Bollettino

Unione Matematica Italiana

A. Mercaldo
 Existence and boundedness of minimizers of a class of integral functionals

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 6-B (2003), n.1, p. 125-139.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2003_8_6B_1_125_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2003.

Existence and Boundedness of Minimizers of a Class of Integral Functionals.

A. Mercaldo (*)

Sunto. - In questo lavoro si considera una classe di funzionali integrali, il cui integrando verifica le seguenti condizioni

$$
\begin{gathered}
f(x, \eta, \xi) \geqslant a(x) \frac{|\xi|^{p}}{(1+|\eta|)^{\alpha}}-b_{1}(x)|\eta|^{\beta_{1}}-g_{1}(x), \\
f(x, \eta, 0) \leqslant b_{2}(x)|\eta|^{\beta_{2}}+g_{2}(x)
\end{gathered}
$$

dove $0 \leqslant \alpha<p, 1 \leqslant \beta_{1}<p, 0 \leqslant \beta_{2}<p, \alpha+\beta_{i} \leqslant p, a(x), b_{i}(x), g_{i}(x)(i=1,2)$ sono funzioni non negative che soddisfano opportune ipotesi di sommabilità. Si dimostra l'esistenza e la limitatezza di minimi di tali funzionali nella classe di funzioni appartenenti allo spazio di Sobolev pesato $W^{1, p}(a)$, che assumono un assegnato dato al bordo $u_{0} \in W^{1, p}(a) \cap L^{\infty}(\Omega)$.

Summary. - In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type

$$
\begin{gathered}
f(x, \eta, \xi) \geqslant a(x) \frac{|\xi|^{p}}{(1+|\eta|)^{\alpha}}-b_{1}(x)|\eta|^{\beta_{1}}-g_{1}(x) \\
f(x, \eta, 0) \leqslant b_{2}(x)|\eta|^{\beta_{2}}+g_{2}(x)
\end{gathered}
$$

where $0 \leqslant \alpha<p, 1 \leqslant \beta_{1}<p, 0 \leqslant \beta_{2}<p, \alpha+\beta_{i} \leqslant p, a(x), b_{i}(x), g_{i}(x)(i=1,2)$ are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space $W^{1, p}(a)$, which assume a boundary datum $u_{0} \in W^{1, p}(a) \cap L^{\infty}(\Omega)$.

1. - Introduction.

Let us consider functionals of Calculus of Variations of the type

$$
\begin{equation*}
F(v)=\int_{\Omega} f(x, v, \nabla v) d x \tag{1.1}
\end{equation*}
$$

(*) Work partially supported by MURST.
where Ω is a bounded open subset of \mathbb{R}^{n}, having finite Lebesgue measure and $f: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a Carathéodory function, convex in ξ which satisfies the following growth conditions

$$
\begin{gather*}
f(x, \eta, \xi) \geqslant a(x) \frac{|\xi|^{p}}{(1+|\eta|)^{\alpha}}-b_{1}(x)|\eta|^{\beta_{1}}-g_{1}(x) \tag{1.2}\\
f(x, \eta, 0) \leqslant b_{2}(x)|\eta|^{\beta_{2}}+g_{2}(x) \tag{1.3}
\end{gather*}
$$

where $p>1,0 \leqslant \alpha<p, 1 \leqslant \beta_{1}<p, 0 \leqslant \beta_{2}<p, \alpha+\beta_{i} \leqslant p,(i=1,2)$ and $a(x)$, $b_{i}(x), g_{i}(x)(i=1,2)$ are nonnegative functions, which belong to some Lebesgue space.

Our aim is to prove existence and boundedness of minimizers of F in the class of functions v belonging to the weighted Sobolev space $W^{1, p}(a)$, which assume a boundary datum $u_{0} \in W^{1, p}(a) \cap L^{\infty}(\Omega)$ in a weak sense, i.e. $v-u_{0} \in W_{0}^{1, p}(a)$.

