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Towards the Determination
of the Regular n-Covers of PG(3 , q).

MARTIN OXENHAM (*) - REY CASSE

Sunto. – Si dice che un insieme S di rette di PG(3 , q) copre n volte un punto P di
PG(3 , q), se esistono esattamente n rette di S incidenti P . Un insieme di rette di
PG(3 , q) che copre n volte ogni punto di PG(3 , q) si dice n-cover. In questa nota,
dopo una descrizione degli esempi noti di n-cover e delle rispettive proprietà, viene
mostrato come gli n-cover di PG(3 , q) possono essere utilizzati per la costruzione
di classi di disegni di Sperner quasi-n-multipli. Infine, allo scopo di ottenere nuovi
esempi di tali disegni mediante la derivazione di quelli esistenti, si introduce la
nozione di n-cover regolare. I risultati principali sono: la dimostrazione della non
esistenza di un 2-cover regolare di PG(3 , q) per qD2 e quella della non esistenza di
un n-cover regolare (nF3) per qFn12.

Summary. – A set of lines S of PG(3 , q) is said to cover a point P of PG(3 , q) n times if
there are exactly n lines of S incident with P. An n-cover of PG(3 , q) is a set of lines
of PG(3 , q) which covers each point of PG(3 , q) n times. In this paper, the proper-
ties and known examples of n-covers are reviewed and it is demonstrated how n-
covers of PG(3 , q) can be used to construct classes of quasi-n-multiple Sperner de-
signs. Finally, motivated by the problem of deriving these designs to arrive at new
examples, the notion of regular n-covers of PG(3 , q) is introduced. The main re-
sults of the paper are that no regular 2-covers of PG(3 , q) exist for qD2 and that no
regular n-covers (nF3) exist whenever qFn12.

1. – Introduction.

A set of lines S of PG(3 , q) is said to cover a point P of PG(3 , q) n times if
there are exactly n lines of S incident with P . An n-cover (nF0) of PG(3 , q) is
a set of lines Cn of PG(3 , q) which covers each point of PG(3 , q) n times. By
counting the number of flags in the set

](P , l)NP� P, l� Cn (

(*) This work was done while the first author was visiting the Department of Pure
Mathematics at the University of Adelaide during recreation leave in October,
1999.
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in two different ways where P if the pointset of PG(3 , q), it is immediate that
Cn has cardinality n(q 2 11). In particular, a 1-cover of PG(3 , q) is a set of q 2 1

1 lines covering the pointset of PG(3 , q) once, that is a spread of PG(3 , q). It is
also clear that the union of k pairwise disjoint ni-covers for i41, R , k is an
(n1 1n2 1R1nk )-cover. Similarly, if Cn1

is an n1-cover embedded in an n2-
cover Cn2

, then Cn2
0 Cn1

is an (n2 2n1 )-cover.
The literature abounds with papers on spreads of PG(3 , q). In contrast,

only several authors have investigated n-covers of PG(3 , q) with nD1. In
[43], Rao discusses k-fold spreads of m-spaces in PG(n , q) which are defined
to be sets of m-spaces such that each point of PG(n , q) lies in exactly k of the
m-spaces (see also [23], p. 83). In particular, an n-fold spread of 1-spaces in
PG(3 , q) is precisely an n-cover of PG(3 , q). Beutelspacher in [5] refers to n-
covers of PG(m , q), but his definition bears little resemblance to the definition
given herein and so his results are not relevant to the current discussion. In
[15], Ebert considers n-covers in relation to the problem of extending partial
packings of PG(3 , q) (ie sets of pairwise disjoint spreads) to complete pack-
ings of PG(3 , q) (ie maximal partial packings). Since the complement of the
union of the spreads in a partial packing of size k is a (q 2 1q112k)-cover,
the problem can be cast in terms of determining if such a cover can be parti-
tioned into (q 2 1q112k) spreads. Accordingly Ebert defines a proper n-
cover to be an n-cover which cannot be partitioned into n-spreads. However, in
[36] an alternative of a proper n-cover is given. Therein, an n-cover is said to
be proper if it cannot be partitioned into an n1-cover and an n2-cover with n1

and n2 F1. This is the definition adopted in this paper. It proves to be more
useful for discussing the structure of n-covers because, with respect to this
definition, the proper covers are the elemental sets from which all other cov-
ers can be constructed. It is also more suitable for discussing the issue of irre-
ducibility of a class of quasi-n-multiple Sperner designs which can be con-
structed from n-covers of PG(3 , q) (see [36]). This construction is presented in
section 3.

To develop further the ideas introduced above, the following additional
definitions and results are required.

DEFINITION 1.1. – Let Cn be a n-cover of PG(3 , q). Then Cn is said to be
symplectic if it can be embedded in a general linear complex of
PG(3 , q).

It is noted that, since each plane of PG(3 , q) contains q11 lines of a gener-
al linear complex and these lines form a planar pencil, a symplectic n-cover Cn

of PG(3 , q) with 2 GnGq11 uniquely determines the general linear complex
in which it is embedded because the nF2 lines of Cn through each point P of
PG(3 , q) are sufficient to reconstruct the planar pencil with vertex P .
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DEFINITION 1.2. – [36] Let Cn be a n-cover of PG(3 , q). An m-lateral in Cn

is a sequence (li )i41
m of m distinct lines of Cn such that li intersects li11 for

each i41, R , m21 and lm intersects l1 .

THEOREM 1.1. – [15] Let C2 be a 2-cover of PG(3 , q). If C2 contains a proper
(2m11)-lateral (li )i41

2m11 for some mF1, then C2 is a proper 2-cover.

PROOF. – Assume that C2 is not a proper 2-cover of PG(3 , q). Then C2 is the
union of two disjoint spreads S1 and S2 . Without loss of generality, let l1 lie in
S1 . Then, since l1 intersects l2 , it follows that l2 lies in S2 . By continuing to ar-
gue along these lines, it can be shown that all odd-numbered lines lie in S1 and
all even-numbered lines lie in S2 . In particular, l2m11 lies in S1 . However, l2m11

intersects l1 , therefore l2m11 also lies in S2 . This contradicts the fact that the
two spreads are disjoint. Hence, C2 is proper.

DEFINITION 1.3. – [36] Let Cn be an n-cover of PG(3 , q). Then Cn is said
to be a dual n-cover if each plane of PG(3 , q) contains exactly n lines of Cn .

The duality of n-covers of PG(3 , q) is an extension of the duality of spreads
which is discussed by Bruen and Fisher in [10]. There they prove that all t-
spreads of PG(2 t11, q) are dual. The following result establishes that all n-
covers of PG(3 , q) are also dual, so in the particular case that t4n41, the re-
sult of Bruen and Fisher is recovered. However the reasoning here is different
to that given in [10].

THEOREM 1.2. – [36] Let Cn be an n-cover of PG(3 , q). Then Cn is dual.

PROOF. – Let N be the number of lines of Cn in an arbitrary plane p of
PG(3 , q) and for each point P in p let t(P) be the number of lines of Cn in p
which are incident with P . Then by counting the number of flags in the set

](P , l)NP is a point of p , l is a line of Cn lying in p(

in two different ways, it follows that

N(q11) 4 !
P�p

t(P) .

As stated in the opening paragraph of the introduction, Cn has n(q 2 11) lines.
Hence the number of lines of Cn not in p is

n(q 2 11)2N4 !
P�p

(n2t(P) )

4n(q 2 1q11)2 !
P�p

t(P)

4n(q 2 1q11)2N(q11) .
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On rearranging the terms in this equation, it follows that

N4n

and so Cn is dual.

DEFINITION 1.4. – [36] Let Cn be an n-cover of PG(3 , q). The spectrum of Cn

(denoted by SPEC (Cn ) ) is the set of all non-negative integers mGn for which
there exists an m-cover lying in Cn .

2. – Summary of the known n-covers.

In this section, the main existence results for n-covers are summarised.
For more information on general results stated here without proof, refer to [24].

The simplest examples of n-covers consist of the union of n spreads from a
partial packing of PG(3 , q). Since there exist packings of PG(3 , q) (ie partial
packings which partition the lineset of PG(3 , q) into spreads) for all prime
powers q (refer to [4], [12], [13], [41] and [42]), it follows trivially that examples
of n-covers exist for all admissible values of n , that is for n41, R , q 21q11.

