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Bollettino U. M. I.
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Analytic Solutions to Nonlocal Abstract Equations.

GHISI MARINA

Sunto. – Si considera il problema dell’esistenza di soluzioni globali analitiche per
equazioni astratte, in spazi di Hilbert, di tipo Klein-Gordon corrette con termini
non locali, del tipo:

u 91m(VuVH
2 , aAu , ub) Au1n(VuVH

2 , aAu , ub) u40 .

In particolare si individuano classi di condizioni sulle funzioni m ed n (sia in pre-
senza che in assenza di energie conservate) che garantiscono l’esistenza di tali
soluzioni.

Summary. – In this paper we study the problem of existence of global solutions for
some classes of abstract equations, that generalize some type of Klein-Gordon equa-
tions, with nonlinear nonlocal terms of Kirchhoff type. We find some conditions
that guarantee the existence of such solutions whether in presence or in absence of
a conserved energy.

1. – Introduction.

Let V be an Hilbert space, which is imbedded in this antidual space V 8 by a
symmetric continuous compact map, and let H be the Hilbert completion of V
with respect to the product (u , v)H 4 au , vb, where au , vb is the antiduality
between V 8 and V .

Let A : VKV 8 be a symmetric positive definite isomorphism, i.e.

aAu , vb 4 aAv , ub and aAu , ub FcVuVV
2 with cD0 .(1.1)

In this framework, we consider the following abstract Cauchy problem:

.
/
´

u 91m(VuVH
2 , aAu , ub) Au1n(VuVH

2 , aAu , ub) u40

u(0) 4u0 �V , u 8 (0) 4u1 �V
(1.2)

while m , n : [0 , 1Q[3[0 , 1Q[KR are continuous functions and:

m(r , s) F0 on [0 , 1Q[3[0 , 1Q[ .



GHISI MARINA182

Since the operator A is symmetric and coercive, and m is nonnegative,
equation in (1.2) is of weakly hyperbolic type.

In the case n40 and m(r , s) 4m(s), a concrete version of (1.2) is the
Kirchhoff equation (introduced by [8]):

utt 2m gs
V

N˜uN2h Du40 x�V(1.3)

where V4 [0 , 2p]h (and we look for solutions u which are 2p-periodic func-
tions in the space variables). The problem of existence of local-global solutions
for (1.3) has been studied by a lot of authors (both in Sobolev spaces and in the
analytic case); we refer to [1] and [10] for a complete bibliography. Only we re-
call some authors who studied the problem of analytic global solutions.

Bernstein [3] proved that equation (1.3) with analytic periodic data has a
global solution in one space dimension, assuming that

m Lipschitz continuous and mFnD0 .(1.4)

Pohozaev [9] extended this result to several space dimensions. Later on Arosio
& Spagnolo [2] relaxed hypothesis (1.4) by assuming merely that m is continu-
ous and:

m is bounded or s
0

1Q

m(s) ds41Q .(1.5)

Condition (1.5) was later removed by D’Ancona & Spagnolo [5]-[6], indeed
they supposed only m continuous and mF0. We remark that in [6] it was con-
sidered the abstract generalization of (1.3), i.e. u 91m(aAu , ub) Au40. Later
on in [7] it was proved the existence of global in time, periodic in x, analytic
solutions for some system of the form:

Ut 4 !
i41

h

Bi (Vu1 V

2 , R , Vum V

2 ) Uxi
(1.6)

where U4 (u1 , R , um ), matrices Bi are continuous, !
i41

h

Bi (r1 , R , rm ) j i has

real eigenvalues for all j4 (j 1 , R , j h ) �Rh 0]0( and V f V denote the L 2-norm.
Moreover they assumed that:

THEOREM 1. – The matrices Bi (r1 , R , rm ) are bounded.

or

THEOREM 2. – System (1.6) has a conserved coercive energy, i.e. there
exists some function L(r1 , R , rm ) (with r1 , R , rm F0) such that if U4
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(u1 , R , um ) is a solution of (1.6) then

L(Vu1 (t)V

2 , R , Vum (t)V

2 ) 4L(Vu1 (0)V

2 , R , Vum (0)V

2 ) .(1.7)