Here we recall that the weighted Sobolev space $W^{1, p}(a)$ is the closure of $C^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{1, p, a}=\|u\|_{1, p}+\||\nabla u|\|_{1, p},
$$

where

$$
\|u\|_{1, p}=\left(\int_{\Omega}|u|^{p} a(x) d x\right)^{1 / p}
$$

Moreover $W_{0}^{1, p}(\alpha)$ is the closure of $C_{0}^{\infty}(\bar{\Omega})$ in $W^{1, p}(a)$.
In [BO] existence and regularity results are proved for a class of functionals, whose model is $F(v)$ with $f(x, \eta, \xi)$ given by

$$
\begin{equation*}
f(x, \eta, \xi)=\frac{|\xi|^{p}}{(1+|\eta|)^{\alpha}}-b(x) \eta, \tag{1.4}
\end{equation*}
$$

with $\alpha<p-1$. Similar functionals are studied in [GP2]. The properties of solutions of equations related to functonals (1.1) are studied by many authors (see, e.g. [AFT], [BDO], [Tr], [GP1], [GP2]).

The difficulties which arise in studying functionals (1.1) are due to the fact that, in general, they are not coercive in the space $W^{1, p}(a)$ and then F may not attain minimum on this space. As in [BO], in this paper we extend the functional F to a functional G defined on a larger space, that is the class of functions v belonging to $W^{1, q}(\Omega)$ such that $v-u_{0} \in W_{0}^{1, q}(\Omega)$, for a suitable q less than p and such that the inclusion of $W^{1, p}(a)$ in $W^{1, q}(\Omega)$ holds (see, e.g., [MS]). We prove that the functional G is coercive and weakly lower semicontinuous in the above space, so that it admits a minimizer in such a class of functions. Roughly speaking, we show that the functional G is coercive in the class of functions v
belonging to a $W^{1, q}(\Omega)$ such that $v-u_{0} \in W_{0}^{1, q}(\Omega)$, if the growth of $f(x, \eta, \xi)$ with respect to η is controlled from below, that is if we assume $\alpha+\beta_{1}<p$ or if $\alpha+\beta_{1}=p$ and the norm of b_{1} is small enough.

In Section 2, we prove that any minimizer of G is bounded under the following assumptions of summability of the coefficients

$$
\frac{1}{a} \in L^{\frac{m}{p-1}}(\Omega), \quad b_{i} \in L^{r_{i}}(\Omega), \quad g_{i} \in L^{k_{i}}(\Omega)
$$

with

$$
\begin{equation*}
\frac{1}{r_{i}}+\frac{p-1}{m}<\frac{p}{n}, \quad \frac{1}{k_{i}}+\frac{p-1}{m}<\frac{p}{n}, \quad i=1,2 \tag{1.5}
\end{equation*}
$$

and under the conditions

$$
\begin{equation*}
\alpha+\beta_{i} \leqslant p, \quad i=1,2 . \tag{1.6}
\end{equation*}
$$

We use, among other tools, a result proved by Talenti in [T] (see also [M]). Finally, since we have boundedness of minimizers, the growth conditions on F allows to prove that the minimizers of G belong to $W^{1, p}(a)$ and thus they are minimizers of F.

Let us observe that when f is given by (1.4) and $a(x)$ is constant, the results which we obtain coincide with those proved in [BO].

Related results are also contained in [C1], [C2], [CS], [S].

2. - An existence result.

In the present Section we show that F, suitable extended, has a minimum in the class of functions v belonging to $W^{1, q}(\Omega)$ and assuming the boundary datum u_{0}, that is $v-u_{0} \in W_{0}^{1, q}(\Omega)$, where

$$
q=\frac{m n(p-\alpha)}{m(n-\alpha)+n(p-1)} .
$$

More precisely let us consider the functional (1.1) under the assumption (1.2) and
(2.1) $\frac{1}{a} \in L^{\frac{m}{p-1}}(\Omega)$, with

$$
\frac{m}{p-1} \geqslant \frac{n}{p}, \quad 1+\frac{p-1}{m}+\alpha\left(1-\frac{1}{n}\right)<p<n\left(1+\frac{p-1}{m}\right)
$$

(2.2) $\quad b_{1} \in L^{r_{1}}(\Omega)$, with

$$
\frac{1}{r_{1}} \leqslant 1-\frac{\beta_{1}}{q^{*}},
$$

where $q^{*}=n q /(n-q)$;
(2.3) $g_{1} \in L^{1}(\Omega)$;
(2.4) $\alpha+\beta_{1}<p$.

