

V×e (y) »4
11re22y2

2re

V×e (y) »40

if y� [0 , 1[3[0 , re ]

if y�Y1,e

if y� [0 , 1[3k 12re

2
,

11re

2
l

otherwise .

(2.15)

Let V�H 1 (Y). By integrating by parts the integral

s
Y

˜V×e Q˜(V2VY1,e V×e2VY2,e (12V×e )) , where VYi,e »4 s–
Yi,e

V ,

and by using the Poincaré-Wirtinger inequalities

VV2VYi,e
VL 2 (Yi,e ) Gci V˜VVL 2 (Yi,e ) , i41, 2 ,

we obtain the following estimate

Ns
Y

Ae ˜V×e Q˜V2d×(e)(VY1,e2VY2,e ) NGcd×(e)V˜VVL 2 (Y1, eNY2, e ) , where d×(e)»4
2a e

re

and c a constant. Then by rescaling the previous estimate and by using limit
(2.5) we obtain, for any W� D(V), the limit

s
V

ae ˜v×e Q˜(Wue )K
eK0

s
V

dW(u1 2u2 ), where v×e (x) »4 V×eg x

e
h ,(2.16)

and u1 , u2 are defined by (2.10).
On the other side, for any l�R2 , let we

l be the function defined by

(2.17) we
l(x)»4lQx2e(V×eX l)g x

e
h ,

X l (y) »4l 2 (y2 2k2 ), y� (k1Y), k�Z2 .
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Thanks to the periodicity of V×e X l and to limit (2.5) the function we
l

satisfies

.
/
´

we
lKl Qx

1v e
ae N˜we

lN2 K0

strongly in L Q (V)

strongly in L 1 (V)
and

.
/
´

˜we
l4l 1 e1

˜we
l4l

in V 1, e

in V 2, e .
(2.18)

SECOND STEP: determination of u1 , u2 .
Let W� D(V), putting the function Wv×e we

l (defined by (2.15) and (2.17)) in
equation (2.4) and passing to the limit thanks to (2.13), (2.16) and (2.18)
yields

s
V

j 1 Q˜W(l Qx)1s
V

j 1 Ql 1 e1 W1s
V

d(u1 2u2 ) W(l Qx) 4s
V

1

2
fW(l Qx) .

Similarly with the test function Wv×e (l Qx) we have

s
V

j 1 Q˜(W(l Qx) )1s
V

d(u1 2u2 ) W(l Qx) 4s
V

1

2
fW(l Qx) .

Then by substracting both previous equalities we obtain

s
V

j 1 Q (l2l 1 e1 ) W40 for any W� D(V) ,

which implies j 1 Qe2 40. Moreover by the definition (2.12) of u1 and since 1V 1,e

does not depend on x1 , we have

a1 1V 1,e
˜ue Qe1 4a1

¯

¯x1

(1V 1,e
ue ) � a1

¯u1

¯x1

weakly in L 2 (V) .

Therefore

j 1 4a1
¯u1

¯x1

and similarly j 2 4a2
¯u2

¯x1

.

Finally, for any W� D(V), putting the function Wv×e in equation (2.4) and pass-
ing to the limit yields

s
V

j 1 Q˜W1d(u1 2u2 ) W4s
V

a1
¯u1

¯x1

¯W

¯x1

1d(u1 2u2 ) W4s
V

1

2
fW ,

and similarly for the index 2

s
V

a2
¯u2

¯x1

¯W

¯x1

1d(u1 2u2 ) W4s
V

1

2
fW .
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Since D(V) is dense into H (2.7), both previous equations also hold for any
W�H , which gives system (2.8). By the Lax-Milgram Theorem system (2.8)
has a unique solution (u1 , u2 ) in H3H . Therefore by (2.14) the whole se-
quence ue weakly converges to u1 1u2 in L 2 (V). Theorem 2.1 is proved.

2.3. Proof of the G-convergence result.

Let us start by the following remark concerning Theorem 2.1.