Moreover

lim
r11R1rmK1Q

L(r1 , R , rm ) 41Q .

or

THEOREM 3. – System (1.6) is 232 in one space variable, with a conserved
energy (see (1.7)). Moreover, denoted by f i , j i , j41, 2 the coefficients of the
matrix B, one has:

l f 1, 2 , f 2, 1 F0

l Nf 2, 1 (r , s)NGL(r) (L continuous function)

l inf
sF0

L(r , s) K1Q as rK1Q

l Nf 1, 1 (r , s)2f 2, 2 (r , s)N2 GCf 1, 2 (r , s) for some constant C .

By following [7], the purpose of this paper is to study the problem of exis-
tence of A-analytic solutions (see Definition 2.1) for (1.2). We observe that, in
contrast with the cases considered in the literature, in our situation we have
not necessarily a positive conserved energy and the functions m and n in (1.2)
in general are not bounded.

We remark that (1.2) is an abstract equation modeling the Klein-Gordon
nonlocal equation:

utt 2m(VuV

2 , V˜uV

2 ) Du1n(VuV

2 , V˜uV

2 ) u40 .(1.8)

In fact we treat (1.2) if there exists a conserved energy (see Theorem 3.1-
3.3) or a semi-conserved energy (see Theorem 3.5). In particular we prove the
global well-posedness in the class of analytic 2p-periodic functions for the
Cauchy problem to (see example 3.7):

utt 2m(V˜uV

2 ) Du1n(VuV

2 ) u40

where mF0 and s
0

1Q

n(s) ds�R . Another equation to which our results apply

is (see example 3.11):

utt 2V˜uV

4 Du1V˜uV

2 u40 .

In Section 2 we give some definitions and a result of extension of solutions of
the linear equation u 91m(t) Du1n(t) u40.

In Section 3 we state the main results and give some applications.
In Section 4 we give the proofs.
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2. – Preliminaries-Linear case.

2.1. Preliminaries.

Let V , H , V 8 , A be as in the Introduction. We give the following (see [9]):

DEFINITION 2.1. – A vector v�V is called A-analytic if there exist con-
stants K , L such that:

A j v�V and NaA j v , vbN1/2 GKL j j! for each j40, 1 , R

In the following we denote the class of A-analytic vectors by A.
Since the embedding V %KV 8 is compact, the Hilbert space H has a or-

thonormal basis (vk ) ’V such that for each k41, 2 , R

Avk 4l k
2 vk , l k D0 and l k K1Q as kK1Q .(2.1)

Let us remark that we can assume that (l k ) is a nondecreasing sequence. Now
let us give the following (see [2], Proposition 1)

PROPOSITION 2.2. – A vector u4!
k

uk vk is in A if and only if there exists
some dD0 such that:

!
k

NukN2 e dl k E1Q .

At this point we recall some examples of A-analytic vectors, when A42D (see
[2], p. 3).

Let Ha-per
1 (Rh ) be the space of the functions u�Hloc

1 (Rh ), a-periodic in each
variable (aD0).

1. Let us set V4Ha-per
1 (Rh ), and V 84Ha-per

-1 (Rh ); then A : VKV 8 and if
u�V is analytic, then it is A-analytic.

2. Let V’Rh be a bounded open subset. Let us set V4H0
1 (V) and V 84

H 21 (V), then A : VKV 8 . Moreover if u is analytic in some neighborhood of V
and

D k u40 on ¯V for each k40, 1R

then u�V and u is A-analytic.

2.2. Linear equation.

Let us consider the Cauchy problem

.
/
´

u 91m(t) Au1n(t) u40

u0 , u1 �A
(2.2)
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where the coefficients m , n satisfy the following conditions:

mF0, s
0

T

m(s) dsE1Q , s
0

T

Nn(s)NdsE1Q .(2.3)

The following lemma is proved by using the method of perturbed energy of in-
finite order, firstly introduced by [4] and already used by [2], [6], [7]. For the
convenience of the reader we sketch the proof.

LEMMA 2.3. – Let us suppose that m , n satisfy (2.3) and let u�
C 2 ( [0 , T[, V) be a solution of (2.2).