Moreover let us assume that the boundary datum u_{0} belongs to $W^{1, p}(a) \cap$ $L^{\infty}(\Omega)$.

We define the following functional

$$
G(v)= \begin{cases}F(v), & \text { if } F(v) \text { is finite } \\ +\infty, & \text { otherwise }\end{cases}
$$

where $v \in W^{1, q}(\Omega)$ is a function such that $v-u_{0} \in W_{0}^{1, q}(\Omega)$ and we prove that G has a minimizer $u \in W^{1, q}(\Omega)$ such that $u-u_{0} \in W_{0}^{1, q}(\Omega)$.

Let us observe that the condition

$$
1+\frac{p-1}{m}+\alpha\left(1-\frac{1}{n}\right)<p
$$

ensures that $q>1$. Furthermore (2.1) implies

$$
1+\frac{p-1}{m}<p<n\left(1+\frac{p-1}{m}\right)
$$

this condition on p together with the summability assumption on $1 / a$ imply that the weighted Sobolev space $W^{1, p}(a)$ is embedded in the Sobolev space $W^{1, p \tau}(\Omega)$ with $1 / \tau=1+(p-1) / m$ (see, e.g., [MS]). Moreover it results $q<$ $p \tau$, so that $W^{1, p \tau}(\Omega)$ is included into $W^{1, q}(\Omega)$. Thus the functional $G(v)$ is well defined.

We prove the following existence result (see also [BO])
Theorem 2.1. - Let us assume conditions (1.2), (2.1)-(2.4). Then G has a minimizer $u \in W^{1, q}(\Omega)$ such that $u-u_{0} \in W_{0}^{1, q}(\Omega)$.

Proof. - By classical results, it is sufficient to prove that G is both coercive and weakly lower semicontinuous in the class of functions v belonging to $W^{1, q}(\Omega)$ such that $v-u_{0} \in W_{0}^{1, q}(\Omega)$.

We begin by proving the coerciveness of the functional G, i.e. we prove that, for every $v \in W^{1, q}(\Omega)$ such that $v-u_{0} \in W_{0}^{1, q}(\Omega)$, it results

$$
\begin{equation*}
G(v) \geqslant c\|v\|_{1, q}^{p-\alpha}-c, \tag{2.5}
\end{equation*}
$$

where c is a positive constant depending only on $n, m, p, r_{1},|\Omega|, \alpha, \beta_{1}$, $\left\|\frac{1}{a}\right\|_{m /(p-1)},\left\|b_{1}\right\|_{r_{1}},\left\|b_{1}\right\|_{1},\left\|u_{0}\right\|_{\infty},\left\|\nabla u_{0}\right\|_{q}$ and $\|g\|_{1}$.

From now on c will denote a positive constant depending only on data, whose value may change at each appearence.

From assumption (1.2), we have

$$
\begin{equation*}
G(v) \geqslant \int_{\Omega} \frac{|\nabla v|^{p} a(x)}{(1+|v|)^{\alpha}} d x-\int_{\Omega} b_{1}(x)|v|^{\beta_{1}} d x-\int_{\Omega} g_{1}(x) d x . \tag{2.6}
\end{equation*}
$$

Now we evaluate the integrals on the right-hand side in (2.6).
By Hölder inequality, we have

$$
\begin{array}{r}
\int_{\Omega}|\nabla v|^{q} d x \leqslant\left(\int_{\Omega} \frac{|\nabla v|^{p} a(x)}{(1+|v|)^{\alpha}} d x\right)^{\frac{q}{p}}\left(\int_{\Omega} \frac{1}{a(x)^{m /(p-1)}} d x\right)^{\frac{q}{p} \frac{(p-1)}{m}} \times \tag{2.7}\\
\quad \times\left(\int_{\Omega}(1+|v|)^{q^{*}} d x\right)^{\frac{q}{p} \frac{\alpha}{q^{*}}}
\end{array}
$$

since

$$
\frac{q}{p}+\frac{q}{p} \frac{(p-1)}{m}+\frac{q}{p} \frac{\alpha}{q^{*}}=1
$$

On the other hand, since $v-u_{0} \in W_{0}^{1, q}(\Omega)$, by Sobolev embedding theorem, we deduce

