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Bollettino U. M. I.
(8) 6-B (2003), 309-321

On Existence of Equilibria of Set-Valued Maps.

GRZEGORZ GABOR - MARC QUINCAMPOIX

Sunto. – L’articolo fornisce delle condizioni sufficienti per l’esistenza di punti di equi-
librio di applicazioni multivoche Lipschitziane in assegnati sottoinsiemi di spazi
finito-dimensionali. Il principale contributo del presente articolo consiste nel fatto
che non si danno condizioni di regolarità sulla frontiera degli insiemi considerati.
L’approccio è basato sullo studio del comportamento delle traiettorie della corri-
spondente inclusione differenziale.

Summary. – The present paper is devoted to sufficient conditions for existence of equi-
libria of Lipschitz multivalued maps in prescribed subsets of finite-dimensional
spaces. The main improvement of the present study lies in the fact that we do not
suppose any regular assumptions on the boundary of the subset. Our approach is
based on behaviour of trajectories to the corresponding differential inclusion.

1. – Introduction.

The problem of finding «equilibria» of single- or multivalued maps, i.e.
points with 0 �F(x), is very important in many branches of nonlinear analysis.
One can mention e.g. the calculus of variation or control theory. The central
question is to find an equilibrium in a prescribed subset K of a space. Suffi-
cient conditions are described by various assumptions on behaviour of a map
on the boundary ¯K of the set K , namely, positive distance from zero on ¯K (in
Brouwer type results), antipodal-preservation (in Borsuk type theorems) or
several tangency conditions.

There are many papers studying the problem of existence of equilibria
using analytical or topological methods. After some pioneering results of Fan
[17, 18] and Browder [6], Cornet in [12] obtained an equilibrium theorem for
upper semicontinuous maps with nonempty closed convex values defined on a
compact convex subset K of a normed space.

For a nonconvex set K , as far as we know, the most general results have
been obtained by Ben-El-Mechaiekh and Kryszewski [3, 4] and by Ćwiszewski
and Kryszewski [14]. In [4] the authors have proved:
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PROPOSITION 1.1 ([4], Theorem 5.3). – Let K be a compact L-retract (1) in a
normed space E with the Euler characteristic x(K) c0. If F : K2i E is an up-
per semicontinuous (in short u.s.c.) map with closed convex values satisfying

F(x)OCK (x) c¯ , for every x�K ,(1)

then F has an equilibrium.

Here and throughout the paper we will denote respectively by TK (x),
CK (x), NK (x) »4CK (x)2 , the Bouligand cone, the Clarke tangent cone and the
normal cone to K in a point x�K (cf. [2]).

The results in [14] imply the following one which explains a sufficient con-
dition of existence of equilibria written in terms of normal cones (see [14],
Corollary 2.2, comp. [4], Theorem 3.8).

PROPOSITION 1.2. – An upper semicontinuous map F : K2i Rn with com-
pact convex values defined on a compact L-retract K%Rn with x(K) c0 pos-
sesses an equilibrium in Int K provided

F(x)ONK (x) 4¯ , for every x�¯K .(2)

The results above generalize the one obtained by Plaskacz [22] (on compact
proximal retracts), an extension of the Haddad-Lasry Theorem which reduces
to a fixed point theorem when F does not depend on t (cf. [19] and also Theo-
rem 5.3.4 p. 237 in [1]). We also refer to papers by Clarke et al. [10], and by
Cornet and Czarnecki [13] (on compact epi-Lipschitz sets).

There are two main kinds of assumptions used to solve the problem of find-
ing equilibria in K , namely:

l regularity assumption on K ,

l tangency condition on the boundary ¯K .

In the present paper, we consider a tangency condition which allows us to
enlarge the class of sets considered in above cited references in the context of
finite-dimensional space. This condition is, in some sense, the opposite one to
(1). It can be expressed as an outwardness of a map F with respect to trajecto-
ries of the following differential inclusion

x
.
(t) �F(x(t) ) for almost all tF0 .(3)

Namely we shall prove that, when no trajectory starting from a point x0 of the
boundary of the set K reaches Int K , then an equilibrium of F exists in K . This
result will be stated later on for a rather large class of subsets K%Rn .

(1) See definition 2.3 in Section 2.
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2. – Preliminaries.

2.1. Notations and assumptions.

Throughout the paper we shall investigate existence of equilibria of a given
multivalued map F : Rn 2i Rn on a closed set K%Rn .

We say that F : X2i Rn is a Marchaud map if it is u.s.c. with compact con-
vex values and there is a constant cD0 such that NF(x)N4 sup ]NyN N y�
F(x)( Gc(11NxN), for every x�X .