The first example of a proper n-cover of PG(3 , q) was a 2-cover of PG(3 , 2 )
provided by Bruen and Ott in a private communication to Ebert (refer to [15]).
Motivated by their construction, Ebert [15] proceeded to construct an infinite
class of proper 2-covers of PG(3 , q) for all odd prime powers q . His construc-
tion employs Singer’s cyclic representation of PG(3 , q) (refer to Appendix A.1
for a description of the representation). Let b be a primitive element of GF(q 4 )
with q odd and t be an arbitrary odd integer satisfying 1 G tGq . Ebert proved
that the union of the orbits of the two lines

l4 ob 0 , b
t(q 211)

2 p

l 84 ob 0 , b
(t1q11)(q 211)

2 p

under the action of ab (q11) b is a proper 2-cover of PG(3 , q) with q odd.
Using a similar approach, he also constructed sporadic examples of proper

2-covers for q42, 4 and 8 , and a symplectic proper 2-cover for q43. For q4

2, the proper 2-cover is projectively equivalent to the example of Bruen and
Ott. It has since been shown (see [36]) that all proper 2-covers of PG(3 , 2 ) are
projectively equivalent. The proof may be argued along the following lines.
First, it can be shown that any proper 2-cover of PG(3 , 2 ) contains a 5-lateral.
The 5 vertices and the 5 non-vertices of the 5-lateral are then respectively the
points of two elliptic quadrics E1 and E2 of PG(3 , 2 ). Using this fact, it is
straightforward to show that the 5-lateral is uniquely extensible to a 2-cover
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C2 of PG(3 , 2 ) and that the 10 lines of C2 are all tangent to E2 . As such, C2 is
embedded in a general linear complex L of PG(3 , 2 ) and is complementary to
a spread S in L. As all general linear complexes of PG(3 , 2 ) are projectively
equivalent and the collineation group of L acts transitively on the (regular)
spreads lying in L, it is then immediate that all proper 2-covers of PG(3 , 2 )
are projectively equivalent. As an aside, the full collineation group of the prop-
er 2-cover is isomorphic to S5 , the symmetric group on five letters (see [35]).
It is not known if proper 2-covers exist for q42e with eF4. However, in [36],
it is shown that symplectic proper n-covers exist for all q42e for some n be-
tween 2 and q inclusive (where n may be depend on q). The construction ex-
ploits a result of Bagchi and Sastry [1] which states that for q even, any spread
in a general linear complex meets all regular and Lüneburg spreads lying in
the general linear complex in at least one line. Thus, the removal of a regular
or Lüneburg spread from a general linear complex L ensures that L 0 S con-
tains no spread of PG(3 , q) and so is either itself a proper n-cover with n4q
or it contains a proper n-cover with 1 EnEq .

Whenever an Hermitian surface H(3 , q 2 ) in PG(3 , q 2 ) possesses a
hemisystem (that is a set of lines of H(3 , q 2 ) such that each point of H(3 , q 2 )

lies on exactly g q11

2
h of the lines [24]), then there exists a symplectic g q11

2
h-

cover of PG(3 , q). It is noted that hemisystems can only exist for q odd and are
only known to exist for q43. The construction originally described for q43 in
[40] goes as follows: Take a hemisystem of H(3 , q 2 ) with q odd. As is well-
known (see [38]), the points and lines of H(3 , q 2 ) give rise to a generalised
quadrangle (with incidence defined as set inclusion) which is isomorphic to the
dual of the generalised quadrangle determined by the points and lines of an
elliptic quadric Q(5 , q) in PG(5 , q) (again with incidence defined as set inclu-
sion). The image of the hemisystem on Q(5 , q) is a set S of points meeting each

line of Q(5 , q) in exactly g q11

2
h points. The intersection of Q(5 , q) with a non-

tangent hyperplane is a parabolic quadric Q(4 , q) embedded in Q(5 , q). By
counting the flags in the set

](P , l)NP�S , l�Q(4 , q), P I l(

in two different ways, it is immediate that Q(4 , q) contains g (q11)(q 2 11)

2
h

points of S with g q11

2
h points of S lying on each line of Q(4 , q). Since the gen-

eralised quadrangles determined by Q(4 , q) and a general linear complex L in

PG(3 , q) are dual, it follows that the image of SOQ(4 , q) on L is a g q11

2
h-

cover of PG(3 , q). Note that this g q11

2
h-cover is not necessarily guaranteed

to be proper. However, when q43, the resulting symplectic 2-cover of
PG(3 , 3 ) is proper and is also projectively equivalent to the symplectic proper
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2-cover of PG(3 , 3 ) constructed by Ebert. In fact, it can be shown that all sym-
plectic proper 2-covers of PG(3 , 3 ) are projectively equivalent. In order to
prove this, it is necessary to discuss briefly the classification of the 20-caps in
PG(4 , 3 ).

A form of classification of the 20-caps in PG(4 , 3 ) was first determined by
Pellegrino in [39]. He showed that the 20-caps fall broadly into two classes,
namely D-caps and G-caps. In [21], Hill further refined this classification by
showing that all D-caps are projectively equivalent and that there are 8 pro-
jectively distinct G-caps. It can be shown that each D-cap lies on a parabolic
quadric of PG(4 , 3 ) and that each G-cap lies on an elliptic cone of PG(4 , 3 ).
Using results from [21], it can also be shown that each cap uniquely deter-
mines the quadric in which it is embedded. In particular then, a 20-cap of
PG(4 , 3 ) embedded in a parabolic quadric of PG(4 , 3 ) is automatically a
D-cap.

Now consider two symplectic 2-covers C2 and C28 of PG(3 , 3 ). Each of C2

and C28 consists of 20 lines embedded in a general linear complex which cover
the pointset of PG(3 , 3 ) twice. Since all general linear complexes are projec-
tively equivalent, it can be assumed without loss of generality that C2 and C28

are embedded in the same general linear complex L. Let W(3) be the gener-
alised quadrangle determined by L. The dual of W(3) is isomorphic to Q(4 , 3 )
which is the generalised quadrangle determined by a parabolic quadric
P(4 , 3 ) of PG(4 , 3 ). Hence, there exists a duality d which maps W(3) onto
Q(4 , 3 ). Under the duality, C2 and C28 map to two 20-caps K20 and K208 on
Q(4 , 3 ). Because the points and lines of Q(4 , 3 ) are the points and generators
of P(4 , 3 ), it follows that K20 and K208 are also 20-caps of PG(4 , 3 ) embedded in
the parabolic quadric P(4 , 3 ). From the discussion in the previous paragraph,
it is immediate that K20 and K208 are both D-caps and so there is a collineation s
of PG(4 , 3 ) mapping K20 to K208 . Since a D-cap uniquely determines the
parabolic quadric of PG(4 , 3 ) in which it is embedded, it can be concluded that
s fixes P(4 , 3 ). Therefore, it follows that the composite mapping d21 sd acts as
a collineation of W(3) which maps C2 to C28 . Finally, since every collineation of
W(3) is induced from a collineation of PG(3 , 3 ) (see [50], proposition 4.6.2, p.
154), the mapping d21 sd lifts to a collineation of PG(3 , 3 ), proving the
result.

Returning now to the discussion on n-covers, another strategy which has
been employed to construct proper n-covers of PG(3 , q) involves starting with
a (q11)-cover of PG(3 , q) such as a general linear complex or a long Singer
line orbit and then trying to extract proper n-covers from them. This tech-
nique has already been used herein in the case of a general linear complex for
q even to construct the proper 2-cover of PG(3 , 2 ). For q43, the removal of a
(regular) spread from a general linear complex results in a symplectic proper
3-cover of PG(3 , 3 ). (The proof of this relies on the fact that there are only two
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projectively distinct spreads in PG(3 , 3 ), namely the regular spread and the
subregular spread of index 1. Of these, only the former is symplectic. Further-
more, any two regular spreads in a general linear complex intersect in at least
one line. Hence, the complement of a regular spread in a general linear com-
plex is proper (see [36]). Similarly, the long Singer line orbits for q42 both
constitute proper 3-covers of PG(3 , 2 ) (for these line orbits which are listed in
the appendix it is easily shown that neither contains a spread (see [36]). Both
these 3-covers are projectively equivalent to each other. Moreover, all known
proper 3-covers of PG(3 , 2 ) are projectively equivalent to the long Singer line
orbits and their collineation groups are isomorphic to the group

ab , rNb 15 41, r 6 41, b 5 4r 2 b

which has order 30 (see [36]). The homographies of PG(3 , 2 ) corresponding to
b and r can be represented by the matrices below:

bfy0
1
0
0

0
0
1
0

0
0
0
1

1
1
0
1

z and rfy1
0
1
1

0
0
1
0

0
0
1
1

1
1
1
0

z .

No examples of proper 4-covers of PG(3 , 2 ) are known, but if one exists, then
its complement is a proper 3-cover which is not projectively equivalent to a
long Singer line orbit. Proper 5-, 6- and 7-covers do not exist in PG(3 , 2 ) (see
[36]).

Finally, for q43, a sporadic example of a proper 3-cover of PG(3 , 3 ) which
is projectively distinct from the symplectic proper 3-cover was constructed in
[36] partly by brute force via the determination of a partial packing of
PG(3 , 3 ) of degeneracy 3. The complement of this partial packing is a proper
3-cover of PG(3 , 3 ) consisting of the lines numbered:

45, 54, 57, 62, 65, 66, 68, 73, 74, 81,
83, 84, 86, 89, 90, 93, 96, 98, 99, 100,
101, 102, 106, 109, 111, 113, 114, 116, 117, 118

(refer to the list of lines of PG(3 , 3 ) in the appendix). In particular, this 3-cov-
er is not symplectic because it possesses at least one set of three concurrent
lines which are not coplanar, for example 81, 102 and 116.

3. – Quasi-n-multiple designs and finite sperner spaces.

Let D be a balanced incomplete block design (BIBD) with v points, b
blocks, k points in each block, r blocks through each point and l blocks
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through each pair of distinct points. The parameters (v , b , r , k , l) of D are re-
lated via the identities below (see [6]):

bk4vr

l(v21) 4r(k21) .