$$
\begin{align*}
\int_{\Omega}(1+|v|)^{q^{*}} d x & \leqslant c\left(1+\left\|u_{0}\right\|_{\infty}\right)^{q^{*}}|\Omega|+c\left\|v-u_{0}\right\|_{q^{*}}^{q^{*}} \leqslant \tag{2.8}\\
& \leqslant c+c\left\|\nabla\left(v-u_{0}\right)\right\|_{q}^{q^{*}} \leqslant \\
& \leqslant c+c\|\nabla v\|_{q}^{q^{*}}+c\left\|\nabla u_{0}\right\|_{q}^{q^{*}}
\end{align*}
$$

From (2.8), if $\|\nabla v\|_{q}$ is large enough, we deduce

$$
\begin{equation*}
\int_{\Omega}(1+|v|)^{q^{*}} d x \leqslant c\|\nabla v\|_{q}^{q^{*}} \tag{2.9}
\end{equation*}
$$

Combining (2.7) and (2.9), we have

$$
\begin{equation*}
\int_{\Omega} \frac{|\nabla v|^{p} a(x)}{(1+|v|)^{\alpha}} d x \geqslant c\|\nabla v\|_{q}^{p-\alpha} \tag{2.10}
\end{equation*}
$$

Furthermore, since condition (2.2) holds true, we can use Hölder inequality
and Sobolev embedding theorem obtaining
(2.11) $\int_{\Omega} b_{1}(x)|v|^{\beta_{1}} d x+\int_{\Omega} g_{1}(x) d x \leqslant$

$$
\begin{aligned}
& \leqslant c \int_{\Omega} b_{1}(x)\left|v-u_{0}\right|^{\beta_{1}} d x+c \int_{\Omega} b_{1}(x)\left|u_{0}\right|^{\beta_{1}} d x+\left\|g_{1}\right\|_{1} \leqslant \\
& \leqslant c\left\|b_{1}\right\|_{r_{1}}\left\|v-u_{0}\right\|_{q^{*}}^{\beta_{1}}|\Omega|^{1-1 / r_{1}-\beta_{1} / q^{*}}+\left\|\left|u_{0}\right|^{\beta_{1}}\right\|_{\infty}\left\|b_{1}\right\|_{1}+\left\|g_{1}\right\|_{1} \leqslant \\
& \leqslant c\left\|\nabla\left(v-u_{0}\right)\right\|_{q}^{\beta_{1}}+c \leqslant \\
& \leqslant c\|\nabla v\|_{q}^{\beta_{1}}+c .
\end{aligned}
$$

Combining (2.6), (2.10) and (2.11), we have

$$
G(v) \geqslant c\|\nabla v\|_{q}^{p-\alpha}-c\|\nabla v\|_{q}^{\beta_{1}}-c .
$$

Since $p-\alpha>\beta_{1}$, if $\|\nabla v\|_{q}$ is large enough, we have

$$
G(v) \geqslant c\|\nabla v\|_{q}^{p-\alpha}-c .
$$

Finally, we get

$$
\begin{align*}
\|v\|_{1, q}^{p-\alpha} & =\left(\|\nabla v\|_{q}+\|v\|_{q}\right)^{p-\alpha} \leqslant \tag{2.13}\\
& \leqslant c\|\nabla v\|_{q}^{p-\alpha}+c\left\|v-u_{0}\right\|_{q}^{p-\alpha}+c\left\|u_{0}\right\|_{q}^{p-\alpha} \leqslant \\
& \leqslant c\|\nabla v\|_{q}^{p-\alpha}+c \leqslant \\
& \leqslant c(G(v)+1)
\end{align*}
$$

from which we obtain (2.5).
Finally, assumption (1.2) on f allows to apply classical semicontinuity theorems for integral functionals (see, e.g., [DG], [G]).