We denote by SF (x0 ) the set of all absolutely continuous solutions of the
following Cauchy problem

.
/
´

x
.
(t) �F(x(t) ) for a.a. tF0,

x(0) 4x0 �Rn .
(4)

DEFINITION 2.1. – 1 For x0 �Rn , we say that a trajectory x�SF (x0 ) is vi-
able in K , when x(t) �K , for all tF0.

2 A set K is said to be viable under F , if for each x0 �K there is at least one
solution to (4) which is viable in K .

3 The viability kernel of K for F (written ViabF (K)) is the largest closed
subset of K viable under F (possibly empty, in general). Equivalently (see [2],
Theorem 4.1.2), ViabF (K) is the subset of all initial states such that at least one
solution starting from them is viable in K .

We shall need also some notions from topological analysis.
As a homology functor we will mean here the Čech functor (denoted simply

by H) with compact carriers (see e.g. [16]).
We say that the set K is of finite type, if the graded vector space

]Hq (K)(qF0 is of finite type, i.e. if Hq (K) 40, for almost all qF0,
and dim Hq (K) EQ , for all qF0. Then the Euler characteristic x(K) »4

!
q40

Q

(21)q dim Hq (K) is defined (see e.g. [7]). It is known (see also [7]) that x(K)

is equal to the Lefschetz number of the identity map idK : KKK . Since the
Lefschetz number is a homotopy invariant, we obtain the well-known

PROPOSITION 2.2. – If K is of finite type and A%K is a strong deformation
retract (2) of K , then x(K) 4x(A).

Following [4] we have:

(2) We say that A%K is a strong deformation retract of K , if there is a homotopy
h : K3 [0 , 1 ] KK such that h(x , 0 ) 4x , h(x , 1 ) �A , for every x�K , and h(x , t) 4x ,
for each x�A and t� [0 , 1 ].
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DEFINITION 2.3. – A subset A of a metric space X is an L-retract (of X), if
there are an open neighbourhood U of A in X , a retraction r : UKA and a con-
stant LD0 such that d(r(x), x) GL dist(x , A), for every x�U .

One can easily prove (see [4], Example 4.4) that each Lipschitz retraction is
an L-retraction.

2.2. Differential Inclusions with constraints.

Let us recall that, when F is a Marchaud map, a set K is viable under F if
and only if

F(x)OTK (x) c¯ , for every x�¯K ,(5)

where

TK (x) »4 ]v�Rn N lim inf
hK01

dist(x1hv , K) /h40(

stands for the Bouligand contingent cone to K in x (cf. [2], Theorem
3.3.2).

It is well known that the Clarke cone CK (x) is contained in TK (x) and, in
general, it may occur that CK (x) is essentially smaller. The equality holds for
e.g. sleek sets, where the map TK (Q) is lower semicontinuous (in short: l.s.c.).
Moreover, the following result is true.

PROPOSITION 2.4 (see e.g. [2], Theorem 5.1.5). – Let K be a closed subset of
Rn and F : K2i Rn be l.s.c. at x�K , and

)dD0 (z�BK (x , d) : F(z) %TK (z).

Then F(x) %CK (x).

For further considerations, we need to define a subset of the boundary of K:

Ks »4 ]x0 �¯K N every solution to the Cauchy problem for F
starting from x0 leaves K immediately(

By saying that a solution x leaves K immediately we mean that for every eD0
there exists some 0 E tEe such that x(t) �K .

The set Ks , which is used in our main theorem, can be characterized by
some tangential conditions in the following way.

Denote (comp. [23])

K¨ »4 ]x�¯K N F(x)OTK (x) 4¯( ,

One can check (see [8], Lemma 3.1) that

K¨%Ks % K¨.
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In [8] the author has given (Proposition 3.1) the following characterization
of the set Ks .

Let K be closed and F a Marchaud map locally Lipschitz around
x� K¨ 0K¨ .

If

F(x)O ((Rn 0TRn 0 K (x) )NT¯K 0 K¨
(x) )4¯ ,

then x�Ks .
If

F(x)O (Rn 0TRn 0 K (x) ) c¯ or F(x)OTK¨
(x) 4¯ ,

then x�Ks .
We shall also add some informations concerning viability kernels.
In [8] and [9], some sufficient conditions of nonemptiness of the viability

kernels are discussed together with the following useful

LEMMA 2.5 ([9], Proposition 3.1, [8]). – If K is compact and F is a Mar-
chaud map, ViabF (K) is nonempty if and only Viab2F (K) is nonempty.