Then u and u 8 can be extended as A-analytic functions on [0 , T].

PROOF. – Let r e (t) be a family of Friedrics mollifiers and let us define the
positive function:

me (t) 4 mA˜r e (t)1e1VmA˜r e2mVL 1 (0 , T)

where mA denote the hull extension of m on the whole real axis R.
We have (see [2]):

NN me2m

kme

NN
L 1 (0 , T)

K0 as eK0 .(2.4)

Now let us denote, by using the Fourier’s expansion, the considered solution

of (2.2) by u(t) 4 !
k41

1Q

uk (t) vk , then uk satisfies the Cauchy problem:

.
/
´

uk91m(t) l k
2 uk 1n(t) uk 40

uk (0) 4u0, k , uk8 (0) 4u1, k ,

where u0 4 !
k41

1Q

u0, k vk and u1 4 !
k41

1Q

u1, k vk .

If we define

Ee , k (t) 4Nuk8 (t)N2 1me (t)Nl k ukN2 ,

we find easily:

Ee , k8 G N me2m

kme
Nl k Ee , k 1N m 8e

me
NEe , k 1NnVuk Vuk8N

GgN me2m

kme
Nl k 1Ceg11

NnN

l k
hh Ee , k .
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Hence, by (2.1)-(2.3), we obtain:

Ee , k (t) GCe , T Ee , k (0) expul ks
0

T

N me (s)2m(s)

kme (s)
Ndsv .

Let d (see Proposition 2.2) be such that:

!
k41

1Q

e dl k (Nu1, k N2 1Nl k u0, kN2 ) E1Q ,

then, by (2.4) there exists e D0 such that

!
k41

1Q

Ee, k (t) e
1

2
dl k GKe, T!

k
e dl k Ee , k (0) E1Q .

Therefore as in [2] u and u 8 can by extended as A-analytic functions on
[0 , T].

3. – Results-Applications.

3.1. Principal results.

Let L : [0 , 1Q[K [0 , 1Q[ be a continuous function. We say L admissible
function if for all y0 F0 the greatest solution of

.
/
´

y 8

y(0)

4L(y)

4y0

is bounded from above on the bounded subsets of [0 , 1Q[.
In the following we call conserved energy for (1.2) a continuous function

E(w , r , s) 4w1M(r , s) defined for w , r , sF0 such that for all solution u�
C 2 ( [0 , T[, V) of (1.2):

E(Vu 8 VH
2 (t), VuVH

2 (t), aAu , ub(t) ) 4E(Vu1 VH
2 , Vu0 VH

2 , aAu0 , u0 b) .

Let us recall that we indicate by c the constant in (1.1).
At this point we can state:

THEOREM 3.1. – Let us suppose that the initial data u0 , u1 �A and that at
least one of the following is verified:

1. the functions m , n are bounded;

2. E is a conserved energy for (1.2), moreover:
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(a) M(r , s) 4M0 (r , s)1K(r), with KG0 and

inf
r , sF0, rG (1 /c) s

M0 (r , s) �R ;(3.1)

(b) for all bF0, the function L(y) 4y1b2K(y) is an admissible
function;

(c) for each I4 [0 , z] ’ [0 , 1Q[

lim
w1sK1Q

min
r�I , rG (1 /c) s

E(w , r , s) 41Q .(3.2)

Then problem (1.2) has a global A-analytic solution u�C 2 ( [0 , 1Q[, V).

An immediate consequence of Theorem 3.1 is the following:

COROLLARY 3.2. – Let us suppose that E is a conserved energy for (1.2)
and:

lim
r1w1sK1Q

E(w , r , s) 41Q .

Then problem (1.2) has a global A-analytic solution u�C 2 ( [0 , 1Q[, V) if
u0 , u1 �A .

Let us remark that the result of [6] is not contained in the previous theo-
rem, since in that case there exists a conserved energy, but not verifies
necessary (3.2). Now we give a generalization of such result.