Remark 2.1. - Let us observe that if $\alpha+\beta_{1}=p$, then G is coercive in the class of functions v belonging to $W^{1, q}(\Omega)$ such that $v-u_{0} \in W_{0}^{1, q}(\Omega)$ for every a satisfying (2.1) and b_{1} satisfying (2.2) with $\left\|b_{1}\right\|_{r_{1}}$ small enough. Indeed, looking carefully at inequality (2.11), the following estimate holds

$$
\int_{\Omega} b_{1}(x)|v|^{\beta_{1}} d x+\int_{\Omega} g_{1}(x) d x \leqslant c\left\|b_{1}\right\|_{r_{1}}|\Omega|^{p / n-1 / r_{1}-(p-1) / m}\|\nabla v\|_{q}^{p-a}+c_{1}
$$

where c is a constant depending only on β_{1} and c_{1} is a constant depending only on $r_{1},|\Omega|, \beta_{1},\left\|b_{1}\right\|_{r_{1}},\left\|b_{1}\right\|_{L^{1}},\left\|u_{0}\right\|_{\infty},\left\|\nabla u_{0}\right\|_{q}$ and $\|g\|_{1}$.

Hence, using (2.6) and (2.10), we have

$$
G(v) \geqslant c\left(1-\left\|b_{1}\right\|_{r_{1}}|\Omega|^{p / n-1 / r_{1}-(p-1) / m}\right)\|\nabla v\|_{q}^{p-\alpha}-c_{1} .
$$

In this way we again obtain (2.5), if we assume

$$
\left\|b_{1}\right\|_{r_{1}}<\frac{1}{|\Omega|^{p / n-1 / r_{1}-(p-1) / m}}
$$

REmark 2.2. - If $p>n\left(1+\frac{p-1}{m}\right), W^{1, p}(a)$ is embedded in $L^{\infty}(\Omega)$ (see, e.g. [MS]), so that, if $\alpha+\beta_{1}<p$, then F is coercive on $W^{1, p}(a)$ for every $b_{1} \in$ $L^{1}(\Omega)$. Indeed using (1.2), for every $v \in W^{1, p}(a)$ such that $v-u_{0} \in W_{0}^{1, p}(a)$, we get
(2.15) $\quad F(v) \geqslant \frac{1}{\left(1+\|v\|_{\infty}\right)^{\alpha}} \int_{\Omega}|\nabla v|^{p} a(x) d x-\int_{\Omega} b_{1}(x)|v|^{\beta_{1}} d x-\int_{\Omega} g_{1}(x) d x$.

Moreover, it results

$$
\begin{align*}
\|v\|_{\infty} & \leqslant\left\|v-u_{0}\right\|_{\infty}+\left\|u_{0}\right\|_{\infty} \leqslant \tag{2.16}\\
& \leqslant c\left\|\nabla\left(v-u_{0}\right)\right\|_{p, a}+\left\|u_{0}\right\|_{\infty} \leqslant \\
& \leqslant c\|\nabla v\|_{p, a}+c .
\end{align*}
$$

Substituing (2.16) in (2.15), it results

$$
\begin{aligned}
F(v) & \geqslant \frac{c}{\left(\|\nabla v\|_{p, a}+1\right)^{\alpha}}\|\nabla v\|_{p, a}^{p}-\left\|b_{1}\right\|_{1}\|v\|_{\infty}^{\beta_{1}}-\left\|g_{1}\right\|_{1} \geqslant \\
& \geqslant c\|\nabla v\|_{p, a}^{p-a}-c\left\|b_{1}\right\|_{1}\|\nabla v\|_{p, a}^{\beta_{1}}-\left\|g_{1}\right\|_{1},
\end{aligned}
$$

for every v such that $\|\nabla v\|_{p, a}$ is large enough.
Since $p-\alpha>\beta_{1}$, the last inequality gives

$$
F(v) \geqslant c\|\nabla v\|_{p, a}^{p}-c,
$$

for every v such that $\|\nabla v\|_{p, a}$ is large enough. By proceeding as in the proof of Theorem 2.1, we get again (2.5).

3. - Main result.

In this Section we will assume that the functional G has a minimizer $u \in$ $W^{1, q}(\Omega)$ such that $u-u_{0} \in W_{0}^{1, q}(\Omega)$ and we will prove that such a minimizer is bounded. From this result we will deduce that u is in $W^{1, p}(a)$ and thus u is a minimizer of F. We recall that conditions which assure the existence of u are given by Theorem 2.1.

