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Generation of Finite Groups by Nilpotent Subgroups.

E. DAMIAN (*)

Sunto. – Si studia la generazione di gruppi finiti tramite sottogruppi nilpotenti, in
particolare viene esaminata la struttura di gruppi finiti non generabili con n sot-
togruppi nilpotenti e tali che ogni quoziente proprio sia generabile con n sottogrup-
pi nilpotenti. Si ottengono alcuni risultati di struttura per questi gruppi e un limi-
te inferiore per il loro ordine.

Summary. – We study the generation of finite groups by nilpotent subgroups and in
particular we investigate the structure of groups which cannot be generated by n
nilpotent subgroups and such that every proper quotient can be generated by n
nilpotent subgroups. We obtain some results about the structure of these groups
and a lower bound for their orders.

1. – Introduction.

As a consequence of the Classification Theorem, every finite nonabelian
simple group can be generated by two cyclic groups and indeed, by a result of
Aschbacher and Guralnick in [1], every finite group can be generated by two
conjugate solvable subgroups. By contrast, it has been shown by Cossey and
Hawkes in [3] that there exists no bound for the number of nilpotent sub-
groups necessary to generate a finite group. In fact, for every natural number
n , they construct a finite solvable group Gn which cannot be generated by few-
er than n nilpotent subgroups. Although the actual orders of the groups Gn are
not relevant for the result, it may be noticed that they are extremely big, even
for small values of n . So an independent problem, which is interesting in itself,
is to find some results about the structure of the groups of minimal order with
respect to the property of not being generated by n nilpotent subgroups. The

(*) This paper comes from my «Tesi di Laurea» that I discussed under the supervi-
sion of Prof. Andrea Lucchini at «Università Cattolica del Sacro Cuore», Brescia; I am
very grateful to him for his help in writing this paper. I would like to thank A. Caranti
for his useful suggestions. The author is grateful to the Department of Mathematics of
the University of Trento for financial support. The author is a member of INdAM-GN-
SAGA, Italy.
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analysis of this situation leads us to study a larger class of groups: we say that
a finite group G is in Cn if it cannot be generated by n nilpotent subgroups and
G/N can be generated by n nilpotent subgroups for every nontrivial normal
subgroup N .

If we consider the generation of finite solvable groups by nilpotent sub-
groups, as in [3], we find out that the complexity of a minimal group not gener-
ated by n nilpotent subgroups increases with n . The first result we can obtain
in this case is about the Fitting length, that is the minimal length of a normal
series with nilpotent factors.

THEOREM 1. – Let G be a finite solvable group with Fitting length at most
r , then G can be generated by r nilpotent subgroups.

This implies that a finite solvable group that cannot be generated by n
nilpotent subgroups has Fitting length at least n11, and this shows how the
group structure is complex.

In section 2 we obtain some results about the structure of the groups in Cn

and a lower bound for their orders. We can observe that the groups of minimal
order with respect to the property of not being generated by n nilpotent sub-
groups are groups of minimal order in Cn ; to determine these groups is a prob-
lem we can solve for n41, n42. As groups of minimal order in C1 are mini-
mal nonnilpotent groups we can use Theorem 9.1.9 in [9] to have a complete
characterization of their structure and order. In [1] there is an example of a
group of order 56 1̃2 which cannot be generated by two nilpotent subgroups;
using the results of section 2 we show in section 3 that up to isomorphism this
is the group of minimal order in C2 . In particular we get:

THEOREM 2. – Let G be a finite group of C2 , then G is either isomorphic to
the group described in [1] or NGND56 1̃2 .

2. – The structure of groups in Cn .

PROPOSITION 2.1. – Let G be a finite group and N a nilpotent normal sub-
group of G . If G/N is generated by n nilpotent subgroups, then G can be gene-
rated by n11 nilpotent subgroups.