THEOREM 3.3. – Let us suppose that E is a conserved energy for (1.2) such
that M(r , s) 4M0 (r , s)1K(r), with KG0 and:

inf
r , sF0, rG (1 /c) s

M0 (r , s) �R .(3.3)

Moreover let us assume that for all bF0, the function L(y) 4y1b2K(y)
is an admissible function and that for some continuous function c and
rGc 21 s :

Nn(r , s)NGc(r , M(r , s) ) .(3.4)

Then the Cauchy problem (1.2) with u0 , u1 �A has a global A-analytic solu-
tion u�C 2 ( [0 , 1Q[, V).

Let us observe that in case of a completely general M we can not assure the
existence of a global analytic solution. In fact we have:
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EXAMPLE 3.4. – Let V4H2p-per
1 (R), V 84H2p-per

-1 (R), VwV

2 4 s
0

2p

w(x)2 dx and

A42D . Then there exist some u0 , u1 �A such that the Cauchy problem

.
/
´

utt 2
1

11V˜uV

4
Du2VuV

4 u40 ,

u(0 , x) 4u0 , ut (0 , x) 4u1 ,

has not a global analytic solution.

Let us point out that in the case of Example 3.4 the hypotheses of Theorem
3.1-3.3 are not verified. Indeed if E is a conserved energy, then

E(w , r , s) 4
1

2
(w1arctan s)2

r 3

3
1constant .

Therefore, if we want satisfy (3.1) (resp (3.3)) then must be K(r) G2
r 3

3
for

large r, then L is not an admissible function.
Let us consider now the case in which do not exists a conserved

energy.
Let E(w , r , s) 4w1M(r , s), w , r , sF0 be a continuous function. We call

E semi-conserved energy for (1.2) if there exists a continuous function n0 (r , s)
such that, if u�C 2 ( [0 , T[, V) is a solution of (1.2) then

d

dt
E(Vu 8 VH

2 , VuVH
2 , aAu , ub) 4n0 (VuVH

2 , aAu , ub)
d

dt
VuVH

2 .

We can therefore state:

THEOREM 3.5. – Let us suppose that E is a semi-conserved energy for (1.2)
with M(r , s) F0. Moreover let us suppose that:

1. n0
2 (r , s)rGK(M(r , s) ), for rGc 21 s , where K is a nondecreasing func-

tion, and L(y) 4y1K(y) is an admissible function.

2. At least one of the following conditions is verified:

(a) for each I4 [0 , z] ’ [0 , 1Q[

lim
sK1Q

inf
r�I , rG (1 /c) s

M(r , s) 41Q ;(3.5)

(b) for some continuous function g and rGc 21 s :

Nn(r , s)NGg(r , M(r , s) )(3.6)
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(c) for some continuous functions f , x with lim
sK1Q

f(s) 41Q:

Nn0 (r , s)Nf(s) Gx(r , M(r , s) )(rGc 21 s)(3.7)

and for some continuous function g(Q , Q , Q), nondecreasing in each varia-
ble:

Nn(r , s)NGg(r , M(r , s), n0 (r , s) ) (rGc 21 s) .(3.8)

Then Problem (1.2) has a global A-analytic solution u�C 2 ( [0 , 1Q[, V) as
soon as u0 , u1 �A .

An immediate consequence of Theorem 3.5 is the following:

COROLLARY 3.6. – Let us suppose that E is a semi-conserved energy for
(1.2) such that

n0
2 (r , s)rGc1 1c2 M(r , s) and lim

r1sK1Q
M(r , s) 41Q .

Then Problem (1.2) has a global A-analytic solution u�C 2 ( [0 , 1Q[, V) as
soon as u0 , u1 �A .

3.2. Applications.

Now we get some examples in which we can apply Theorem 3.1-3.5.
In these examples, we assume V4Ha-per

1 (Rh ), V 84Ha-per
-1 (Rh ), and A42D.

Moreover, in all the considered case, we suppose that the initial data
u0 , u1 �V are A-analytic, and V QV denotes the usual L 2 norm.