Here Viab2F (K) is the viability kernel for the following backward differen-
tial inclusion

x
.
(t) 42F(x(t) ) .

In the proof of our main theorem we will also use the following result de-
scribing a behaviour of a map on a boundary of the viability kernel (see [8],
Lemma 5.1).

LEMMA 2.6. – Let F be a Lipschitz map and x�¯ViabF (K)OInt K .
Then

IntF(x)OTViabF (K) (x) 4¯ .

Now, assume that we have a sequence ]Fm : Rn 2i Rn ( of u.s.c. maps with
the same at most linear growth and satisfying

Graph(F) 4 1
m41

Q

Graph(Fm ) .

Then, using the Stability Theorem (see [2], Theorem 3.6.4), one obtains
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PROPOSITION 2.7. – If subsets Xm are viable under Fm and X4 1
m41

Q

Xm , then
X is viable under F . In particular,

ViabF (K) 4 1
m41

Q

ViabFm
(K) .

3. – Main result.

Denote K× 4 Rn 0K the closure of the complement ofK .

THEOREM 3.1. – Let K4 IntK %Rn be a compact subset of finite type with
x(K) c0, V%Rn an open neighbourhood of K and F : V2i Rn a Marchaud
map satisfying

(6)
for every eD0 there exists a Lipschitz e-approximation (3) f of F
such that f (x) �TK× (x) for every x�¯K , and Viabf (K)O¯K4¯ .

Then F has an equilibrium in K .

REMARK 3.2. – The condition (6) is clearly fulfilled if

(x�¯K , F(x)OTK (x) 4¯

or, more generally, if Ks 4¯K .

COROLLARY 3.3. – Let K4 Int K %Rn be a compact subset of finite type
with x(K) c0, V%Rn an open neighbourhood of K and F : V2i Rn a Lips-
chitz map with compact convex nonempty values, satisfying

F(x) %TK× (x), for every x�¯K , and ViabF (K)O¯K4¯ .(7)

Then F has an equilibrium in Int K .

Indeed, every Lipschitz selection f of F (which exists by e.g. Theorem 1.9.1
in [1]) satisfies (6).

PROOF OF THEOREM 3.1. – We divide this proof into some steps.

STEP 1. Let eD0 and let f be an arbitrary Lipschitz e-approximation of F
satisfying (3.7). We show that K is invariant under 2f , i.e. that each trajectory
for 42f starting in K remains in K forever.

Indeed, let x be a solution for 2f starting from an interior point of K . Sup-
posing, on the contrary, that x leaves K , it behaves at some sD0. Then y(Q) »4

(3) We say that f : XKRn is an e-approximation of F : X2i Rn if f (x) �F(B(x , e) )1
B(0 , e) for every x�X .
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x(s2 Q) is a solution for f starting from x(s) �¯K and reaching the interior
point of K . But this is impossible (see assumption (6)). By continuity of the sol-
ution map Sf , the set K is invariant under 2f .

By Lemma 2.5 and assumption (6) it follows that X»4Viabf (K) %Int K . By
the definition, X is closed in K and hence, compact. Therefore, dist (X , ¯K) 4

hD0.

STEP 2. Define the family of Lipschitz maps Fm : VKRn ,

Fm (x) 4 f (x)1cl Bg0,
1

m
h , for every x�V .

Since f (x) �Fm11 (x) %Fm (x), for every mF1, it is easily seen (see Propo-
sition 2.7) that Viabf (K) is an intersection of a decreasing sequence of the sets
Xm 4ViabFm

(K). Without any loss of generality we can assume that Xm %Int K ,
since there is m0 F1 such that Xm %X1hB(0 , 1 ), for every mFm0 .

We show that Xm11 %Int Xm . Indeed, if we supposed that there isa point
x0 �Xm11 O¯Xm , then we would find a viable solution for Fm11 in Xm , since
Xm11 %Xm . But, on the other hand, from Lemma 2.6 it follows that Fm11 (x0 )O
TXm

(x0 ) 4¯; a contradiction.
Before going further we shall state a result which proof is postponed at the

end of the present section.

LEMMA 3.4. – Let f be a Lipschitz selection of F . Consider a closed set A4

Int (A) such that

X4ViabF (K) %Int (A) %A%K .(8)

Then the entry function

x0 O eA (x0 ) »4 inf ]tD0, y(t) �A where y4S2f (x0 )(

is lower semicontinuous and takes finite values on K .
Furthermore, if for some aD0,

(x�¯A , ( f (x)1B(0 , a) )OTA (x) 4¯ ,(9)

then eA is Lipschitz on K .