PROOF. – By hypothesis there exist n nilpotent subgroups, H1 /N , R , Hn /N ,
of G/N such that G/N4 aH1 /N , R , Hn /Nb. By Th. 12.2 in [7], the solvable group
Hi contains a Carter subgroup Ki . It can be easily seen that Ki N4Hi . Hence
we can say that aK1 , R , Kn , Nb 4 aH1 , R , Hn , Nb 4G . r

As a consequence we have the following results.
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COROLLARY 2.1. – Let ]1G ( 4Gr LGr21 L R L G0 4G be a normal series
with nilpotent factors of a finite group G . Then G can be generated by r nilpo-
tent subgroups.

COROLLARY 2.2. – Let G be a finite solvable group with derived length at
most r , then G can be generated by r nilpotent subgroups.

THEOREM 2.1. – Let G be a finite group in Cn . Then Fit (G) is the product of
all the abelian minimal normal subgroups of G and it has a complement in
G . Moreover Z(G) 41G .

PROOF. – We remark that Frat (G)41G otherwise G/Frat (G) could be gene-
rated by n nilpotent subgroups H1 /Frat (G), R , Hn /Frat (G) and, taking Ki to
be a Carter subgroup of Hi , we have Hi 4Ki Frat (G) hence G4

aK1 , RKn , Frat (G)b 4 aK1 , R , Kn b, which is false.
As Frat (G) 41G , by [9] Th. 5.2.15, we can say that Fit (G) is the product of

all the abelian minimal normal subgroups of G , hence it is abelian and, by [9]
Th. 5.2.13, it has a complement in G .

If Z4Z(G) c1G , then G/Z4 aH1 /Z , R , Hn /Zb with Hi /Z nilpotent for
every i41, R , n . This means that each Hi is nilpotent and G can be generat-
ed by n nilpotent subgroups, in contrast with the hypothesis. r

PROPOSITION 2.2. – Let G be a finite group in Cn and let N be an abelian
minimal normal subgroup of G . Then N has complements in G and the num-
ber of its different complements is at least NNNn .

PROOF. – As G is in Cn , G/N is generated by n nilpotent subgroups,
H1 /N , RHn /N , thus G4 aH1 , R , Hn b N . If Ki is a Carter subgroup of Hi ,
then Ki N4Hi hence G4 aK1 , R , Kn b N . Since G cannot be generated by n
nilpotent subgroups, Gc aK1 , R , Kn b and NGO aK1 , R , Kn b; in addition, as
G4 aK1 , R , Kn b N and N is abelian, aK1 , R , Kn bON is a normal subgroup of
G , so, by the minimality of N , we have aK1 , R , Kn bON41. It follows that
aK1 , R , Kn b is a complement of N in G . In the same way we can show that for
every s1 , R , sn in N also aK1

s1 , R , Kn
sn b is a complement of N in G . From

NN (Ki ) GNONHi
(Ki ) GNOKi 41, it follows CN (Ki ) 4NN (Ki ) 41G . So,

given m1 , R , mn in N such that (s1 , R , sn ) c (m1 , Rmn ), we claim
aK1

s1 , R , Kn
sn b c aK1

m1 , R , Kn
mn b. For this purpose we first note that

(s1 , R , sn ) c (m1 , Rmn ) implies si cmi , for some i , then si mi
21 �NN (Ki )

hence Ki
si

cKi
mi . Next assume that X4 aK1

s1 , R , Kn
sn b 4 aK1

m1 , R , Kn
mn b. It

follows Ki
si E aKi

si , Ki
mi b GKi

si NOX4Ki
si (NOX), hence XONc1G , against

the hypothesis that X is a complement of N in G . We reach the conclusion that
N has at least NNNn different complements. r
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We need the following formula due to Aschbacher and Guralnick, [2].