EXAMPLE 3.7. – Let us suppose that m , n : [0 , 1Q[KR are continuous
functions and that:

mF0 and inf
rF0

s
0

r

n(s) ds�R .(3.9)

Then the Cauchy problem

.
/
´

utt 2m(V˜uV

2 ) Du1n(VuV

2 ) u40

u(0 , x) 4u0 , ut (0 , x) 4u1

(3.10)

has a global analytic solution u�C 2 ( [0 , 1Q[, V).
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EXAMPLE 3.8. – Let c0 be a constant for which (1.1) is verified. Then the
Cauchy problem:

.
/
´

utt 2V˜uV

2 Du2 (c0
2
VuV

2 11) u40

u(0 , x) 4u0 , ut (0 , x) 4u1

(3.11)

has a global analytic solution u�C 2 ( [0 , 1Q[, V).

EXAMPLE 3.9. – The Cauchy problem:

.
/
´

utt 2
V˜uV

2

11VuV

4
Du2

V˜uV

4
VuV

2

(11VuV

4 )2
u40

u(0 , x) 4u0 , ut (0 , x) 4u1

(3.12)

has a global analytic solution u�C 2 ( [0 , 1Q[, V).

EXAMPLE 3.10. – The Cauchy problem:

.
/
´

utt 2
VuV

2

11V˜uV

2
Du1arctan (V˜uV

2 ) u40

u(0 , x) 4u0 , ut (0 , x) 4u1

(3.13)

has a global analytic solution u�C 2 ( [0 , 1Q[, V).

EXAMPLE 3.11. – The Cauchy problem:

.
/
´

utt 2V˜uV

4 Du1V˜uV

2 u40

u(0 , x) 4u0 , ut (0 , x) 4u1

(3.14)

has a global analytic solution u�C 2 ( [0 , 1Q[, V).

4. – Proofs.

We fix a notation that we use in the following proofs, i.e.:

mv (t) »4m(Vv(t)VH
2 , aAv(t), v(t)b) , nv (t) »4n(Vv(t)VH

2 , aAv(t), v(t)b) .

Firstly we prove:

LEMMA 4.1. – For every u0 , u1 �A there exists a time T4T(u0 , u1 ) such
that problem (1.2) has a solution u�C 2 ( [0 , T], V) with Au�C 0 ( [0 , T], V).
Moreover u , u 8 are A-analytic.

PROOF. – (we follow the outline of [2])
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Let Vh be the linear space spanned by v1 , R , vh (the first h-eigenvectors)
and let Ph : HKVh be defined by:

Ph u»4 !
k41

h

(u , vk )H vk .

Let us consider the Cauchy problem in Vh :

(CPh )
.
/
´

uh91m(Vuh VH
2 , aAuh , uh b) Auh 1n(Vuh VH

2 , aAuh , uh b) uh 40

uh (0) 4Ph u0 , uh8 (0) 4Ph u1 .

Since Vh is finite dimensional, by the Peano’s Theorem, problem (CPh) has a lo-
cal solution, which can be extended to a maximal solution uh : [0, Th [KVh .

Now let us prove that Th FTD0 for all h�N .
If we set yk (t) »4 (uh (t), vk )H , then we can define:

ek (uh , t) »4
1

2
(l k

2 Nyk (t)N2 1Nyk (t)N2 1Nyk8 (t)N2 ) .

It is easy to prove that:

ek (uh , t) Gek (uh , 0 ) expu s
0

t

l k N12muh
(s)Nds1s

0

t

N12nuh
(s)Ndsv

4: ek (uh , 0 ) g k (t) ,

therefore one has

Vuh VH
2 1 aAuh , uh b G2 !

k41

h

ek (uh , 0 ) g k (t) .(4.1)

On the other part, by the A-analyticity of u0 , u1 (see Proposition 2.2), there
exists some dD0 such that:

2 !
k41

1Q

ek (uh , 0 ) e 2dl k EC 21 b ,(4.2)

where we have set, for C»4e d

b»411C !
k41

1Q

e 2dl k (N(u0 , vk )H N2 l k
2 1N(u0 , vk )H N2 1N(u1 , vk )H N2 ) .

Now let us define:

T»4g11 sup
0 Gr , sGb

N12m(r , s)N1 sup
0 Gr , sGb

N12n(r , s)Nh21

d .



GHISI MARINA192

Let us prove that Th DT for all h�N , and

Vuh VH
2 , aAuh , uh b Gb on [0 , T] .(4.3)

Let us set

Th*4 sup ]t� [0 , Th [ : Vuh VH
2 , aAuh , uh b Gb on [0 , t]( .