Theorem 3.2. - Let us assume that conditions (1.2), (1.3), (2.1) are satisfied and that $u_{0} \in W^{1, p}(\alpha) \cap L^{\infty}$. Moreover, assume

$$
\begin{equation*}
b_{i} \in L^{r_{i}}(\Omega), \quad r_{i} \geqslant 1 \tag{3.1}
\end{equation*}
$$

with

$$
\begin{gathered}
\frac{1}{r_{i}}+\frac{p-1}{m}<\frac{p}{n} \quad i=1,2 ; \\
g_{i} \in L^{k_{i}}(\Omega), \quad k_{i} \geqslant 1
\end{gathered}
$$

with

$$
\frac{1}{k_{i}}+\frac{p-1}{m}<\frac{p}{n}, \quad i=1,2
$$

$$
\begin{equation*}
\alpha+\beta_{i} \leqslant p, \quad i=1,2 . \tag{3.3}
\end{equation*}
$$

Then any minimizer u of G on $W^{1, q}(\Omega)$ such that $u-u_{0} \in W_{0}^{1, q}(\Omega)$ is bound$e d$ and belongs to $W^{1, p}(a)$. Thus u is a minimizer of F in the class of functions belonging to $W^{1, p}(a)$ such that $u-u_{0} \in W_{0}^{1, p}(a)$.

Proof. - Let u be a minimizer of G on $W^{1, q}(\Omega)$ such that $u-u_{0} \in W_{0}^{1, q}(\Omega)$. We have

$$
G(u) \leqslant G(v),
$$

for any ammissible function v.
By the assumptions, the functions

$$
v(x)= \begin{cases}t, & t \leqslant u(x) \\ u(x), & -t<u(x)<t \\ -t, & u(x) \leqslant-t\end{cases}
$$

are ammissible, if the interval] $-t$, t with $t \geqslant 0$ includes the range of the boundary datum. Moreover, since $F(v)<+\infty$, then $G(v)=F(v)$.

In this way, we obtain

$$
\int_{|u|>t} f(x, u, \nabla u) d x \leqslant \int_{|u|>t} f(x, t \operatorname{sign} u, 0) d x .
$$

By assumptions (1.2) and (1.3)

$$
\begin{align*}
\int_{|u|>t} \frac{|\nabla u|^{p} a(x)}{(1+|u|)^{\alpha}} d x \leqslant \int_{|u|>t} b_{1}(x)|u|^{\beta_{1}} d x & +\int_{|u|>t} g_{1}(x) d x+ \tag{3.4}\\
& +t^{\beta_{2}} \int_{|u|>t} b_{2}(x) d x+\int_{|u|>t} g_{2}(x) d x
\end{align*}
$$

for any t such that $t>\operatorname{ess} \sup \left|u_{0}\right|$.
Since

$$
\frac{q}{p}\left(1+\frac{p-1}{m}+\frac{\alpha}{q^{*}}\right)=1
$$

by (3.4), using Hölder inequality, we get

$$
\begin{align*}
\int_{|u|>t}|\nabla u|^{q} \leqslant & \left(\int_{|u|>t} \frac{|\nabla u|^{p} a(x)}{(1+|u|)^{\alpha}} d x\right)^{\frac{q}{p}}\left(\int_{|u|>t} \frac{1}{a(x)^{m /(p-1)}} d x\right)^{\frac{q}{p} \frac{p-1}{m}} \times \tag{3.5}\\
& \times\left(\int_{|u|>t}(1+|u|)^{q^{*}} d x\right)^{\frac{\alpha q}{q^{* p}}} \leqslant \\
\leqslant & {\left[\int_{|u|>t} b_{1}(x)|u|^{\beta_{1}} d x+\int_{|u|>t} g_{1}(x) d x+t^{\beta_{2}} \int_{|u|>t} b_{2}(x) d x+\right.} \\
& \left.+\int_{|u|>t} g_{2}(x) d x\right]^{q / p}\left\|\frac{1}{a(x)}\right\|_{m /(p-1)}^{q / p}\left(\int_{|u|>t}(1+|u|)^{q^{*}} d x\right)^{\frac{\alpha q}{q^{*} p}}
\end{align*}
$$