PROPOSITION 2.3. – Let G be a finite group, M an irreducible G-module and
q4NEndG (M)N , then

NH 1 (G , M)N4q d G (M)NH 1g G

CG (M)
, MhN,

where d G (M) is the number of the complemented factors G-isomorphic to M
in a chief series of G . In addition, if M is faithful then NH 1 (G , M)NENMN

and NH 1 (G , M)N40 if G is solvable.

A consequence of the last two results is the following proposition.

PROPOSITION 2.4. – Let G be a finite group in Cn and let N be an abelian
minimal normal subgroup of G , then

d G (N) Fr (n21)2 t11 ,

where E4EndG (N), r4dimE N , t4dimE H 1 (G/CG (N), N). Moreover tEr
and if G/CG (N) is solvable, t40 and d G (N) Fr (n21)11.

PROOF. – The number of complements of N in G is NDer (G/N , N)N , since N
is a minimal normal subgroup of G and Z(G) 41 we get NDer (G/N , N)N4

NNNNH 1 (G/N , N)N . As it comes from proposition 2.2 and proposition 2.3:

NNNNH 1g G

CG (N)
, NhNNEndG (N)Nd G (N)21 FNDer (G/N , N)NFNNNn .

Observe that N and H 1 (G/CG (N), N) are E-vector spaces so NENrn G

NENt NENr NENd G (N)21 and d G (N) Fr (n21)2 t11. r

LEMMA 2.1. – Let G be a finite group and let N be an abelian minimal nor-
mal subgroup of G . If dim EndG (N) (N) 41, then G/CG (N) is a cyclic group.

PROOF. – Let NNN4p n and E4EndG (N); dimE (N) 41 implies NEN4

NNN4p n and ECFq , the field with q4p n elements. It follows G/CG (N) G

Aut (N) CGL (n , p), where GL (n , p) is the group of the invertible matrices of
order n3n over a field with p elements. In addition, x ge 4x eg for all x�N ,
g�G , e�E , so G/CG (N) GCGL (n , p) (E). We know that CGL (n , p) (Fq ) CFq

x , [7],
Satz 7.3, pag. 187, so G/CG (N) GFq

x is a cyclic group. r

PROPOSITION 2.5. – Let G be a finite group in Cn , assume F»4Fit (G) c1
and F4CG (F). Then there exist n11 distinct primes, p1 , R , pn11 such that
p1

2(2n22) p̃2 ˜R p̃n11 divides the order of G .
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PROOF. – By Theorem 2.1 G4HF , where F4N1
a 1 3R3Nt

a t , each Ni is an
elementary abelian pi-group and for ic j , Ni and Nj are not isomorphic as G-

modules, moreover HG »
i41

t

G/CG (Ni ). Note that if dimEndG ( Ni ) (Ni ) 41 for all i ,

then, by Lemma 2.1, H is abelian and G is generated by two nilpotent sub-
groups. Thus we may assume that dimEndG ( N1 ) (N1 ) F2. This of course implies
that p1

2 divides the order of N1 , moreover, using Proposition 2.4 we get
d G (N1 ) F2(n22)12. Hence p1

2(2n22) divides the order of G . Now, let
p1 , R , pr be all the distinct primes dividing NGN and, for all 1 G iGr , let Pi be
a Sylow pi-subgroup of G . Since G can be generated by r nilpotent subgroups,
P1 , R , Pr , it must be rFn11 and p1

2(2n22) p̃2 ˜R p̃n11 divides the order
of G . r

Let us observe that the hypothesis CG (F) 4Fc1 is satisfied in particular
if G is a solvable group in Cn . Moreover, in this case, by proposition 2.4 we get
d G (N1 ) F2(n21)11 and it follows that p1

2(2n21) p̃2˜Rpn11 divides the or-
der of G .

In the proof of the main theorem of the next section we will use the follow-
ing results.

PROPOSITION 2.6 (Guralnick, [6]). – Let G be a finite simple group, then it
can be generated by two Sylow 2-subgroups of G .