As such, knowledge of v , k and l is sufficient to uniquely determine the pa-
rameters of a BIBD. The BIBD obtained by taking nF1 copies of each block
of D is known as an n-multiple design and has parameters (v , nb , nr , k , nl)
(note: in [6], n is required to be strictly greater than one, but for the sake of
convenience and because it is felt to be more natural, this condition is relaxed
throughout this paper). As such, any BIBD with parameters (v , nb , nr , k , nl)
for some integer nF1 is referred to as a quasi-n-multiple design. Clearly, an
n-multiple design is also a quasi-n-multiple design, but the converse is not
true in general (see for example [6], [7], [26], [27], [31] and [51]). A quasi-n-
multiple design D is said to be indecomposable (or irreducible) if its block set
cannot be partitioned into two subsets with each subset giving rise to a BIBD
defined on the points of D with (by necessity) the same v and k (see [7]). A
BIBD D is said to be resolvable if the block set of D can be partitioned into
subsets known as resolution classes, such that the blocks in each resolution
class partition the point set of D .

Let S4 (P, B, I ) be a finite incidence structure endowed with an equiva-
lence relation parallelism on its line set. Then S is known as a finite Sperner
space (alternatively, a finite weak affine space [3]) if it satisfies the following
three axioms:

AXIOM 1. – Any two points are incident with exactly one line;

AXIOM 2. – For every point P and line l , there exists a unique line l 8 paral-
lel to l and incident with P;

AXIOM 3. – Each line contains exactly kF2 points for some integer k .

Resolvable BIBDs with l41 such as finite translation planes and the clas-
sical affine spaces AG(n , q) are also finite Sperner spaces (see also [33], [37],
and [44]). Accordingly, such designs are referred to herein as Sperner de-
signs. In the sequel, it is demonstrated how classes of quasi-n-multiple Spern-
er designs can be constructed from n-covers of PG(3 , q) by generalising the
Bruck-Bose construction of finite translation planes of degree 2 over their
kernel from spreads of PG(3 , q) (see [8]).

CONSTRUCTION 3.1. – Let S 4 t be a finite 4 t-dimensional projective space
and let S 4 t21 be a fixed hyperplane of S 4 t . In [45] p. 23, Segre proved that
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PG(n , q) can be partitioned into m-dimensional projective spaces of order q if
and only if m11 divides n11 (see also [23] p. 83). It follows that S 4 t21 can be
partitioned into q 4 t 21

q 4 21
3-dimensional projective spaces S i

3 gwhere i goes from

1 to q 4 t 21

q 4 21
h because 4 divides 4 t. Let C i

n be an n-cover of the space S i
3 for each

i. We now define an incidence structure S in the following manner:
The points of S are the points of S 4 t 0S 4 t21 .
Each block of S is a plane of S 4 t which meets S 4 t21 in exactly the q11

points of a line lying in one of the n-covers C i
n .

The incidence relation is the incidence relation of S 4 t restricted to the sets
of points and planes defined above.

The incidence structure S constructed above is in fact a BIBD. This is
proven in:

THEOREM 3.1. – S is a BIBD with parameters v4q 4 t , b4nq 4 t22 (q 4 t 21)

(q 2 21)
,

r4n
(q 4 t 21)

(q 2 21)
, k4q 2 and l4n.

PROOF. – The points of S are the points of S 4 t 0S 4 t21 which is equivalent to
a 4 t-dimensional affine space. Hence the number of points in S is v4q 4 t .

The blocks of S are the planes of S 4 t not lying in S 4 t21 which meet S 4 t21 in
a line of one of the n-covers C i

n . Hence k4q 2 . Also through each line in the

union of the q 4 t 21

q 4 21
n-covers there pass q 4 t

q 2
4q 4 t22 distinct planes of S 4 t which

do not lie in S 4 t21 . Furthermore, as each n-cover has n(q 2 11) distinct lines,
it follows that the number of blocks in S is

n(q 2 11) q 4 t22 (q 4 t 21)

(q 4 21)
4nq 4 t22 (q 4 t 21)

(q 2 21)
.

Similarly, as each point of S 4 t 0S 4 t21 defines a unique plane (not lying in

S 4 t21) with each line in the union of the q 4 t21

q 4 21
n-covers. It is immediate then

that each point of S lies in

n(q 2 11)
(q 4 t 21)

(q 4 21)
4n

(q 4 t 21)

(q 2 21)

distinct blocks.
Finally, given a pair of arbitrary distinct points in S 4 t 0S 4 t21 , the line l

passing through them will meet S 4 t21 in a single point. This point will lie on n
distinct lines of one of the n-covers and these will each define with l , a plane of
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S 4 t not lying in S 4 t21 . Therefore each pair of distinct points of S , lies in n dis-
tinct blocks of S .

It is noted that none of the blocks of the BIBD S is repeated and for any
two distinct points P1 and P2 of S , the blocks containing P1 and P2 meet pair-
wise in a set of q points which is uniquely determined by P1 and P2 . It is also
resolvable because it admits a resolution in which each resolution class corre-
sponds to the set of all planes of S 4 t 0S 4 t21 which meet in a common line of
one of the n-covers C n

i . If each n-cover C n
i is a spread of S i

3 , then the BIBD S
is a finite Sperner design because the resolution acts as a parallelism on the
line set of S . Hence, for nF1, the construction furnishes examples of quasi-n-
multiple Sperner designs (when t41, the quasi-n-multiple Sperner designs
are also quasi-n-multiple affine designs).

LEMMA 3.1. – Let D(n) denote a decomposable design constructed via the
above technique and let D 8 be one of the designs in the decomposition. If the
number of blocks of D 8 through each pair of distinct points of D 8 is m ( for
some integer mEn), then each of the individual n-covers used in the con-
struction contains an m-cover.

PROOF. – Since D 8 is a component of the decomposition of D(n), it has the
same parameters v and k as D(n). From the two identities which relate the
parameters of a BIBD, it then follows that D 8 has parameters v4q 4 t ,

b4mq 4 t22 (q 4 t 21)

(q 2 21)
, r4m

(q 4 t 21)

(q 2 21)
, k4q 2 and l4m , and so D 8 is a quasi-m-

multiple (Sperner) design.
Consider the blocks of D 8 through a fixed point P of D 8 . Each such block

corresponds to a plane of S 4 t meeting S 4 t21 in a line in the union of the n-cov-
ers. Let the totality of lines defined by the blocks of D 8 through the point P be

C. Since there are m
(q 4 t 21)

(q 2 21)
blocks in D 8 containing P , the set C contains

m
(q 4 t 21)

(q 2 21)
lines.

Now let R be an arbitrary point of S 4 t21 . Each line in S 4 t has at least three
points, so a point Q can be chosen on the line through P and R with QcP , R .
Q is also a point of D 8 . Therefore there are exactly m blocks of D 8 containing
P and Q . Each block gives rise to a line of C through R . Thus there are exactly
m lines of C through R . Furthermore, if S i

3 is the unique three dimensional
space (in the partition of S 4 t21) which contains R , then these m lines lie in S i

3 .
As R is arbitrary, it can be concluded that the subset C i

m of the lines of C which
lie in a given S i

3 (belonging to the partition of S 4 t21) satisfies the property
that through each point of S i

3 there pass exactly m lines of C i
m . This implies

that C i
m is an m-cover of S i

3 . Finally C i
m is contained in C i

n because C lies in the
union of the n-covers. Thus each n-cover contains an m-cover.
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THEOREM 3.2. – Let D(n) be a design arising via Construction 3.1 with re-
spect to the n-covers ]C n

i (. Then D(n) is indecomposable if and only if

1
i

SPEC (C i
n ) 4 ]n( .

PROOF. – (¨) Let the design be indecomposable. Assume that

1
i

SPEC (C i
n ) c ]n( .

Then there exists a positive integer m lying in the intersection of the spectra
and satisfying 1 GmEn . This implies that each n-cover C i

n can be partitioned
into distinct m and (n2m)-covers. Denoting the designs corresponding to
these covers by D(m) and D(n2m), it follows that

D(m)ND(n2m) 4D(n) .

Therefore D(n) is decomposable, a contradiction. Consequently
1
i

SPEC (C i
n ) 4 ]n(.

(ˆ) Let 1
i

SPEC (C i
n ) 4 ]n(.

Assume the design D(n) is decomposable. Then by Lemma 3.1, there exists
an integer m satisfying 1 GmEn , such that D(n) is the union of two subde-
signs D(m) and D(n2m). Again by Lemma 3.1, this implies that each n-cover
contains an m-cover and an (n2m)-cover. Hence

1
i

SPEC (C i
n ) * ]m , n2m( , a contradiction .

Therefore the design is indecomposable.

COROLLARY 3.1. – Let D(n) be constructed via an n-cover Cn of PG(3 , q).
Then D(n) is indecomposable if and only if Cn is proper. (That is
SPEC (Cn ) 4 ]n(.)

