Briane, Marc: 
Non-Markovian quadratic forms obtained by homogenization
 Bollettino dell'Unione Matematica Italiana Serie 8 6-B (2003), fasc. n.2, p. 323-337, Unione Matematica Italiana (English)
pdf (276 Kb), djvu (175 Kb).  | MR1988208  | Zbl 1150.35009  
Sunto
Questo articolo riguarda il comportamento asintotico delle forme quadratiche definite in $L^{2}$. Più precisamente consideriamo la $\Gamma$-convergenza di questi funzionali per la topologia debole di $L^{2}$. Noi diamo un esempio in cui certe forme limite non sono Markoviane e quindi la formula di Beurling-Deny non si applica. Questo esempio è ottenuto tramite l'omogeneizzazione di un materiale stratificato composto da strati sottili isolanti.
Referenze Bibliografiche
[1] 
T. ARBOGAST-
J. DOUGLAS-
U. HORNUNG, 
Derivation of the double porosity model of single phase flow via homogenization theory, 
S.I.A.M. J. Math. Anal., 
21 (
1990), 823-836. | 
MR 1052874 | 
Zbl 0698.76106[2] 
M. BELLIEUD-
G. BOUCHITTÉ, 
Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, 
Annali della Scuola Normale Superiore di Pisa, 
26, (4) (
1998), 407-436. | 
fulltext mini-dml | 
MR 1635769 | 
Zbl 0919.35014[3] M. BELLIEUD-G. BOUCHITTÉ, Homogenization of degenerate elliptic equations in a fiber structure, preprint 98/09 ANLA, Univ. Toulon.
[4] 
A. BEURLING-
J. DENY, 
Espaces de Dirichlet, 
Acta Matematica, 
99 (
1958), 203-224. | 
MR 98924 | 
Zbl 0089.08106[5] 
A. BEURLING-
J. DENY, 
Dirichlet spaces, 
Proc. Nat. Acad. Sci. U.S.A., 
45 (
1959), 208-215. | 
MR 106365 | 
Zbl 0089.08201[6] 
M. BRIANE, 
Homogenization in some weakly connected domains, 
Ricerche di Matematica, 
XLVII, no. 1 (
1998), 51-94. | 
MR 1760323 | 
Zbl 0928.35037[8] 
V. N. FENCHENKO-
E. YA. KHRUSLOV, 
Asymptotic of solution of differential equations with strongly oscillating and degenerating matrix of coefficients, 
Dokl. AN Ukr. SSR, 
4 (
1980). | 
Zbl 0426.35016[9] 
M. FUKUSHIMA, 
Dirichlet Forms and Markov Processes, 
North-Holland Math. Library, 
23, 
North-Holland and Kodansha, Amsterdam (
1980). | 
MR 569058 | 
Zbl 0422.31007[10] 
E. YA. KHRUSLOV, 
The asymptotic behavior of solutions of the second boundary value problems under fragmentation of the boundary of the domain, 
Maths. USSR Sbornik, 
35, no. 2 (
1979). | 
Zbl 0421.35019[11] 
E. YA. KHRUSLOV, 
Homogenized models of composite media, 
Composite Media and Homogenization Theory, G. Dal Maso and G. F. Dell'Antonio editors, in 
Progress in Nonlinear Differential Equations and Their Applications, 
Birkhäuser (
1991), 159-182. | 
MR 1145750 | 
Zbl 0737.73009[12] 
Y. LE JEAN, 
Mesures associées à une forme de Dirichlet. Applications, 
Bull. Soc. Math. de France, 
106 (
1978), 61-112. | 
fulltext mini-dml | 
Zbl 0393.31008[13] 
U. MOSCO, 
Composite media and asymptotic Dirichlet forms, 
Journal of Functional Analysis, 
123, no. 2 (
1994), 368-421. | 
MR 1283033 | 
Zbl 0808.46042