STEP 3. For every mF1 denote Ym 4 Int Xm and fix some mF1.
We define the entry function em : KK [0 , Q),

em (x) 4 inf ]tD0 N S2f (x)(t) �Ym ( .

Because f (x) � f (x)1B(0 , 1 /m) and by Lemma 2.6, each trajectory start-
ing from ¯Ym goes immediately into IntYm . By Lemma 3, the function em is
Lipschitz. Because K0Int Ym is compact, there exists TD0 such that every
trajectory for 2f starting from K attains Ym before T .
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This allows us to define the homotopy hm : K3 [0 , 1 ] KK ,

hm (x , t) 4
.
/
´

S2f (x)(tT),

S2f (x)(em (x) ),

for tTEem (x),

for tTFem (x).

One can see that hm is a strong deformation of K onto Ym . From Proposition
2.2 it follows that x(Ym ) c0.

STEP 4. Analogously as in the first step of the proof, we show that each Ym

is invariant under 2f . Thus, by the Invariance Theorem (see e.g. [2], Theorem
5.3.4), 2f (x) �TYm

(x), for every x�Ym=2E From Proposition 2.4 it follows
that 2f (x) �CYm

(x).

STEP 5. Denote rm »4hm (Q , 1 )NInt Ym21
: Int Ym21 KYm , which is a retraction.

We show that it is an L-retraction.
Let x0 and x1 be two arbitrary points in Int Ym21 and assume that em (x0 ) G

em (x1 ). Then

Nrm (x0 )2rm (x1 )N4

Nx0 1 s
0

em (x0 )

(2f (S2f (x0 )(s) ) ds2x1 2 s
0

em (x1 )

(2f (S2f (x1 )(s) ) dsN G

Nx0 2x1N1 s
0

em (x0 )

Nf (S2f (x0 )(s)2 f (S2f (x1 )(s)Nds1 s
em (x0 )

em (x1 )

Nf (S2f (x1 )(s)NdsG

Nx0 2x1N1LTe LT Nx0 2x1N1MNem (x1 )2em (x0 )N ,

where L is a Lipschitz constant for f and M is a constant which bounds values
of f on K . Since em is Lipschitz, the map rm so. Therefore, it is an L-retraction
(comp. Definition 2.3).

STEP 6. We use Proposition 1.1 for 2f and Ym to obtain an equilibrium z�
Ym , i.e. 2f (z) 40 43Df (z). Since e was arbitrary, we can consider a sequence

e k »4
1

k
and find a sequence ] fk ( of Lipschitz 1

k
-approximations of F and a se-

quence ]zk ( %K such that fk (zk ) 40.

Since 0 4 fk (zk ) �F gB gzk , 1

k
hh1B g0, 1

k
h , there are xk �B gzk , 1

k
h and

yk �F(xk ) with NykNE
1

k
. By compactness of K , we can assume that zk Kx�K .

Therefore xk Kx , yk K0 and, since F has a closed graph, 0 �F(x), which ends
the proof. r
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PROOF OF LEMMA 3.4. – At first, supposing (8), from Proposition 4.2.4 in [2],
eA is lower semicontinuous. Assume, by contradiction, that for some x0 �K
we have eA (x0 ) 41Q . Then the closure of the v-limit set cl g 1

tD0
3[t , 1Q)h of

x4S2f (x0 ) is a nonempty viable set (cf. Theorem 3.7.2 in [2]) contained in
Viab2F (K0Int (A) ). So, by Lemma 2.5, ViabF (K0Int (A) ) c¯; a contradic-
tion.

Assume that (9) is satisfied. By similar arguments that discussed in Step 1
of the proof of our main theorem, one can deduce that A is invariant under the
following differential inclusion

x
.
(t) �2f (x(t) )1cl (B(0 , a) ) .

Theorem 4.3.8 in [11] yields

( x�¯A , (p�NPA (x), (b�cl B(0 , 1 ), a2f (x), p1abb G0 ,

where NPA (x) denotes the set of proximal normals (4) to A at x . So

(x�¯A , (p�NPA (x), a2f (x), pb G2aNpN .

This implies that eA is Lipschitz on K from [26]. r

4. – Concluding remarks.

For more regular sets the problem of finding equilibria can be simplified,
as one can see in the following:

COROLLARY 4.1. – Let K4 Int K %Rn be a compact L-retract with x(K) c0,
V%Rn an open neighbourhood of K and F : V2i Rn a Marchaud map satisfy-
ing (6). Then F has an equilibrium in Int K .