EXAMPLE 3.1. – Let the points of the projective space PG(4 , 2 ) (with re-
spect to homogeneous coordinates (x0 , x1 , x2 , x3 , x4 ) over GF(2) ) be labelled
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as shown below:

P1

P2

P3

P4

P5

A1

A2

A3

A4

A5

A6

(1 0 0 0 0)
(0 1 0 0 0)
(0 0 1 0 0)
(0 0 0 1 0)
(1 1 1 1 0)
(0 0 0 0 1)
(1 0 0 0 1)
(0 1 0 0 1)
(0 0 1 0 1)
(0 0 0 1 1)
(1 1 0 0 1)

P6

P7

P8

P9

P10

A7

A8

A9

A10

A11

(1 1 0 0 0)
(0 1 1 0 0)
(0 0 1 1 0)
(1 1 1 0 0)
(0 1 1 1 0)
(1 0 1 0 1)
(1 0 0 1 1)
(0 1 1 0 1)
(0 1 0 1 1)
(0 0 1 1 1)

P11

P12

P13

P14

P15

A12

A13

A14

A15

A16

(1 0 1 0 0)
(0 1 0 1 0)
(1 1 0 1 0)
(1 0 0 1 0)
(1 0 1 1 0)
(1 1 1 0 1)
(1 1 0 1 1)
(1 0 1 1 1)
(0 1 1 1 1)
(1 1 1 1 1)

The points Pi for i41, R , 15 are the fifteen points of S 3 , the 3-dimensional
projective space with equation x4 40 embedded in PG(4 , 2 ). The sixteen
points Ai are the points of the 4-dimensional affine space constructed from
PG(4 , 2 ) by removing S 3 .

Employing Construction 3.1 with the proper 2-cover of PG(3 , 2 ) whose
lines are listed in section 4, the resolvable quasi-2-multiple affine design D(2)
so obtained is:

]1, 2 , 3 , 6(

]4, 7 , 9 , 12(

]5, 8 , 10 , 13(

]11, 14 , 15 , 16(

]1, 3 , 4 , 9(

]2, 6 , 7 , 12(

]5, 10 , 11 , 15(

]8, 13 , 14 , 16(

]1, 4 , 5 , 11(

]2, 7 , 8 , 14(

]3, 9 , 10 , 15(

]6, 12 , 13 , 16(

]1, 7 , 8 , 11(

]2, 4 , 5 , 14(

]3, 12 , 13 , 15(

]6, 9 , 10 , 16(

]1, 2 , 15 , 16(

]3, 6 , 11 , 14(

]4, 7 , 10 , 13(

]5, 8 , 9 , 12(

]1, 6 , 8 , 10(

]2, 3 , 5 , 13(

]4, 12 , 14 , 15(

]7, 9 , 11 , 16(

]1, 9 , 13 , 14(

]2, 10 , 11 , 12(

]3, 4 , 8 , 16(

]5, 6 , 7 , 15(

]1, 10 , 12 , 14(

]2, 9 , 11 , 13(

]3, 5 , 7 , 16(

]4, 6 , 8 , 15(

]1, 7 , 13 , 15(

]2, 4 , 10 , 16(

]3, 8 , 11 , 12(

]5, 6 , 9 , 14(

]1, 5 , 12 , 16(

]2, 8 , 9 , 15(

]3, 7 , 10 , 14(

]4, 6 , 11 , 13(

where the numbers are the subscripts of the affine points Ai and the lines are
grouped into resolution classes. By Corollary 3, it is immediate that the de-
sign is indecomposable.
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I t i s n o t e d t h a t n o t a l l q u a s i -n- m u l t i p l e a f f i n e d e s i g n s a r i s e f r o m t h i s
c o n s t r u c t i o n . I n [ 2 7 ] , J u n g n i c k e l c o n s t r u c t s q u a s i - 2 - m u l t i p l e a f f i n e d e s i g n s
f r o m e x i s t i n g a f f i n e d e s i g n s o f a n y o r d e r b y p e r m u t i n g t h e p o i n t s ( a n d
t h e r e f o r e a l s o t h e b l o c k s ) o f t h e d e s i g n s a n d t h e n a d j o i n i n g t h e t w o b l o c k
s e t s . T h e s e d e s i g n s a r e a l l d e c o m p o s a b l e a n d o f t e n c o n t a i n r e p e a t e d b l o c k s .
Q u a s i - 2 - m u l t i p l e a f f i n e d e s i g n s o n 9 po i n t s h a v e b e e n s t u d i e d b y M o r g a n i n
[ 3 1 ] a n d M a t h o n a n d R o s a i n [ 2 9 ] . O f s p e c i a l i n t e r e s t i s e n t r y ( 3 0 ) o n p . 2 4 8
o f [ 3 1 ] ( a l t e r n a t i v e l y o n p . 3 1 4 o f [ 2 9 ] ) , w h i c h h a s n o r e p e a t e d b l o c k s a n d s o
a s a co n s e q u e n c e , s a t i s f i e s t h e p r o p e r t y t h a t t h e t w o b l o c k s i n t e r s e c t i n 0 , 1
o r 2 po i n t s ( c f . t h e p r o p e r t y o f t h e q u a s i -n- m u l t i p l e a f f i n e d e s i g n s a r i s i n g
f r o m C o n s t r u c t i o n 3 th a t a n y t w o b l o c k s i n t e r s e c t i n 0 , 1 or q p o i n t s ) . T h e
H a l l t r i p l e s y s t e m c o n s t r u c t e d i n [ 3 7 ] a l s o f u r n i s h e s a n e x a m p l e o f a qu a s i -
m u l t i p l e a f f i n e d e s i g n p o s s e s s i n g t h i s p r o p e r t y w i t h q43 . H o w e v e r , t h e
m o s t r e m a r k a b l e q u a s i - m u l t i p l e a f f i n e d e s i g n s t o d a t e a r e t h o s e w i t h p a -
r a m e t e r s ( 3 6 , 8 4 , 1 4 , 6 , 2 ) a n d ( 3 6 , 1 2 6 , 2 1 , 6 , 3 ) ( s e e [ 1 9 ] p . 2 9 6 , [ 3 0 ] p . 2 8 3 a n d
[ 5 1 ] ) . T h e s e a r e r e m a r k a b l e b e c a u s e n o ( 3 6 , 4 2 , 7 , 6 , 1 ) - d e s i g n e x i s t s ( a d e s i g n
c o r r e s p o n d i n g t o t h e s e p a r a m e t e r s w o u l d b e a n a f f i n e p l a n e o f o r d e r 6
w h i c h i s k n o w n n o t t o e x i s t . S e e [ 1 9 ] , p p . 1 7 5 - 1 7 6 ) .

4 . – Re g u l a r n- C o v e r s .

A s m e n t i o n e d i n s e c t i o n 3 , t h e t e c h n i q u e f o r c o n s t r u c t i n g q u a s i -n- m u l t i -
p l e S p e r n e r d e s i g n s d e s c r i b e d i n C o n s t r u c t i o n 3 . 1 g e n e r a l i s e s t h e B r u c k -
B o s e c o n s t r u c t i o n o f f i n i t e t r a n s l a t i o n p l a n e s o f d e g r e e 2 ov e r t h e i r k e r n e l .
A s s u c h , t h e n o t i o n s o f d e r i v a t i o n a n d m o r e g e n e r a l l y n e t r e p l a c e m e n t f o r
t r a n s l a t i o n p l a n e s b o t h e x t e n d n a t u r a l l y t o t h e q u a s i -n- m u l t i p l e S p e r n e r
d e s i g n s . I n p a r t i c u l a r , t h e r e v e r s a l o f a sw i t c h i n g s e t e m b e d d e d i n o n e o f
t h e c o n s t i t u e n t n- c o v e r s w i l l r e s u l t i n a ne w q u a s i -n- m u l t i p l e S p e r n e r d e -
s i g n p r o v i d e d n o n e o f t h e l i n e s i n t h e o p p o s i t e s w i t c h i n g s e t l i e s i n t h e n-
c o v e r . T h i s a m o u n t s t o r e p l a c i n g a tr a n s l a t i o n n e t i n t h e d e s i g n ( r e f e r t o
[ 1 7 ] ) . W i t h t h e a i m o f p r o d u c i n g n e w q u a s i -n- m u l t i p l e S p e r n e r d e s i g n s
f r o m e x i s t i n g o n e s v i a t h e r e p l a c e m e n t o f t r a n s l a t i o n n e t s o f s i z e q11 , th e
r e m a i n d e r o f t h i s s e c t i o n i s d e d i c a t e d t o i n v e s t i g a t i n g t h e e x i s t e n c e o f r e g -
u l i i n n- c o v e r s o f P G( 3 , q) .

To demonstrate that examples of reguli lying in an n-cover Cn and having
no transversal in Cn do exist, some explicit examples are given for small values
of q . The line numbers correspond to the numbering scheme used in the list-
ings of the Singer line orbits of PG(3 , 2 ) and PG(3 , 3 ) which appear in Ap-
pendix A.2.
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The Proper 2-Cover of PG(3 , 2 ).

The lines of the 2-cover are:

1
12

2
21

3
22

8
26

10
35

The three lines 8, 26 and 35 form a regulus with transversals 4, 9, 11. (Revers-
ing the regulus produces a 2-cover which is the union of two disjoint
spreads.)

The Proper 3-Cover of PG(3 , 2 ).

The lines of the 3-cover are:

1
6
11

2
7
12

3
8
13

4
9
14

5
10
15

The three lines 1, 3 and 9 form a regulus with transversals 16, 17, 20. (Revers-
ing the regulus produces a 3-cover which is the union of three disjoint
spreads.)

A Proper Ebert 2-Cover of PG(3 , 3 ).

The lines of the 2-cover are:

41
81

45
85

49
89

53
93

57
97

61
101

65
105

69
109

73
113

77
117

The two rows correspond to the orbits of lines 41 and 81 under the action of
the group ab 4 b. The four lines 81, 85, 101 and 105 form a regulus with transver-
sals 1, 21, 126, 130. (Reversing the regulus produces another proper 2-cover
containing the 5-lateral with lines 41, 65, 49, 73 and 57. It is not known if it be-
longs to one of the existing classes of 2-covers.)