PROPOSITION 2.7 (Gaschütz, [5]). – Let N be a normal subgroup of G and let
g1 , R , gd �G be such that G/N4 ag1 N , R , gd Nb. If G can be generated with d
elements then there exists u1 , R , ud �N such that G4 ag1 u1 , R , gd ud b.

PROPOSITION 2.8 (Lucchini, [8]). – If G is a finite group, N a minimal
normal subgroup of G and d(G) the minimal number of elements needed to
generate G , then d(G) Gmax (2 , d(G/N)11).

PROPOSITION 2.9 (DallaVolta, Lucchini, [4]). – Let S be a non abelian simple
group. If G is an automorphism group of S with SGGGAut (S), then
d(G) 4max (2 , d(G/S) ).

3. – The group of minimal order in C2 .

Let W4 aw1 , w2 b be a 2-dimensional vector space over a field with 5 ele-
ments and let H be the subgroup of order 12 of GL(W) generated by

a : w1 O 2w2 , w2 O 2w1 , b : w1 O2w1 2w2 , w2 O w1 .

Consider the H-module V4W 3 and let M be the semidirect product of V by H .
In [1] the authors notice that M cannot be generated by two nilpotent sub-
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groups. In this section we show that, up to isomorphism, M is the group of
minimal order in C2 .

In the following table we heighlight some useful tips about non abelian fi-
nite simple groups of order less than 62500 as they will be largely employed in
the proof of the next theorem.

TABLE 1. – Simple groups of order G62500.

S NSN NOut (S)N

A5
A6
A7

A84L4 (2)
M11

L3 (2) 4L2 (7)
L2 (8)
L2 (11)
L2 (13)
L2 (16)
L2 (17)
L2 (19)
L2 (23)
L2 (25)
L2 (27)
L2 (29)
L2 (31)
L2 (32)
L2 (49)
L3 (3)
L3 (4)
U3 (3)
U3 (4)
U4 (2)
Sz(8)

60
360
2520
20160
7920
168
504
660
1092
4080
2448
3420
6072
7800
9828
12180
14880
32736
58800
5616
20160
6048
62400
25920
29120

2
4
2
2
1
2
3
2
2
4
2
2
2
4
6
2
2
5
4
2
12
2
4
2
3

THEOREM 3.1. – Let G be a finite group in C2 then G is either isomorphic to
M or NGND56 1̃2 .

PROOF. – Let us suppose that NGNG56 1̃2 and GCO M .
Assume that F»4Fit (G) 41.
Under this assumption the minimal normal subgroups of G , N1 , R , Nr ,

are non abelian and GCG/ 1
i41

r

CG (Ni ) G »
i41

r

Aut (Ni ).

As every Ni is characteristically simple we get Ni 4Si
ni , where Si is a non

abelian simple group, and Aut (Ni ) CAut (Si )&Sym (ni ). Considering the



GENERATION OF FINITE GROUPS BY NILPOTENT SUBGROUPS 251

bound on the order of G we deduce that it has either two minimal normal sim-
ple subgroups, N1 , N2 , or a minimal normal subgroup N1 4S1

n1 where n1 G2.
In any case, by Proposition 2.6, there exists a prime pF3 dividing NG/soc (G)N

so we may assume that p divides the order of Out (N1 ) hence

N1 � ]L2 (8), L3 (4), Sz(8) L2 (27), L2 (32)( .

If N1 � ]L2 (27), L3 (4), Sz(8), L2 (32)( then it is the unique minimal normal
subgroup, G is almost simple and it is generated by two cyclic subgroups by
proposition 2.9. If N1 4L2 (8) then it is either the unique minimal normal sub-
group or there exists N2 4A5 ; in both cases we can generate G by a Sylow
2-subgroup and a Sylow 3-subgroup.