We shall prove that Th*DT . Let us suppose by contradiction that Th*GT . In
this case, by the definition of T:

s
0

Th*

N12muh
(s)Nds1s

0

Th*

N12nuh
(s)NdsGd .

Now let us observe also that Th*4Th is not admissible (since in this situation
muh

and nuh
are bounded and then the solution, using Lemma 2.3, can be ex-

tended on [0 , Th ]), then must be Th*ETh . Therefore, by (4.1)-(4.2):

Vuh VH
2 (Th*)1 aAuh (Th*), uh (Th*)b G2C !

k41

h

ek (uh , 0 ) e dl k Eb ,

whereas, by the definition of Th* one obtains

Vuh VH
2 (Th*)1 aAuh (Th*), uh (Th*)b Fb .

Hence we have a contradiction. So we have achieved (4.3).
Therefore on [0 , T] we obtain:

ek (uh , t) GCe dl k (N(u0 , vk )H N2 l k
2 1N(u0 , vk )H N2 1N(u1 , vk )H N2 ) ,

hence, for some dD0:

!
k41

1Q

l k
8 ek (uh , t) Gd !

k41

1Q

e 2dl k (N(u0 , vk )H N2 l k
2 1N(u0 , vk )H N2 1N(u1 , vk )H N2 ) .

By this, the sequences (A 2 uh8 ) and (A 5/2 uh ) are bounded in C 0 ( [0 , T], V).
Now the compactness of A 21 : VKV and Ascoli’s Theorem ensure that

there exists a subsequence (uhk
) and a function u such that Au�C 0 ( [0 , T], V)

and Auhk
KAu , uhk

Ku , uhk
8Ku 8 in C 0 ( [0, T], V). Therefore, by letting kK1Q

in (CPhk
) we see that uhk

9 Ku 9 in C 0 ( [0 , T], V), u solves problem (1.2)
and

!
k41

1Q

e dl k ek (u , t) G !
k41

1Q

Ce 2dl k ek (u , 0 ) E1Q . r

We recall that, by (1.1), if u is a solution of (1.2) then we have:

VuVH
2 G

1

c
aAu , ub .(4.4)
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L e t u b e a lo c a l A- a n a l y t i c s o l u t i o n ( s e e L e m m a 4 . 1 ) o f ( 1 . 2 ) d e f i n e d o n
[ 0 , T[ , TD0 . If we pr o v e t h a t u c a n b e e x t e n d e d o n t h e w h o l e [ 0 , T] as an
A- a n a l y t i c f u n c t i o n , t h e n b y s t a n d a r d a r g u m e n t s w e c a n e a s y o b t a i n t h e
g l o b a l e x i s t e n c e o f u . In fa c t w e p r o v e T h e o r e m 3 . 1 - 3 . 3 - 3 . 5 i f w e s h o w t h a t
w e c a n a p p l y L e m m a 2 . 3 .

Proof of Theorem 3.1

l Case m , n bounded. We can apply directly Lemma 2.3.

l Case 1)-3) hold true.

By (3.1), there exists u such that M0 (r , s) Fu on the strip rG
s

c
. Moreover

since (4.4) holds true and E is a conserved energy, then, for some bF0:

Vu 8 VH
2 4E(Vu1 VH

2 , Vu0 VH
2 , aAu0 , u0 b)2M0 (VuVH

2 , aAu , ub)2K(VuVH
2 )

Gb2K(VuVH
2 ),

hence:

(VuVH
2 )842(u 8 , u)H GVuVH

2 1Vu 8 VH
2

GVuVH
2 1b2K(VuVH

2 ).

Now, if we define y»4VuVH
2 we obtain the ordinary differential inequality y 8G

y1b2K(y), and since y1b2K(y) is an admissible function, by a standard
comparison argument y must be bounded on [0 , T[. Hence Vu 8 VH

2 and, by (3.2),
aAu , ub must be also bounded on [0 , T[.