The Proper Symplectic 2-Cover of PG(3 , 3 ).

The lines of the 2-cover are:

1
103

9
107

17
111

25
115

33
119

83
121

87
123

91
125

95
127

99
129

The four lines 17, 33, 91 and 103 form a regulus with transversals 20, 30, 97,
117. (Reversing the regulus produces another proper 2-cover containing the 5-
lateral with lines 1, 125, 95, 87 and 119. It is not known if it belongs to one of
the existing classes of 2-covers. It is known at least that it is not symplectic.
This can be argued as follows: Let the original 2-cover be C2 and the
«switched» 2-cover be C28 . Assume C28 is symplectic. Since two distinct general
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linear complexes in PG(3 , 3 ) intersect in the 10 lines of a regular spread and
C2 and C28 have 16 lines in common, it follows that the two 2-covers lie in the
same general linear complex. However, the lines which uniquely complete C2

to a general linear complex are:

5
61

13
65

21
69

29
73

37
77

41
122

45
124

49
126

53
128

57
130

and so by inspection it is evident that the lines 20, 30, 97 and 117 of the regulus
in C28 do not lie in the general linear complex determined by C2 , a
contradiction.)

The Proper Symplectic 3-Cover of PG(3 , 3 ).

The lines of the 3-cover are:

1
41
83

5
45
87

9
49
91

13
53
95

17
57
99

21
61
103

25
65
107

29
69
111

33
73
115

37
77
119

The four lines 17, 33, 91 and 103 form a regulus with transversals 20, 30, 97,
117. (Reversing the regulus produces another 3-cover, but it is not known if it
belongs to one of the existing classes of 3-covers. It is known at least that it is
not symplectic because it contains three non-coplanar concurrent lines, for
example lines 20, 29 and 95 which meet in point number 19.)

A Proper 3-Cover of PG(3 , 3 ) Complementary to a Partial Packing.

The lines of the 3-cover are:

45
83
101

54
84
102

57
86
106

62
89
109

65
90
111

66
93
113

68
96
114

73
98
116

74
99
117

81
100
118

The four lines 62, 96, 98 and 118 form a regulus with transversals 18, 78,
104, 127. (Reversing the regulus produces another 3-cover, but it is not known
if it belongs to one of the existing classes of 3-covers.) Note: The spreads in
the partial packing of PG(3 , 3 ) of degeneracy 3 which gives rise to this 3-cover
are listed in Appendix B.

The examples above indicate that it is not an uncommon situation (at
least for small values of q) to find reguli in an n-cover Cn of PG(3 , q)
which have no transversal in Cn . In general, an n-cover of PG(3 , q) may
contain more than one regulus satisfying this property. Currently however,
with the exception of various spreads, especially the regular spreads, there
are no results for general q which guarantee the existence of such reguli
in n-covers. In the remainder of the section, a related problem on the
existence of reguli (not necessarily satisfying the above property) is discussed.
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More precisely, n-covers Cn satisfying the regularity property stated in
the following definition are examined.

DEFINITION 4.1. – An n-cover Cn of PG(3 , q) is said to be a regular n-cover
if it satisfies the property that for any three pairwise skew lines of Cn , the
regulus determined by the lines lies wholly in Cn .

For q42, each n-cover is trivially a regular n-cover because the regulus
defined by three arbitrary pairwise skew lines simply consists of those three
lines. In contrast, the only known examples of regular n-covers for qD2 (up to
projective equivalence) are the regular spread, the general linear complex and
the line set of PG(3 , q). It is conjectured that these examples account for all of
the regular n-covers. In the sequel, several non-existence results are estab-
lished which lend credence to this conjecture.

It is immediate that a regular 1-cover, that is a spread, of PG(3 , q) actually
does contain at least one regulus since any three distinct lines of the spread
are pairwise skew and so the spread contains the regulus determined by them.
It is also straightforward to prove that a regular 2-cover C2 contains reguli, by
noting that for each line m of C2 , the q11 lines of C2 which meet m are the
lines of a regulus (any two of the q11 lines are pairwise skew because if they
intersected, then they would be coplanar with m contradicting the duality of
C2 . Thus, any three of the q11 lines determine a regulus lying in C2 which has
m as a transversal. Finally, since C2 is a 2-cover, the lines of the regulus can
only be the lines of C2 meeting m). However, for nF3 it is not so immediate
since it first needs to be shown that the n-cover of PG(3 , q) contains three
pairwise skew lines. Fortunately, the result is valid for all n . This is now
shown.

LEMMA 4.1. – A regular n-cover of PG(3 , q) always contains a regu-
lus.

PROOF. – Let l be a line of the n-cover Cn . The number of lines of Cn which
intersect l (other than l itself) is (q11)(n21). Hence, for qF2, there
are:

N4n(q 2 11)2 [ (q11)(n21)11]

4nq(q21)1q

Dn

lines of Cn which are skew to l . Assume now that each line of Cn skew to l inter-
sects every other line of Cn skew to l . Then it follows that these N lines skew
to l are all concurrent or they are all coplanar. However, since Cn is an n-cover
and by Theorem 1 also a dual n-cover, the number of lines through each point
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and the number of lines lying in each plane is nEN which yields a contradic-
tion. It follows then that at least two of the lines l 8 and l 9 of Cn skew to l are
also skew to each other. Finally, because Cn is regular, it contains the regulus
determined by l , l 8 and l 9 which proves the result.

THEOREM 4.1. – Let Cn be a regular n-cover of PG(3 , q) embedded in a reg-
ular m-cover Cm with nEm and qF4. Then the complement of Cn in Cm is
not regular.

PROOF. – Let Cm2n denote the complement of Cn in Cm and assume that it is
regular. The proof proceeds by constructing a regulus which contains at least
three lines of Cm2n , but which is not wholly contained in Cm2n .

Choose two skew lines l1 and l2 in Cn (by Lemma 4.1, two such lines exist
because Cn contains a regulus). The maximum number of lines of Cm2n meet-
ing l1 or l2 is 2(q11)(m2n) (which corresponds to the case that no line of
Cm2n meets both l1 and l2). Hence the number of lines in Cm2n skew to both l1

and l2 is at least

(m2n)(q 2 11)22(q11)(m2n)

4 (m2n)( (q21)2 22)

which is positive for all qF4. Therefore, Cm2n possesses at least one line l3

skew to both l1 and l2 .
Now consider the regulus R determined by l1 , l2 and l3 . By construction, R

intersects both Cn and Cm2n . Furthermore, it intersects Cn in exactly the two
lines l1 and l2 because if it contained a third line of Cn , then it would be wholly
contained in Cn by the regularity of Cn , contradicting the fact that l3 is in
Cm2n . Hence, since qF4 and Cm is regular, R contains at least three lines of
Cm2n , but is not wholly contained in Cm2n , and so Cm2n is not regular.

THEOREM 4.2. – ([9], Theorem 4.3, p. 436) Let R be a regulus in PG(3 , q)
and l be a line skew to each line of R. Then there exists a unique regular
spread S which contains both R and l .

LEMMA 4.2. – A regular n-cover Cn of PG(3 , q), qF3, which contains a
line l skew to every line of some regulus R in Cn , also contains the regular
spread S determined by R and l .

PROOF. – The proof proceeds by demonstrating that every line of S can be re-
covered from R and l using only the regularity property shared by Cn and S.

Let li for i41, R , q11 be the lines of R and let Rj be the regulus deter-
mined by l , l1 and lj for j42, R , q11. Clearly, for each jck , the reguli Rj

and Rk intersect in exactly the two lines l and l1 . (If they shared a third line
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then they would be identical. In particular, they would both contain the three
distinct lines l1 , lj and lk of R in which case they would also be identical to R.
However, by hypothesis R does not contain l , contradicting the fact that both
Rj and Rk do contain l by construction.)

Counting the lines in the union of the q reguli, it follows that U 4 0
j42

q11

Rj

accounts for

q(q21)12 4q 2 2q12

lines of S. This leaves q21 lines mk for k41, R , q21 of S unaccounted for.
To show that these remaining lines also lie in Cn , the following argument can
be used.

Let R(l , l1 , m1 ) be the regulus determined by l , l1 and m1 . It is noted that
R(l , l1 , m1 ) and U have exactly the two lines l and l1 in common because if
they shared a third line, then R(l , l1 , m1 ) would lie wholly in U, contradicting
the fact that m1 lies in S 0 U. Hence R(l , l1 , m1 ) 4 ]l , l1 (N (S 0 U) because it
lies in S.

Now consider the regulus R(l , l2 , m1 ). It cannot contain any line of S 0 U

other than m1 , otherwise it would coincide with R(l , l1 , m1 ), contradicting the
fact that l2 does not lie in R(l , l1 , m1 ). Hence, because qF3 there exists at
least a third line l * of U other than l and l2 which lies in R(l , l2 , m1 ).

It now follows that every line of S lies in Cn because the lines in R and l de-
termine U via the regularity property, then likewise the lines l , l2 and l * in U

determine m1 and finally the lines l and l1 in U and m1 determine the remain-
ing lines of S 0 U.

THEOREM 4.3. – Let Cn be a regular n-cover of PG(3 , q) with qF2nF4.
Then Cn is not proper.