REMARK 2.3. – Theorem 2.1 can be extended without restriction to the case
where the right hand side f�L 2 (V) of the Dirichlet problem (2.4) is replaced
by any sequence

fe »41V 1,e
f1 11V 2,e

f2 2
¯

¯x1

(1V 1,e
g1 )2

¯

¯x1

(1V 2,e
g2 ), fi , gi �L 2 (V) .

Therefore the solution ue of the problem

.
/
´

2div (ae ˜ue ) 4

ue4

fe

0

in V

on ¯V ,
(2.19)

weakly converges in L 2 (V) to u1 1u2 where u1 , u2 �H are the solutions of the
coupled system

.
`
/
`
´

2
¯

¯x1
ga1

¯u1

¯x1
h1d(u1 2u2 ) 4

1

2
gf1 2

¯g1

¯x1
h in V

2
¯

¯x1
ga2

¯u2

¯x1
h1d(u2 2u1 ) 4

1

2
gf2 2

¯g2

¯x1
h in V .

(2.20)

By (2.6) the quadratic form Fe defined by (1.1) and (2.3) is equicoercive
with respect to the L 2 (V)-norm. Then by a classical result of G-convergence
(see Corollary 8.12 p. 95 from [7]), Fe G-converges for the L 2 (V)-weak topolo-
gy, up to a subsequence, to a functional F : L 2 (V) K [0 , 1Q]. We have to de-
termine F(u) for any u�L 2 (V).

Let u�L 2 (V)0H and let ue be a sequence of L 2 (V) which weakly con-
verges to u in L 2 (V). Assume that

lim
eK0

Fe (ue ) E1Q .

Then the function ue belongs to H 1
0 (V) and ˜ue is bounded in L 2 (V 1,eNV 2,e ).

Therefore the weak limits (2.12) and (2.14) hold for the sequence ue , which
contradicts u�H . We thus have

F(u) 4 lim
eK0

Fe (ue ) 4 lim
eK0

Fe (ue ) 41Q .
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Let us now consider a function u�H and let u1 �H be the unique solution
of the equation

2
¯

¯x1
g(a1 1a2 )

¯u1

¯x1
h14du1 42

¯

¯x1
ga2

¯u

¯x1
h12du .

Then u1 and u2 »4u2u1 are the solutions of system (2.10). Let fe be the se-
quence from H 8 (the dual of H) defined by

fe »422
¯

¯x1
g1V 1,e

a1
¯u1

¯x1
h22

¯

¯x1
g1V 2,e

a2
¯u2

¯x1
h12d(u1 2u2 )(1V 1,e

21V 2,e
)

and let ue be the solution of problem (2.19). By Theorem 2.1 and Remark 2.3
the sequences 1V i,e

ue weakly converge in H to the functions vi solutions of the
system (2.20) with the right hand sides

2
¯

¯x1
ga1

¯u1

¯x1
h1d(u1 2u2 ) and

¯

¯x1
ga2

¯u2

¯x1
h1d(u2 2u1 ) ,

whence vi 4ui for i41, 2 . In particular we have the following conver-
gences

ue � u1 1u2 weakly in L 2 (V) and

1V i,e
ai

¯ue

¯x1

4ai
¯

¯x1

(1V i,e
ue ) � ai

¯ui

¯x1

weakly in L 2 (V), i41, 2 .

Then, denoting by a ,b the duality H 8-H, we have by the definition of ue

(2.21) Fe (ue )4a fe , ue bK
eK0

F(u)»42 s
V

a1g ¯u1

¯x1
h2

1a2g ¯u2

¯x1
h2

1d(u12u2 )2 ,

whence by the definition of the G-convergence

F(u) G lim inf
eK0

Fe (ue ) 4 F(u) E1Q .(2.22)

On the other side there exists a sequence ue from H 1
0 (V) such that

ue � u weakly in L 2 (V) and F(u) 4 lim
eK0

Fe (ue ) E1Q .