Therefore mu (t), nu (t) are bounded, and we can apply Lemma
2.3. r

Proof of Theorem 3.3.
We only have to prove that we can apply Lemma 2.3, that is

s
0

T

mu (s) ds1s
0

T

Nnu (s)NdsE1Q .(4.5)

As in the second case of the previous theorem, we can prove that VuVH
2 , and

hence Vu 8 VH
2 are bounded on [0 , T[. By this fact, since

M(VuVH
2 , aAu , ub) 4E(Vu1 VH

2 , Vu0 VH
2 , aAu0 , u0 b)2Vu 8 VH

2 ,

then M(VuVH
2 , aAu , ub) is bounded too.

Let us define

E0 (t) »4Vu1u 8 VH
2 1VuVH

2 1M(VuVH
2 , aAu , ub) .
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Then, since E is a conserved energy and M(VuVH
2 , aAu , ub) is bounded, one can

easy see that for some constant CT :

E08422mu (t)aAu , ub22nu (t)VuVH
2 12Vu 8 VH

2 14(u 8 , u)H

42(2mu (t)aAu , ub2nu (t)VuVH
2 )12(Vu1u 8 VH

2 2VuVH
2 )

G2(2mu (t)aAu , ub2nu (t)VuVH
2 12E0 1CT ) .

Since VuVH
2 and M(VuVH

2 , aAu , ub) are bounded, then by assumption (3.4),
n(VuVH

2 , aAu , ub) is bounded on [0 , T[. Hence:

s
0

T

Nn(VuVH
2 , aAu , ub)NdsE1Q .

Moreover, for some constant cT :

E08G22m(VuVH
2 , aAu , ub)aAu , ub1cT 12E0 .

By this, for some constant BT :

s
0

T

2m(VuVH
2 , aAu , ub)aAu , ub dsGE0 (0) e 2T 1BT ,

hence it is also bounded

s
0

T

m(VuVH
2 , aAu , ub) ds4 s

[0 , T[O]aAu , ub D1(

m(VuVH
2 , aAu , ub) ds

1 s
[0 , T[O]aAu , ub G1(

m(VuVH
2 , aAu , ub) ds . r

Proof of Theorem 3.5.
Firstly, we prove that, Vu 8 VH

2 , and hence VuVH
2 are bounded on [0 , T[. In

fact:

E 8GNn0 (VuVH
2 , aAu , ub)NVuVH Vu 8 VH G

1

2
(n0

2 (VuVH
2 , aAu , ub)VuVH

2 1Vu 8 VH
2 ) .

Hence, since MF0 and K is nondecreasing E 8GE1K(E). Since L(y) 4y1

K(y) is an admissible function, then by a standard argument for the ordinary
differential inequalities, E must be bounded on [0 , T[. Then Vu 8 VH

2 and M (and
hence VuVH

2 and n0
2 (VuVH

2 , aAu , ub)VuVH
2 ) are bounded.

Moreover if (3.5) hold true, then aAu , ub is bounded, and hence the func-
tions m(VuVH

2 , aAu , ub) and n(VuVH
2 , aAu , ub) are bounded too and we can apply

Lemma 2.3.
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If it is not the case, let us define, as in proof of Theorem 3.3:

E0 (t) »4Vu1u 8 VH
2 1VuVH

2 1M(VuVH
2 , aAu , ub) .

Then, since E is a semi-conserved energy and n0 (VuVH
2 , aAu , ub)VuVH is a

bounded function, we have, for some constant CT :

E0842(2mu (t)aAu , ub2nu (t)VuVH
2 1Vu 8 VH

2 )1

14(u 8 , u)H 12n0 (VuVH
2 , aAu , ub)(u 8 , u)H

G2(2mu (t)aAu , ub2nu (t)VuVH
2 )15Vu 8 VH

2

12VuVH
2 1n0

2 (VuVH
2 , aAu , ub)VuVH

2

G2(2mu (t)aAu , ub2nu (t)VuVH
2 1CT ) .

l Case (3.6) holds true.
The function n(VuVH

2 , aAu , ub) is bounded, hence as in the second case of the
previous theorem we can prove that

s
0

T

m(VuVH
2 , aAu , ub) ds1s

0

T

Nn(VuVH
2 , aAu , ub)NdsE1Q ,

and apply Lemma 2.3.

l Case (3.7)-(3.8) hold true.
Since g is nondecreasing in each variable, then there exist two constant a1 , a2

such that:

Nn(VuVH
2 , aAu , ub)NGg(a1 , a2 , n0 (VuVH

2 , aAu , ub) )

4: g 0 (n0 (VuVH
2 , aAu , ub) ) .