PROOF. – Let R be a regulus in Cn (such a regulus exists by Lemma 4.1).
The maximum number of lines of Cn which meet at least one line of R (which
occurs when no line of Cn 0 R meets more than one line of R) is (n21)(q1

1)2 1 (q11). Hence, the number of lines of Cn which are skew to every line of
R is at least

n(q 2 11)2 (n21)(q11)2 2 (q11)

4q(q1122n) D0.

Thus, there is at least one line l of Cn which is skew to every line of R. By Lem-
ma 4.2, the regular spread determined by R and l lies in Cn and so Cn is not
proper.

The first of the main non-existence results for regular n-covers can now be
proven.



TOWARDS THE DETERMINATION OF THE REGULAR n-COVERS OF PG(3 , q) 75

THEOREM 4.4. – Let C2 be a 2-cover of PG(3 , q) with qF4. Then C2 is not
regular.

PROOF. – Assume C2 is regular.
By Theorem 4.3, C2 contains a regular spread S1 . Let R be a regulus in S1

and S84 C2 0 S1 .
Now choose a line l1 of R. Since C2 is regular, the q11 lines of C2 meeting

l1 in a single point form a regulus R2 by the remark in the paragraph preced-
ing Theorem 4.1. By construction, R2 lies in S8 and so there exists a line l2 of S8

which is skew to every line of R2 . Thus, by Lemma 4.2, R2 and l2 determine a
unique regular spread S2 lying in C2 .

Consider S1 O S2 . The intersection S1 O S2 is non-empty, otherwise C2 4

S1 N S2 , ie C2 is the union of two regular spreads contradicting Theorem 4.1. In
addition, S1 c S2 because l1 lies in S1 , but not in S2 . Hence

N S1 O S2N41, 2 or q11 .

If N S1 O S2N41 or 2, then N S2 O S8 N4q 2 or q 2 21 respectively. Now S2 O S8

is a partial spread of degeneracy at most 2 Eq11 which lies in a spread. Fur-
thermore, a partial spread with less than q11 lines cannot possess a switch-
ing set because it has too few lines to cover the points on any line of a putative
switching set. Thus S2 O S8 can be uniquely extended to a spread. It follows
then that S2 4 S8 and so that

C2 4 S1 N S84 S1 N S2 ,

which again contradicts the result in Theorem 4.1. Thus, N S1 O S2N4q11 and
so S1 O S2 is a regulus R3 .

It follows that C2 can be written as the union of the four pairwise disjoint
linesets R3 , S1 0 R3 , S2 0 R3 and S8 0 S2 .

Now the set of points P covered by the lines of S1 0 R3 is the same set of
points covered by S2 0 R3 . Thus P is doubly covered by the lines of S1 0 R3 and
S2 0 R3 . Hence, the lines of R3 and S8 0 S2 doubly cover the set of points of
PG(3 , q)0 P, and so S8 0 S2 comprises the q11 lines of R3

opp the opposite regu-
lus of R3 . Let l3 be a line of S1 0 R3 . Then l3 is skew to every line of R3

opp , and so
R3

opp and l3 determine a unique regular spread S3 ’ C2 by Lemma 4.2.
Since R3 4 S1 O S2 and R3

opp ’ S3 , it follows that S38’ S18N S28 where

S384 S3 0 R3
opp ,

S184 S1 0 R3 ,

S284 S2 0 R3 .

From this set inclusion and the fact that S18 and S28 are disjoint, it is immedi-
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ate that

q 2 2q4N S38O S18N1N S38O S28N .

Therefore, at least one of N S38O S18N and N S38O S28N is F (q 2 2q) /2 . Now since
qF4,

¨

¨

(q24)(q11)

(q 2 23q24)

(q 2 2q) /2

F

F

F

0

0

q12 .

Thus, at least one of N S38O S18N and N S38O S28N is Fq12. It follows that one
of N S3 O S1N and N S3 O S2N is Fq12. Therefore, since S1 , S2 and S3 are all reg-
ular, either S3 4 S1 or S3 4 S2 . However, by construction, S3 does not contain
R3 , while S1 and S2 both contain R3 , and so S3 c S1 or S2 , a contradiction.

Therefore C2 is not regular.

While the argument employed in Theorem 4.4 is not valid for q43, it is
noted however, that the above result does still hold when q43. This is estab-
lished in:

THEOREM 4.5. – Let C2 be a 2-cover of PG(3 , 3 ). Then C2 is not
regular.

PROOF. – Assume C2 is a regular 2-cover of PG(3 , 3 ).
By the comment after Definition 4.1, C2 contains a regulus and a transver-

sal to the regulus. At most 13 lines of C2 meet the lines of the regulus, and so at
least 3 lines of C2 are skew to every line of the regulus.

Therefore, by Lemma 4.2, C2 contains a regular spread S. Let m be an ar-
bitrary line of C2 0 S.

Now, by Theorem 4.4 in [9], all regular spreads of PG(3 , q) are projectively
equivalent, and by Theorem 4.5 of [9] the collineation group fixing a regular
spread of PG(3 , q) is transitive on the ordered quadruples

]l1 , l2 , l3 ; m(

where l1 , l2 and l3 are three pairwise skew lines of PG(3 , q) and m is a
transversal of the three lines. Hence, S and m can be mapped by a collineation
of PG(3 , 3 ) to the regular spread and line

S 4 ]0, 10 , 20 , 30( ]3, 13 , 23 , 33( ]6, 16 , 26 , 36( ]9, 19 , 29 , 39(

]1, 11 , 21 , 31( ]4, 14 , 24 , 34( ]7, 17 , 27 , 37(

]2, 12 , 22 , 32( ]5, 15 , 25 , 35( ]8, 18 , 28 , 38(
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and

m4 ]38, 0 , 16 , 23( ,

where the regular spread S is the short Singer line orbit (iv) in Appendix A for
q43 and m is a line arbitrarily chosen from one of the three long Singer or-
bits. To complete the proof, it is shown by direct construction that this con-
figuration of lines cannot lie in a regular 2-cover.

Consider the three pairwise skew lines ]1, 11 , 21 , 31(, ]7, 17 , 27 , 37(

and ]0, 16 , 23 , 38(. Since C2 is assumed to be regular, the fourth line of the
regulus determined by these three lines, namely ]28, 10 , 12 , 35(, also lies in
C2 (to verify that this line completes the regulus, note that two of the transver-
sals of these four lines are ]0, 1 , 28 , 37( and ]11, 7 , 10 , 38().

Similarly, the fourth line of the regulus determined by the lines
]2, 12 , 22 , 32(, ]4, 14 , 24 , 34( and ]0, 16 , 23 , 38(, namely ]28, 33 , 39 , 7(,
also lies in C2 (to verify that this line completes the regulus, note that two of
the transversals of these four lines are ]2, 23 , 28 , 34( and
]12, 4 , 33 , 38().

Hence, C2 possesses three distinct lines ]8, 18 , 28 , 38(, ]28, 10 , 12 , 35(

and ]28, 33 , 39 , 7( all of which pass through point 28. This contradicts the
fact that C2 is a 2-cover. Therefore PG(3 , 3 ) possesses no regular 2-covers.

LEMMA 4.3. – Let Cn be an n-cover of PG(3 , q) with qFn12 F5. Then
there exist distinct points P1 , P2 and P3 and distinct lines of Cn l , l11 , l12 , l21

and l3 j for j41, R , n21 such that

(a) l11 O l4 ]P1 ( 4 l12 O l

(b) l21 O l4 ]P2 (

(c) l3 j O l4 ]P3 (, j41, R , n21

(d) lij O lkm 4f for all ick.

PROOF. – Let l be an arbitrary line of Cn and P3 be an arbitrary point on l .
Denote the n21 lines of Cn 0]l( through P3 by l3 j for j41, R , n21.

Let the q11 planes of PG(3 , q) through l be labelled p k for k41, R , q1

1. Without loss of generality, it can be assumed that the totality of lines l3 j , j4

1, R , n21 lies in the planes p k for k41, R , n21.
Since qFn12, it follows that there exist at least (q11)2 (n21) F (n1

3)2 (n21) 44 planes through l which contain none of the lines l3 j , j4

1, R , n21. Each of these q2n12 planes contains exactly n21 lines of
Cn 0]l( and these meet l in at most n21 distinct points. Note that none of
these points is P3 because the lines l and l3 j , j41, R , n21 account for all the
lines of Cn through P3 .

If the points so-determined across all the q2n12 planes are distinct,
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then the total number of these points is less than or equal to the number of
points on l0]P3 (, that is

(q2n12)(n21) Gq .

However, since qFn12, it follows that

¨

¨

¨

qDn21

q(n22) D (n21)(n22)

q(n21)2 (n21)(n22) Dq

(q2n12)(n21) Dq .

Hence, at least two of these points are identical. Let one such point be P1 and
label two of the lines which determined P1 as l11 and l12 .

Now l11 and l12 possibly lie in distinct planes through l (none of which is
p k , k41, R , n21). From the previous observation that there are at least
four planes through l which contain none of the lines l3 j , j41, R , n21,
there are at least two other planes through l which contain none of the lines
l11 , l12 , l3 j , j41, R , n21.

Let one of the remaining two planes be p . Since l11 , l12 and l account for
three of the lines through P1 , the plane p can have at most n23 lines of Cn

through P1 . Hence, at least one line of Cn 0]l( in p meets l in a point other than
P1 . Choose such a line as l21 and label the point l21 O l as P2 .