PROOF. – Since, as in the above proof, we can show that K is invariant under
2f , Proposition 2.4 implies that 2f (x) �CK (x), for every x�K . Thus the exis-
tence of an equilibrium follows from Proposition 1.1 and arguments from the
last step of the proof of Theorem 3.1. r

Below we give examples showing that there are natural situations where
the set K is not an L-retract and a map F satisfies assumptions of Theorem 3.1.

(4) Firstly introduced in [5]:

NPA (x) »4 ]p�Rn , )aD0, dA (x1ap) 4NpN( .



GRZEGORZ GABOR - MARC QUINCAMPOIX318

EXAMPLE 4.2. – Let

A4 m(x , y) �R2 N0 GxE1 and yDk12 (x21)21k321nN

Nm(x , y) �R2 N21 ExE0 and yDk12 (x11)21k321n

and K4cl B( (0 , 0 ), 2 )0A . Consider f : R2 KR2 , f (x , y) 4 (x , y).
Then K is not an L-retract, but it is a contractible set with x(K) 41, and f is

a simple example of a Lipschitz map with Ks 4¯K . Notice that v4

3D(0 , k321) is a point in ¯K with f (v) �TK (v) and there is no trajectory
starting from v and remainingin K . Nevertheless, f has an equilibrium in K .

The second observation is that the opposite (in some sense) tangential con-
dition to (1):

F(x)OTK (x) 4¯ , for every x�¯K ,(10)

considered in [8] seems to be too strong, because in the point v we have
TK (v) 4R2 and assumption (10) is impossible to be satisfied.

EXAMPLE 4.3. – Consider the set K»4K1 NK2 NK3 NK4 , where

K1 »4 ](x , y) �cl B( (0 , 0 ), 3 ) N xG0( ,

K2 »4 ](x , y) �cl B( (1 , 0 ), 3 ) N xF1( ,

K3 »4m(x , y) �R2N 0 ExE1, 23 GyGsin
p

2x
12n ,

K4 »4 ]0(3 [1 , 3 ]

and the map f : R2 KR2 ,

f (x , y) »4

.
/
´

(x , y),

(0 , y),

(x21, y),

for xG0,

for 0 ExE1,

for xF1.

The set K is not even an absolute neighbourhood retract but (6) is still ful-
filled. Notice that this stronger assumption Ks 4¯K is not satisfied.

The problem of finding equilibria is a special case of the one of studying be-
haviour of invariant sets of flows generated by differential equations. Notice
that our assumptions imply the existence of a Lipschitz approximation f of F
which generates a continuous flow. Moreover, behaviour of f on ¯K guarantees
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that (K , ¯K) is a compact index pair (5) in the sense of Conley index theory
(see e.g. [20] for more details) for the largest invariant set S in K , namely
S4Viabf (K)OViab2f (K) %Int K .

Therefore, in some situations we can find an equilibrium of f (and hence for
F) using properties of the Conley index (see [21], [25]). Namely, we can obtain

PROPOSITION 4.4. – Let K4 Int K be a compact set, such that (K , ¯K) forms
an ENR pair. Assume that V%Rn is an open neighbourhood of K and
F : V2i Rn is a Marchaud map satisfying assumption (6).

If x(K, ¯K)4x(K)2x(¯K)c0, then there is an equilibrium of F in Int K .

In Theorem 3.1 we do not assume that (K , ¯K) is a pair of ENR-spaces.
Moreover, assumption x(K) c0 does not imply that x(K , ¯K) c0, as we can
observe in the following example.

EXAMPLE 4.5. – Consider the set K%R2 as below, and a Lipschitz map
F : R2 2i R2 being single-valued on ¯K with directions illustrated by arrows.

It is seen that Ks 4¯K . The set K is homotopically equivalent to

K1 4cl B( (0 , 0 ), 4 )0(B( (0 , 0 ), 1 )NB( (3 , 0 ), 1 ) ) .

It is easy to compute x(K) 421, x(¯K) 421 and hence, x(K , ¯K) 40.
By Theorem 3.1, there is an equilibrium of F in Int (K).

(5) We say that (N1 , N0 ) is a compact index pair for an invariant set S , if

(i) S is the largest invariant subset of N1 0N0 (i.e. N1 0N0 is an isolating nei-
ghbourhood of S);

(ii) if x0�N0 , tD0 and Sf (x0 )( [0 , t] ) %N1 , then Sf (x0 )( [0 , t] ) %N0 (i.e. N0 is posi-
tively invariant in N1);

(iii) each trajectory leaving N1 , leaves it through N0 (i.e. N0 isan exit set for N1).
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e-mail: ggaborHmat.uni.torun.pl

Marc Quincampoix: Faculty of Mathematics and Computer Science
N. Copernicus Univ. of Toruń
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