Let us set

G 1 4 s
[0 , T[O]aAu , ub Ga3(

g 0 (n0 (VuVH
2 , aAu , ub) ) dt

G 2 4 s
[0 , T[O]aAu , ub Da3(

g 0 (n0 (VuVH
2 , aAu , ub) f(aAu , ub) ) dt ,

where, for sFa3 , we have f(s) F1. Since

s
0

T

g 0 (n0 (VuVH
2 , aAu , ub) ) dtGG 1 1G 2 ,
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we can conclude, by (3.7), that

s
0

T

Nn(VuVH
2 , aAu , ub)NdsE1Q .

Therefore as in the previous theorem we can prove that

s
0

T

m(VuVH
2 , aAu , ub) dsE1Q

and apply Lemma 2.3. r

Proof of Example 3.4.
We shall prove that there exist some initial data such that VuVH

2 blows-up in
a finite time. In fact we have that:

( (ut , u)H )842
V˜uV

2

11V˜uV

4
1Vut V

2 1VuV

6 ,

hence, integrating over [0 , T]:

(ut , u)H 4 (u1 , u0 )H 1s
0

t

Vut V
2 1VuV

6 dt2s
0

t

V˜uV

2

11V˜uV

4
dt .

Let us assume that tG1 and (u1 , u0 )H D1, therefore

(ut , u)H Fs
0

t

VuV

6 dt .

If we denote y4VuV

2, y0 4Vu0 V

2, we obtain, for tG1:

y 8F2 s
0

t

y 3 (t) dt ,

hence

g y 4

4
h8

4y 3 y 8Fuy s
0

t

y 3 (t) dtz
2v8

.

Then we have proved that:

y 4

4
F

y0
4

4
1u s

0

t

y 3 (t) dtv
2

.(4.6)
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Now let us define

z»4s
0

t

y 3 (t) dt .

By (4.6) we deduce:

(z 8 )4/3 Fy0
4 14z 2 ,

hence by a standard comparison argument, if y0 is sufficiently big, z blows-up
in a time T0 E1, and therefore y blows-up too. r

Proof of Example 3.7.
The function

E(w , r , s) 4w1s
0

s

m(x) dx1s
0

r

n(x) dx4w1M(r , s)

is a conserved energy, that, by (3.9) verifies (3.3) with M4M0 and K40.
Moreover L(y) 4y1b is obviously an admissible function, and n depends only
from r, hence we can apply Theorem 3.3. r

Proof of Example 3.8.
In this case a conserved energy is the function

E(w , r , s) 4w1
s 2

2
2

c0 r 2

2
2r4w1M0 (r , s)2r .

Moreover M0 (r , s) is nonnegative on the strip rG
s

c0

and L(y) 42y1b is an

admissible function for all bF0. Then we can apply Theorem 3.3. r

Proof of Example 3.9.
The function

E(w , r , s) 4w1
s 2

2(11r 2 )
4w1M(r , s)

is a conserved energy. Therefore all the hypotheses of Theorem 3.1 as obvious-
ly verified, by assuming M0 (r , s) 4M(r , s) and K(r) 40. r

Proof of Example 3.10.
The function

E(w , r , s) 4w1arctan (s) r4w1M(r , s)

is a conserved energy that verifies (3.3) with M0 (r , s) 4M(r , s) and K(r) 40.
Moreover L(y) 4y1b is an admissible function, and n is bounded. Then we
can apply Theorem 3.3. r
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Proof of Example 3.11.
We can apply Corollary 3.6, since the function

E(w , r , s) 4w1
s 3

3
4w1M(r , s)

is a semi-conserved energy, with n0 (r , s) 42s, and for rGc0
21 s (where (1.1)

is verified with c4c0):

n0
2 (r , s) r4s 2 rGc0

21 s 3 . r
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