By construction P2 cP1 and P2 cP3 since l and l3 j , j41, R , n21 account
for all the lines of Cn through P3 (note that it has already been demonstrated
that P1 cP3). Furthermore, for any i , k� ]1, 2 , 3( with ick , the lines lij and
lkm lie in distinct planes intersecting in the line l . As lij O l4 ]Pi (, lkm O l4
]Pk ( and by construction Pi cPk , it follows that these lines are skew.

THEOREM 4.10. – Let Cn be an n-cover of PG(3 , q) with qFn12 F5. Then
Cn is not regular.

PROOF. – Assume Cn is regular.
Consider the labelled configuration of points and lines as in Lemma 4.3 and

define the n reguli Ri 4 R(l11 , l21 , l3 i ) for i41, R , n21 and Rn 4

R(l12 , l21 , l31 ).
Since Ri O Rj 4 ]l11 , l21 ( for each pair i , jEn , ic j , it follows that the set

of lines

S1 4 ]l( 0
i41

n21

]Ri 0]l11 , l21 ((
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covers the set of points of l0]P1 , P2 , P3 ( n times. Likewise, the set of
lines

S2 4 ]l( 0
i41

n21

]lij Ni41, R , 3 , j41, R , n21(

covers the set of points ]P1 , P2 , P3 ( n times (where lij is the jth line of Cn 0]l(
through point Pi).

As a consequence, any other regulus in Cn with l as a transversal must lie in
S1 NS2 . In particular, this holds for Rn . Now, besides l12 , l21 and l31 , Rn has at
least q22 Fn other lines which by necessity lie in S1 . Choose n of these lines.
By the pigeon-hole principle, at least two of these lines must lie in the same set
Rk 0]l11 , l12 ( for some k , since there are n21 such truncated reguli.

In addition, Rk O Rn * ]l21 (. Hence, N Rk O Rn NF3 and so Rk 4 Rn .
However, l12 � Rn while l12 � Rk and so Rk c Rn , giving a contradiction.

Therefore, Cn is not regular.

5. – Conclusion.

The main properties and known examples of n-covers of PG(3 , q) have
been reviewed. Moreover, it has been shown how n-covers may be employed in
the construction of quasi-n-multiple Sperner designs and the indecomposabili-
ty of these designs has been shown to be related to the spectra of the n-covers
used in the construction. In the simplest case, the designs are indecomposable
if and only if the n-cover is proper.

Through consideration of the problem of deriving new examples of quasi-
n-multiple Sperner designs from existing ones constructed via Construc-
tion 3.1, the notion of a regular n-cover has also been introduced and several
non-existence results for regular n-covers have been established. For q42, it
is trivial to show that all n-covers are regular. For qD2, it is conjectured that
the only regular n-covers of PG(3 , q) (up to projective equivalence) are the
regular spread, the general linear complex and the line set of PG(3 , q). How-
ever, this remains an open problem.

A. – Singer’s theorem.

The material in section 4 of the paper makes use of Singer’s theorem [46]
which exploits an algebraic correspondence between the representation of ele-
ments in the finite field GF(q n11 ) and the points of PG(n , q) to establish that
PG(n , q) admits a collineation group which cyclically permutes its pointset.
The action of this collineation group on the lineset of PG(n , q) depends on the
dimension n , but in the case of interest, namely n43, the lines of PG(3 , q)
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fall into q orbits of size (q11)(q 2 11) and a single orbit of size q 2 11 (consist-
ing of the lines of a regular spread) [18]. These orbits are referred to as long
and short Singer line orbits. In the remainder of the appendix, Singer’s con-
struction is described and the line orbits are listed for q= 2 and 3.

A.1. Construction of Singer’s Cyclic Collineation of PG(3 , q).

Let f be a primitive monic polynomial of degree n11 over GF(q) such
that

f (x) 4x n11 2an x n 2R2a2 x 2 2a1 x2a0

and let b be a zero of f . Then b can be adjoined to GF(q) to construct the exten-
sion field GF(q n11 ) 4GF(q)(b). In this case the set ]1, b , R , b n ( forms a ba-
sis for GF(q n11 ) over GF(q).

In order to express a non-zero element of GF(q n11 ) as a linear combina-
tion of the basis elements, the fact that f (b) 40 is used, i.e.

b n11 4an b n 1R1a1 b1a0 .

Two elements b i , b j of GF *(q n11 ) 4 abb are then said to be similar if and
only if

b i Qb2j 4b i2 j �GF *(q) 4 ]1, b v , b 2v , R , b (q22) v (

where v4 (q n11 21) /(q21). It is evident that the property of similarity is an
equivalence relation.

Now since each element of GF(q n11 ) is uniquely expressible as a linear
combination of 1 , b , R , b n over GF(q), a coordinate vector (x0 , x1 , R , xn ) can
be associated with each element

b j 4 !
i40

n

xi b i .

It then follows that two elements b i , b j of GF *(q n11 ) are similar if and only if
their corresponding coordinate vectors are scalar multiples of each other
where the scalar belongs to GF *(q).

Consequently the correspondence extends to one between GF *(q n11 ) and
PG(n , q) in the following manner:

The points of PG(n , q) D The equivalence classes determined by the simi-
larity relation on the elements of GF *(q n11 ).
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The lines of PG(n , q) D The sets of the form
]l 1 b i1l 2 b j Nl 1 , l 2 �GF(q), l 1 , l 2 not both 0(

where b i and b j are representatives from dis-
tinct equivalence classes.

The incidence in PG(n, q) D Set inclusion.

Consider the mapping f where

f : GF *(q n11 )
b i

K

O
GF *(q n11 )

b i11 .

Then the elements

b i

f(b i )
f 2 (b i )

QQ
Q

f v21 (b i )

4

4

4

b i11

b i12

b i1v21

are pairwise dissimilar, while b i and f v (b i ) 4b i1v are similar. Hence f per-
mutes the equivalence classes cyclically in cycles of length v4 (q n11 2

1) /(q21). Clearly f induces a collineation F of PG(n , q) because it permutes
the point set of PG(n , q) and also maps the line ab i , b j b to the line
ab i11 , b j11 b.

The cyclic collineation group aFb (the Singer group) therefore cyclically
permutes the point-set of PG(n , q) as required.

Note: the collineation F corresponds to the homography with matrix

y
0
1

1

Q Q
Q

Q Q
Q

1

a0

a1

a2

QQ
Q

QQ
Q

an

z .

(This can be shown by expanding f(b i ) 4b i11 as b . b i 4b(x0 1x1 b1x2 b 2 1

R1xn b n ) and replacing b n11 by a0 1a1 b1R1an b n ). In addition, where it
doesn’t lead to confusion, abb is often simply written in place of aFb.
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A.2. Singer orbits of PG(3 , q).

In the sequel, the orbits of the points and lines of PG(3 , q) under the ac-
tion of a Singer group are listed for the cases q42 and q43.

q=2 : Let b be a primitive element of GF(24 ) satisfying b 4 4b11. Then
the powers of b represent the points of PG(3 , 2 ) as listed below (b i is repre-
sented by its exponent i):

1 (0 , 1 , 0 , 0 ) 6 (0 , 0 , 1 , 1 ) 11 (0 , 1 , 1 , 1 )
2 (0 , 0 , 1 , 0 ) 7 (1 , 1 , 0 , 1 ) 12 (1 , 1 , 1 , 1 )
3 (0 , 0 , 0 , 1 ) 8 (1 , 0 , 1 , 0 ) 13 (1 , 0 , 1 , 1 )
4 (1 , 1 , 0 , 0 ) 9 (0 , 1 , 0 , 1 ) 14 (1 , 0 , 0 , 1 )
5 (0 , 1 , 1 , 0 ) 10 (1 , 1 , 1 , 0 ) 15 f0 (1 , 0 , 0 , 0 ) .

By observation the point triples ]0, 5 , 10(, ]0, 1 , 4( and ]0, 2 , 8( are lines
of PG(3 , 2 ). Under the action of abb, the lines generate the three line
orbits:

( i )
( ii )
( iii )

]]01 i , 11 i , 41 i(Ni40, R , 14(

]]01 i , 21 i , 81 i(Ni40, R , 14(

]]01 i , 51 i , 101 i(Ni40, R , 4( .

These orbits are listed below in full. (Note: In contrast to the list of points
above, the numbers adjacent to each line are there only for the purpose of in-
dexing the lines and do not correspond to a power of b .)