Similarly to ue the sequence ue satisfies, up to a subsequence, the conver-
gences 1V i,e

ue � ui weakly in H , i41, 2 , whence

(2.23) a fe , ue bK
eK0

2 s
V

a1
¯u1

¯x1

¯u1

¯x1

1a2
¯u2

¯x1

¯u2

¯x1

1d(u12u2 )(u12u2 )4F(u)

by the definition (2.21) of F combined with u4 u1 1u2 4u1 1u2 and the sys-
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tem (2.10) satisfied by u1 , u2 . Moreover ue being a minimizer of the functional
Fe22a fe , Qb on H 1

0 (V), we have

Fe (ue ) GFe (ue )12a fe , ue2ue b .

Then passing to the limit in the previous inequality thanks to limits (2.21) and
(2.23) yields

F(u) 4 lim
eK0

Fe (ue ) GF(u) ,

which combined with inequality (2.22) implies F(u) 4 F(u). The functional F
thus satisfies formula (2.9), which concludes the proof of Corollary 2.2.

3. – A counter-example.

The main result of the paper is the following.

THEOREM 3.1. – The quadratic forms defined by (2.9) are densely defined,
closed and regular. However there exists at least one of these forms which is
not Markovian.

PROOF. – Let F be a form defined by (2.9). The domain of F is the Hilbert
space H defined by (2.7) and F is densely defined (1.4) since H is clearly dense
into L 2 (V).

The form F is closed. Indeed on the first side we have for any u�H ,

F(u) GcdgNN ¯u1

¯x1
NN

2

L 2 (V)
1NN ¯u2

¯x1
NN

2

L 2 (V)
hGc 8d NN ¯u

¯x1
NN

2

L 2 (V)
;

the last estimate holds since by (2.10) u1, 2 are solutions of the equations

2
¯

¯x1
g(a1 1a2 )

¯u1, 2

¯x1
h14du1, 2 42

¯

¯x1
ga2,1

¯u

¯x1
h12du .(3.1)

On the other side since u4u1 1u2 , we also have

F(u) F2cgNN ¯u1

¯x1
NN

2

L 2 (V)
1NN ¯u2

¯x1
NN

2

L 2 (V)
hFc NN ¯u

¯x1
NN

2

L 2 (V)
4cVuV

2
H ,

Therefore kF defines a norm which is equivalent to V QVH in H , whence the
closedness (1.5).

The form H is regular since C 1
0 (V) is dense into H .

For the last part of Theorem 3.1 we proceed by contradiction. We assume
that the quadratic forms defined by (2.9) are Markovian (1.6) for any choice of
d and a1 , a2 . We will obtain a contradiction by making dK0 and by passing to
a one-dimensional form whose domain is H 1

0 (]0 , 1[).
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FIRST STEP: reduction to d40.
Let u�H , by choosing a1

d (x) »4x1 1d and a2
d (x) »412x1 1d the form

(2.9) (multiplied by 1 /2) can be written

Fd (u) »4s
V

a1
dg ¯u1

d

¯x1
h2

1a2
dg ¯u2

d

¯x1
h2

1d(u1
d2u2

d )2 ,(3.2)

where by (3.1) u1, 2
d are solutions of the equations u4u1

d1u2
d and

2
¯

¯x1
g(112d)

¯u1,2
d

¯x1
h14du1,2

d 4 f1,2
d »42

¯

¯x1
ga2,1

d ¯u

¯x1
h12du .

The distributions fi
d , i41, 2 , are clearly compact in H 8 since u is fixed. Then

ui
d , i41, 2 , strongly converge in H to the functions ui solutions of the

equations

u1 1u2 4u and

.
`
/
`
´

¯ 2 u1

¯x1
2

4
¯

¯x1
g(12x1 )

¯u

¯x1
h

¯ 2 u2

¯x1
2

4
¯

¯x1
gx1

¯u

¯x1
h

in V

in V .