Now, we evaluate each integral in the right-hand side of (3.5).
Observe that the condition $\frac{1}{r_{1}}+\frac{p-1}{m}<\frac{p}{n}$ is equivalent to $p-\alpha<$ $\left(1-\frac{1}{r_{1}}\right) q^{*}$, so that, from (3.3) it follows that

$$
\beta_{1}<\left(1-\frac{1}{r_{1}}\right) q^{*} .
$$

By Hölder inequality and Sobolev embedding theorem, we get

$$
\begin{align*}
\int_{|u|>t} b_{1}(x)|u|^{\beta_{1}} d x & \leqslant c \int_{|u|>t} b_{1}(x)|u-t|^{\beta_{1}} d x+c t^{\beta_{1}} \int_{|u|>t} b_{1}(x) d x \leqslant \tag{3.6}\\
& \leqslant c\left\|\mid b_{1}\right\|_{r_{1}}\left(\int_{|u|>t}|u-t|^{q^{*}} d x\right)^{\beta_{1} / q^{*}} \mu(t)^{1-1 / r_{1}-\beta_{1} / q^{*}}+
\end{align*}
$$

$$
+c\left\|b_{1}\right\|_{r_{1}} t^{\beta_{1}} \mu(t)^{1-1 / r_{1}} \leqslant
$$

$$
\leqslant c\left(\int_{|u|>t}|\nabla u|^{q}\right)^{\beta_{1} / q} \mu(t)^{1-1 / r_{1}-\beta_{1} / q^{*}}+c t^{\beta_{1}} \mu(t)^{1-1 / r_{1}},
$$

where c is a positive constant which depends only on $\beta_{1}, n, m, p, \alpha$ and $\left\|b_{1}\right\|_{r_{1}}$. Moreover

$$
\begin{equation*}
\int_{|u|>t} b_{2}(x) d x \leqslant\left\|b_{2}\right\|_{r_{2}} \mu(t)^{1-1 / r_{2}}, \tag{3.7}
\end{equation*}
$$

$$
\begin{align*}
\int_{|u|>t}(1+|u|)^{q^{*}} d x & \leqslant c(1+t)^{q^{*}} \mu(t)+c \int_{|u|>t}|u-t|^{q^{*}} d x \leqslant \tag{3.8}\\
& \leqslant c(1+t)^{q^{*}} \mu(t)+c\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{q^{* / q}} .
\end{align*}
$$

Taking into account (3.6)-(3.8), from (3.5), we get
(3.9) $\int_{|u|>t}|\nabla u|^{q} d x \leqslant c \mu(t)^{\frac{q}{p}\left(1-\frac{1}{r_{1}}-\frac{\beta_{1}}{q^{*}}\right)}\left[\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{\frac{\beta 1}{p}}+t^{\frac{q \beta 1}{p}} \mu(t)^{\frac{q \beta_{1}}{p q^{*}}}\right] \times$

$$
\begin{aligned}
& \times\left[(1+t)^{\frac{q \alpha}{p}} \mu(t)^{\frac{q \alpha}{p q^{*}}}+\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{\frac{\alpha}{p}}\right]+ \\
& +c t^{\frac{\beta 2 q}{p}} \mu(t)^{\frac{q}{p}\left(1-\frac{1}{r 2}\right)}\left[(1+t)^{\frac{q \alpha}{p}} \mu(t)^{\frac{q \alpha}{p q^{*}}}+\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{\frac{\alpha}{p}}\right]+ \\
& +c\left[\left(\int_{|u|>t} g_{1}(x) d x\right)^{\frac{q}{p}}+\left(\int_{|u|>t} g_{2}(x) d x\right)^{\frac{q}{p}}\right] \times \\
& \times\left[(1+t)^{\frac{q \alpha}{p}} \mu(t)^{\frac{q \alpha}{p q^{*}}}+\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{\frac{\alpha}{p}}\right] .
\end{aligned}
$$