(i) 1 ]0, 1 , 4( 6 ]5, 6 , 9( 11 ]10, 11 , 14(

2 ]1, 2 , 5( 7 ]6, 7 , 10( 12 ]11, 12 , 0(

3 ]2, 3 , 6( 8 ]7, 8 , 11( 13 ]12, 13 , 1(

4 ]3, 4 , 7( 9 ]8, 9 , 12( 14 ]13, 14 , 2(

5 ]4, 5 , 8( 10 ]9, 10 , 13( 15 ]14, 0 , 3(

(ii) 16 ]0, 2 , 8( 21 ]5, 7 , 13( 26 ]10, 12 , 3(

17 ]1, 3 , 9( 22 ]6, 8 , 14( 27 ]11, 13 , 4(

18 ]2, 4 , 10( 23 ]7, 9 , 0( 28 ]12, 14 , 5(

19 ]3, 5 , 11( 24 ]8, 10 , 1( 29 ]13, 0 , 6(

20 ]4, 6 , 12( 25 ]9, 11 , 2( 30 ]14, 1 , 7(

(iii) 31 ]0, 5 , 10(

32 ]1, 6 , 11(

33 ]2, 7 , 12(

34 ]3, 8 , 13(

35 ]4, 9 , 14(
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Orbit (iii) constitutes a regular spread S of PG(3 , 2 ).

q=3: Let b be a primitive element of GF(34 ) satisfying b 4 42b 3 11. Then
the powers of b represent the points of PG(3 , 3 ) as listed below (as for the
case q42, b i is represented by i):

1 (0 , 1 , 0 , 0) 11 (1 , 1 , 0 , 1) 21 (1 , 21, 0 , 1) 31 (1 , 0 , 0 , 1)
2 (0 , 0 , 1 , 0) 12 (1 , 1 , 1 , 21) 22 (1 , 1 , 21, 21) 32 (1 , 1 , 0 , 21)
3 (0 , 0 , 0 , 1) 13 (1 , 21, 21, 1) 23 (1 , 21, 21, 0) 33 (1 , 21, 21, 21)
4 (1 , 0 , 0 , 21) 14 (1 , 1 , 21, 1) 24 (0 , 1 , 21, 21) 34 (1 , 21, 1 , 0)
5 (1 , 21, 0 , 21) 15 (1 , 1 , 1 , 1) 25 (1 , 0 , 21, 0) 35 (0 , 1 , 21, 1)
6 (1 , 21, 1 , 21) 16 (1 , 1 , 1 , 0) 26 (0 , 1 , 0 , 21) 36 (1 , 0 , 1 , 1)
7 (1 , 21, 1 , 1) 17 (0 , 1 , 1 , 1) 27 (1 , 0 , 21, 21) 37 (1 , 1 , 0 , 0)
8 (1 , 1 , 21, 0) 18 (1 , 0 , 1 , 0) 28 (1 , 21, 0 , 0) 38 (0 , 1 , 1 , 0)
9 (0 , 1 , 1 , 21) 19 (0 , 1 , 0 , 1) 29 (0 , 1 , 21, 0) 39 (0 , 0 , 1 , 1)

10 (1 , 0 , 21, 1) 20 (1 , 0 , 1 , 21) 30 (0 , 0 , 1 , 21) 40 f0 (1 , 0 , 0 , 0)

The following four sets of points represent lines of PG(3 , 3 ):
]0, 10 , 20 , 30(, ]0, 3 , 4 , 31(, ]0, 2 , 18 , 25( and ]0, 5 , 11 , 19(. Using them,
the four line orbits (under the action of abb) are:

(i)
(ii)
(iii)
(iv)

]]01 i , 31 i , 41 i , 311 i(Ni40, R , 39(
]]01 i , 21 i , 181 i , 251 i(Ni40, R , 39(
]]01 i , 51 i , 111 i , 191 i(Ni40, R , 39(
]]01 i , 101 i , 201 i , 301 i(Ni40, R , 9( .

These orbits are listed below in full. (Note: In contrast to the list of points
above, the numbers adjacent to each line are there only for the purpose of in-
dexing the lines and do not correspond to a power of b .)

(i) 1 ]0,3,4,31( 11 ]10,13,14,1( 21 ]20,23,24,11( 31 ]30,33,34,21(

2 ]1,4,5,32( 12 ]11,14,15,2( 22 ]21,24,25,12( 32 ]31,34,35,22(

3 ]2,5,6,33( 13 ]12,15,16,3( 23 ]22,25,26,13( 33 ]32,35,36,23(

4 ]3,6,7,34( 14 ]13,16,17,4( 24 ]23,26,27,14( 34 ]33,36,37,24(

5 ]4,7,8,35( 15 ]14,17,18,5( 25 ]24,27,28,15( 35 ]34,37,38,25(

6 ]5,8,9,36( 16 ]15,18,19,6( 26 ]25,28,29,16( 36 ]35,38,39,26(

7 ]6,9,10,37( 17 ]16,19,20,7( 27 ]26,29,30,17( 37 ]36,39,0,27(

8 ]7,10,11,38( 18 ]17,20,21,8( 28 ]27,30,31,18( 38 ]37,0,1,28(

9 ]8,11,12,39( 19 ]18,21,22,9( 29 ]28,31,32,19( 39 ]38,1,2,29(

10 ]9,12,13,0( 20 ]19,22,23,10( 30 ]29,32,33,20( 40 ]39,2,3,30(

(ii) 41 ]0,2,18,25( 51 ]10,12,28,35( 61 ]20,22,38,5( 71 ]30,32,8,15(

42 ]1,3,19,26( 52 ]11,13,29,36( 62 ]21,23,39,6( 72 ]31,33,9,16(

43 ]2,4,20,27( 53 ]12,14,30,37( 63 ]22,24,0,7( 73 ]32,34,10,17(
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44 ]3,5,21,28( 54 ]13,15,31,38( 64 ]23,25,1,8( 74 ]33,35,11,18(

45 ]4,6,22,29( 55 ]14,16,32,39( 65 ]24,26,2,9( 75 ]34,36,12,19(

46 ]5,7,23,30( 56 ]15,17,33,0( 66 ]25,27,3,10( 76 ]35,37,13,20(

47 ]6,8,24,31( 57 ]16,18,34,1( 67 ]26,28,4,11( 77 ]36,38,14,21(

48 ]7,9,25,32( 58 ]17,19,35,2( 68 ]27,29,5,12( 78 ]37,39,15,22(

49 ]8,10,26,33( 59 ]18,20,36,3( 69 ]28,30,6,13( 79 ]38,0,16,23(

50 ]9,11,27,34( 60 ]19,21,37,4( 70 ]29,31,7,14( 80 ]39,1,17,24(

(iii) 81 ]0,5,11,19( 91 ]10,15,21,29( 101 ]20,25,31,39( 111 ]30,35,1,9(

82 ]1,6,12,20( 92 ]11,16,22,30( 102 ]21,26,32,0( 112 ]31,36,2,10(

83 ]2,7,13,21( 93 ]12,17,23,31( 103 ]22,27,33,1( 113 ]32,37,3,11(

84 ]3,8,14,22( 94 ]13,18,24,32( 104 ]23,28,34,2( 114 ]33,38,4,12(

85 ]4,9,15,23( 95 ]14,19,25,33( 105 ]24,29,35,3( 115 ]34,39,5,13(

86 ]5,10,16,24( 96 ]15,20,26,34( 106 ]25,30,36,4( 116 ]35,0,6,14(

87 ]6,11,17,25( 97 ]16,21,27,35( 107 ]26,31,37,5( 117 ]36,1,7,15(

88 ]7,12,18,26( 98 ]17,22,28,36( 108 ]27,32,38,6( 118 ]37,2,8,16(

89 ]8,13,19,27( 99 ]18,23,29,37( 109 ]28,33,39,7( 119 ]38,3,9,17(

90 ]9,14,20,28( 100 ]19,24,30,38( 110 ]29,34,0,8( 120 ]39,4,10,18(

(iv) 121 ]0,10,20,30( 124 ]3,13,23,33( 127 ]6,16,26,36( 130 ]9,19,29,39(

122 ]1,11,21,31( 125 ]4,14,24,34( 128 ]7,17,27,37(

123 ]2,12,22,32( 126 ]5,15,25,35( 129 ]8,18,28,38(

Orbit (iv) consists of the lines of a regular spread of PG(3 , 3 ).

B. – A complete partial packing of PG(3 , 3 ) of Degeneracy 3.

The following linesets and line orbits, based on the action of appropriate
subgroups or individual elements of the Singer group on lines of PG(3 , 3 ), are
spreads in a complete partial packing of PG(3 , 3 ) of degeneracy 3. The com-
plement of the union of these spreads in the lineset of PG(3 , 3 ) is the proper
3-cover described in section 4.

S0 4 (]0, 10 , 20 , 30()abb , (the short Singer line orbit)

S1 4 (]0, 3 , 4 , 31()ab8 bN (]2, 5 , 6 , 33()ab8 b ,

S2 4 (]4, 7 , 8 , 35()ab8 bN (]6, 9 , 10 , 37()ab8 b ,

S3 4 S1
]b(

S4 4 S2
]b(
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S5 4

]0, 2 , 18 , 25( ]6, 27 , 32 , 38( ]12, 19 , 34 , 36(
]1, 17 , 24 , 39( ]7, 14 , 29 , 31( ]13, 20 , 35 , 37(
]3, 5 , 21 , 28( ]8, 10 , 26 , 33(
]4, 9 , 15 , 23( ]11, 16 , 22 , 30(

S6 4 S5
]b2(

S7 4 S5
]b20(

S8 4

]0, 7 , 22 , 24( ]4, 10 , 18 , 39( ]14, 19 , 25 , 33(
]1, 6 , 12 , 20( ]5, 26 , 31 , 37( ]16, 21 , 27 , 35(
]2, 23 , 28 , 34( ]8, 15 , 30 , 32(
]3, 9 , 17 , 38( ]11, 13 , 29 , 36(

S9 4

]0, 16 , 23 , 38( ]4, 11 , 26 , 28( ]10, 15 , 21 , 29(
]1, 22 , 27 , 33( ]5, 13 , 34 , 39( ]12, 14 , 30 , 37(
]2, 17 , 19 , 35( ]6, 8 , 24 , 31(
]3, 18 , 20 , 36( ]7, 9 , 25 , 32(
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