It follows that 1 EF and let us suppose that 1 EF4CG (F).
By Theorem 2.1, G4HF , F is the product of all the abelian minimal nor-

mal subgroups of G , F4N1
a 1 3R3Nt

a t where, for ic j , Ni and Nj are not iso-

morphic as G-modules; moreover H4G/F4G/CG (F) G »
i41

t

Aut (Ni ) and

d G (Ni ) F2, i41, R , t . In addition Z(G) 41, thus, in particular, no minimal
normal abelian subgroup of G can be isomorphic to Z2 .

Let us suppose that G is a solvable group.
By lemma 2.1 we may assume dimEndG (N1 ) N1 F2. As a consequence of the

remark at the end of Proposition 2.5 we get that NGN is divisible by
NN1N

3 p̃̃ q , where p and q are distinct primes not dividing the order of N1 .
Hence the only possible choices for N1 are: Z2

2 , Z3
2 , Z2

3 , Z2
4 , Z5

2 .
Let us consider N1 4Z2

2 .
Note that Aut (N1 ) 4GL (2, 2 ) CSym (3) and, since G has order divisible

by at least three distinct primes, there exists in F a minimal normal subgroup
N2 4Zp

n , such that NN2NNAut (N2 )N is divisible by a prime different from 2 and
3. Let d4dimEndG ( N2 ) N2 . If dF3 then NN2NF8, d G (N2 ) F4 hence NGNF

43 8̃4 D56 1̃2 . Let d42; since 2 and 3 are the only primes dividing
NAut (Z2 3Z2 )N and NAut (Z3 3Z3 )N it follows that NN2NF42 , thus NGNF

43 1̃63 D56 1̃2 . So we can assume d41; in addition, let N be a minimal normal
p-subgroup of G not G-isomorphic to N1 or to N2 and let dimEndG( N )N4rD1,

since NN2NF5 we get NNNr11 G
56 1̃2

26 5̃2
E118 so N4Z2

2 . It follows that

N2 4Z5 , G/CG (F) is a 2-group and G is generated by a Sylow 2-Subgroup
and a Sylow 5-subgroup; hence r41. Let Hi 4G/CG (Ni ). From what we
have just seen, Hi is a cyclic group when 2 G iG t while H1 GSym (3).
As HGH1 3R3Ht , we consider p i the projection of H on Hi . We must
have p 1 (H) 4H1 4Sym (3), on the contrary H should be abelian. If H 8

is the derived group of H , then NH 8N43 and p i (H 8 ) 41 when iF2
so, in particular H 8 centralizes Ni

a i for all iF2 whence K1 4

aH 8 , N2
a 2 , R , Nt

a t b is abelian. Let P be a Sylow 2-subgroup of N1
a 1 H;
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as ker p 1 centralizes P , K2 4 aker p 1 , Pb is nilpotent. Hence G4 aK1 , K2 b
so G is generated by two nilpotent subgroups.

Suppose N1 4Z3
2 .

Having NAut (N1 )N4NGL (2, 3 )N448, as in the previous case it follows
that G contains at least a minimal normal subgroup not G-isomorphic to N1

and dimEndG ( Ni ) Ni 41 when iF2. Thus HGH1 3R3Ht , with p 1 (H) 4H1 G

GL (2, 3 ) and Hi is cyclic when iF2. In particular H1 must be an irreducible,
solvable and non nilpotent subgroup of GL (2 , 3 ). But this implies that 24 di-
vides NH1N and NGNF24 3̃6 2̃5 D56 1̃2 .

Consider N1 4Z2
3 or N1 4Z2

4 .
As the order of G is divisible by three distinct prime numbers and by the

fact that NN1N
d G (N1 ) F212 we can deduce that all the minimal normal subgroups

of G are G-isomorphic to N4N1 . Hence G is isomorphic to the direct product
N a H where H is an irreducible, solvable and non nilpotent subgroup of
Aut (N). Since NHN must be divisible by at least two distinct primes not divid-
ing NNN and NHÑ NNN3 GNGNG56 1̃2 we deduce that for either choices of N
there is a unique possible choice for H .