(3.3)

Therefore the sequence Fd (u) converges to

F(u) »4s
V

x1g ¯u1

¯x1
h2

1 (12x1 )g ¯u2

¯x1
h2

,(3.4)

where u1 , u2 are defined by (3.3). Formula (3.4) defines a quadratic form on H
which is Markovian since any Fd is assumed to be so. In particular we
have

(u�H , F(u 1 ) GF(u), where u 1 »4 max (0 , u) .(3.5)

SECOND STEP: reduction to a one-dimensional form.
Let w be a function from L 2 (]0 , 1[x2

), w4w(x2 ), such that wD0 and
VwVL 2 (]0 , 1[) 41. For any v�H 1 (]0 , 1[x1

), v4v(x1 ), let v1 , v2 �H 1 (]0 , 1[1 ) be the
solutions of the equations

v1 1v2 4v and

.
`
/
`
´

d2 v1

dx1
2

4
d

dx1
g(12x1 )

dv

dx1
h

d2 v2

dx1
2

4
d

dx1
gx1

dv

dx1
h

in ]0 , 1[

in ]0 , 1[ .

(3.6)
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Then the functions u(x) »4v(x1 ) w(x2 ) and ui (x) »4vi (x1 ) w(x2 ) are solutions
of (3.3) and by definition (3.4) we have

F(u) 4G(v) »4s
0

1

x1g dv1

dx1
h2

1 (12x1 )g dv2

dx1
h2

,(3.7)

where v1 , v2 are solutions of (3.6).
Moreover the quadratic form G defined by (3.7) also satisfies the

inequality

(v�H 1
0 (]0 , 1[) , G(v 1 ) GG(v) .(3.8)

Indeed let v�H 1
0 (]0 , 1[) and u»4 (v1 1v2 ) w where v1 , v2 are the solutions of

(3.6). Since wD0, we have u 14 (v1 1v2 )1 w4 (v181v28 ) w where v18 , v28 are
the solutions of (3.6) for the function v 1 . Then, since w does not depend on x1 ,
the functions ui »4vi w and ui84vi8 w , i41, 2 , are solutions of (3.3) respecti-
vely with u and u 1 . Therefore by inequality (3.5) we obtain

G(v 1 ) 4F(u 1 ) GF(u) 4G(v) ,

whence (3.8).
We can also simplify the expression (3.7) of the quadratic form G defined

by (3.7). Let v�H 1
0 (]0 , 1[), by (3.6) there exists a constant cv such that

dv1

dx1

4 (12x1 )
dv

dx1

1cv

and by an integration by parts we obtain

cv 42s
0

1

v and
dv1

dx1

4 (12x1 )
dv

dx1

2s
0

1

v .

Similarly for v2 we have

dv2

dx1

4 (12x1 )
dv

dx1

1s
0

1

v .

Then replacing the derivatives of v1 , v2 by both previous expressions in the
definition (3.7) of G yields

G(v) 4u s
0

1

vv
2

1s
0

1

x1 (12x1 )g dv

dx1
h2

.(3.9)
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THIRD STEP: the contradiction.
Let v be a positive function from H 1

0 (I) where I is an interval such that
I %]0 , 1[. We extend the function 2v by vA �H 1

0 (]0 , 1[) such that

vANI 42v , vA F0 in ]0 , 1[ 0 I and s
0

1

vA 40 ,

whence

vA24v and s
0

1

vA14s
0

1

v .

Therefore by putting the functions vA, vA1 in inequality (3.8) with formula (3.9)
of G we obtain the equality

u s
0

1

vv
2

Gs
0

1

x1 (12x1 )g dv

dx1
h2

which holds for any positive function v�H 1
0 (I). In particular, for the sequence

vn , n�N*, defined by

.
`
/
`
´

vn (x1 ) »40

vn (x1 ) »4x1
1/n 2

1

n

vn (x1 ) »4vn (12x1 )

if x1 � k0,
1

n n l
if x1 � k 1

n n
,

1

2
l

if x1 � k 1

2
, 1l ,

the previous inequality implies that

1 4 lim
nK1Q

u s
0

1

vn
v2

G lim
nK1Q

s
0

1

x1 (12x1 )g dvn

dx1
h2

40 ,

which yields the contradiction.
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