If N4Z2
3 , then N can be identified with the additive group of the field K ,

the field of order 8; H has order 21 and is generated by s and r where for
every x�N , we have x r4xt with K *4 atb and x s4x 2 .

When N4Z2
4 , N can be viewed as the additive group of the field K of order

16; H has order 30 and is generated by s and r where, for every x�N , we have
x r4xt , with K *4 atb and x s4x 4 .

In both cases K1 4 arb and K2 4 a(CN (s) )a , sb are abelian subgroups of G
such that G4 aK1 , K2 b.

Let us consider the case N1 4Z5
2 .

If there exists a minimal normal subgroup, N2 , not G-isomorphic to N1 then
56 1̃2 FNGNF56 ÑN2N

2 and N2 4Z3 , it follows that G4Fit (G) which is
nilpotent. Hence Fit (G) 4N1

3 and G/F is an irreducible solvable non nilpotent
subgroup of GL (2 , 5 ) such that NG/FNG12. So we have three possible choices:
H is isomorphic to the subgroup of GL (2 , 5 ) we considered in the example at
the beginning of this section and in this case GCM; we can describe the other
two possibilities in the following way, we may view N1 as the additive group of
the finite field, K , of order 25 and H is a subgroup of Aut (K) generated by s
and r where, for every x�N1 , x r4x 5 and x s4xt , t�K x , and t has either or-
der three or six, in the first case NHN46, in the other NHN412. So the group
G can be generated by the following nilpotent subgroups: K1 »4 ar i b, K2 »4

a(CN1
(s i ) )

3 , s i b, i»41, 2 .
Hence G is not a solvable group.
Therefore, by theorem 2.1, H4G/CG (F) G »

i41

t

G/CG (Ni ) and H cannot be a

solvable group, so we may assume that G/CG (N1 ) is an irreducible, not solvable
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subgroup of Aut (N1 ). In particular dimE N1 F2 and NN1N
2 NG/CG (N1 )NGNGNG

56 1̃2 . Hence the only possible choices for N1 are: N1 4Z2
3 , N1 4Z2

4 , N1 4Z2
5 ,

N1 4Z3
3 , N1 4Z5

2 , N1 4Z7
2 . If N1 � ]Z7

2 , Z3
3 , Z2

5 ( then F4N1
2 and SL (N1 ) has

no proper irreducible solvable subgroups hence NGN4NFit (G) SL (N1 )ND

56 1̃2 . Let us consider N1 4Z2
3 . As SL (3 , 2 ) has no proper irreducible non

solvable subgroups we get that G/CG (N1 ) 4SL (3, 2 ) and it can be generated
by an element of order two and one of order three. If N1 is the only minimal
normal subgroup we can generate G by a Sylow 2-subgroup and a Sylow 3-sub-
group; the same can be done if there exists another minimal normal subgroup,

N2 , as in this case we should have NN2N
2 E

56 1̃2

82 1̃68
so N2 can be either a

2-group or a 3-group.
Finally we consider the case N1 4Z2

4 ; if there exists another minimal nor-
mal subgroup it should be N2 4Z3 . The irreducible not solvable subgroups of
Aut (N1 ) 4GL (4, 2 ) are: SL (4 , 2 ), GL (2 , 4 ), SL (2 , 4 ), the composition fac-
tors of these groups, and consequentely G itself, can be generated by a Sylow
2-subgroup and a Sylow 3-subgroup.

It follows that 1 EFECG (F).
This implies in particular that C»4CG (F) is not solvable, otherwise

CC ( Fit (C) ) GFit (C) and this, since Fit (C) 4F , would imply CGF . Let K be a
complement of F in G; L4KOC is a complement of F in C and it cannot be
solvable. In particular S4soc L4S1 3R3Sk is a product of k non abelian
simple groups and it is a normal subgroup of K .

Observe that, by Theorem 2.1, F4N1
a 1 3R3Nt

a t and G/CG »
i21

t

Aut (Ni )
is solvable, otherwise it should be NNiNF8, for some i , and

NGNFNG/CNNC/FNNNiN
2 F60 Q60 Q82 D56 Q12 .

It is easy to see that NG/CG (N1 )NNN1N
d G (N1 ) F18 and that this number divides

NGN/NSN so NSNG
56 1̃2

18
G10417. It follows that S is either A5

2 or a simple group.

We can see that LGAut (S) is generated by a Sylow 2-subgroup and a Sylow
3-subgroup; as a consequence there exists pF5 dividing NGN/NLN4NG/CNNFN .
We may assume that p divides NG/CG (N1 )NNN1N so NG/CG (N1 )NNN1N

d G (N1 ) F50
and NSNG3750.

Let us observe that K/S cannot be a 2-group as in that case we get
S4 aP , P x b, where P is a Sylow 2-subgroup of S , x�S . As a consequence
G4 aH1 , H2 b where H1 4 aF , Pb and H2 is a Sylow 2-subgroup of K containing
P x . In particular it follows that S cannot be A5

2 .
In addition we cannot have G4LCG (L) as in that case LGAut (S) can be

generated by two elements, x , y , and CG (L) 4 aX , Yb where X , Y are two
nilpotent subgroups of CG (L), hence G is generated by aX , xb and aY , yb.

As a consequence LcAut (S) and L/S is a cyclic 2-group. It follows that
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G/C cannot be a cyclic group as in that case, by Proposition 2.9 and Proposition
2.6, we can generate K with two elements x , y , where y�L , and G is generat-
ed by ay , Fb and axb. As K/S is not a 2-group we can conclude that G/C cannot
be a 2-group.

So G/C is neither a cyclic group nor a 2-group and pF5 divides
NG/CG (N1 )NNN1N .

As G/C is not a cyclic group then G has either a unique minimal normal sub-
group N1 with dimEndG ( N1 ) N1 F2 or at least two minimal normal subgroups, N1 ,
N2 , not G-isomorphic.

If p divides NG/CG (N1 )N then NN1NF8 and it cannot be the unique minimal

normal subgroup as in this case we get that NN1N
3 G

56 1̃2

60
43125 so N1 4Z2

3

and NGNF84 ÑLÑ NG/CND56 1̃2 . Note that NN2N
d G (N2 ) G

56 1̃2

82 6̃0
E49 so G

has two minimal normal subgroups not G-isomorphic, N1 , N2 such that
dimEndG (Ni ) Ni 41, i41, 2 . It follows that every minimal normal subgroup of G
is G-isomorphic either to N1 or to N2 ; in addition, as G/C is abelian it has no
composition factor G-isomorphic to N1 or to N2 , hence NN1N

2 NN2N
2 GNFN so

NGNF82 3̃2 ÑLÑ 10 D56 1̃2 .
As a consequence the only prime numbers dividing NG/CN are 2 and 3; say

pF5 the greatest prime number dividing NFN , we may assume that N1 is a p-
group. Observe that dimEndG ( N1 ) N1 41, otherwise p 6 6̃0 F56 6̃0 F56 1̃2 , as
G/C is not a cyclic group we can conclude as above that there are only two min-
imal normal subgroups of G not G-isomorphic, N1 , N2 . Hence NN1N

2 NN2N
2 G

NFNG
56 1̃2

60 6̃
so NN1 NNN2NE23 and (NN1N , NN2N) � ](5 , 3 ), (5 , 4 ), (7 , 3 )(. In

the first case G/C is a 2-group, in the second case it is a cyclic group so the only
possibility is the third and G/CGZ6 3Z2 ; as G/C is neither a 2-group nor a
cyclic group we get NG/CN412 but NGNF72 3̃2 6̃0 1̃2 D56 1̃2 .
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