Now, we want to evaluate the terms

$$
\begin{aligned}
& I_{1}=c \mu(t)^{\frac{q}{p}}\left(1-\frac{1}{r_{1}}-\frac{\beta_{1}}{q^{*}}\right)\left[\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{\frac{\beta_{1}}{p}}+t^{q \beta_{1} / p} \mu(t)^{\frac{q \beta_{1}}{p q^{*}}}\right] \times \\
& \times\left[(1+t)^{q \alpha / p} \mu(t)^{q \alpha / p q^{*}}+\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{\frac{\alpha}{p}}\right],
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}=t^{\frac{\beta 2 q}{p}} \mu(t)^{\frac{q}{p}}\left(1-\frac{1}{r 2}\right)\left[(1+t)^{\frac{q \alpha}{p}} \mu(t)^{\frac{q \alpha}{p q^{*}}}+\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{\frac{\alpha}{p}}\right], \\
& I_{3}=\left(\int_{|u|>t} g_{1}(x) d x\right)^{\frac{q}{p}}\left[(1+t)^{\frac{q \alpha}{p}} \mu(t)^{\frac{q \alpha}{p q^{*}}}+\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{\frac{\alpha}{p}}\right], \\
& I_{4}=\left(\int_{|u|>t} g_{2}(x) d x\right)^{\frac{q}{p}}\left[(1+t)^{\frac{q \alpha}{p}} \mu(t)^{\frac{q \alpha}{p q^{*}}}+\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{\frac{\alpha}{p}}\right] .
\end{aligned}
$$

Let us consider I_{1}. We can write

$$
\mu(t)^{\frac{q}{p}\left(1-\frac{1}{r_{1}}-\frac{\beta_{1}}{q^{*}}\right)}=\mu(t)^{\frac{q}{p}\left(1-\frac{1}{r_{1}}-\frac{p-\alpha}{q^{*}}\right)} \mu(t)^{\frac{q}{q^{*}}\left(1-\frac{\alpha+\beta_{1}}{p}\right), ~}
$$

and since

$$
\frac{\alpha}{p}+\frac{\beta_{1}}{p}+\frac{p-\left(\alpha+\beta_{1}\right)}{p}=1
$$

we can apply Young inequality

$$
\begin{align*}
I_{1} \leqslant c \mu(t)^{\frac{q}{p}}\left(1-\frac{1}{r_{1}}-\frac{p-\alpha}{q^{*}}\right) & \left\{\left(\frac{\alpha}{p}+\frac{\beta_{1}}{p}\right) \int_{|u|>t}|\nabla u|^{q} d x+\right. \tag{3.10}\\
& \left.+\left[\frac{p-\left(\alpha+\beta_{1}\right)}{p}+\frac{\beta_{1}}{p} t^{q}+\frac{\alpha}{p}(1+t)^{q}\right] \mu(t)^{q / q^{*}}\right\} \leqslant \\
& \leqslant c \mu(t)^{\frac{q}{p}\left(1-\frac{1}{r_{1}}-\frac{p-\alpha}{q^{*}}\right)}\left[(1+t)^{q} \mu(t)^{q / q^{*}}+\int_{|u|>t}|\nabla u|^{q} d x\right] .
\end{align*}
$$

Now we evaluate I_{2}. Since $\alpha+\beta_{2} \leqslant p$, then we can write

$$
\mu(t)^{q\left(1-\frac{1}{r_{2}}\right)}=\mu(t)^{\frac{q}{p}\left(1-\frac{1}{r_{2}}-\frac{p-\alpha}{q^{*}}\right)} \mu(t)^{\frac{q \beta 2}{p q^{*}}} \mu(t)^{\frac{q}{q^{*}}\left(1-\frac{\alpha+\beta 2}{p}\right)},
$$

and we can apply Young inequality, that is

$$
\begin{align*}
I_{2} & \leqslant c \mu(t)^{\frac{q}{p}\left(1-\frac{1}{r 2}-\frac{p-\alpha}{q^{*}}\right)\left\{\frac{p-\left(\alpha+\beta_{2}\right)}{p} \mu(t)^{q / q^{*}}+\frac{\alpha}{p} \int_{|u|>t}|\nabla u|^{q} d x+\right.} \begin{aligned}
& \left.+\left[\frac{\beta_{2}}{p} t^{q}+\frac{\alpha}{p}(1+t)^{q}\right] \mu(t)^{q / q^{*}}\right\} \leqslant \\
& \leqslant c \mu(t)^{\frac{q}{p}\left(1-\frac{1}{r_{2}}-\frac{p-\alpha}{q^{*}}\right)}\left[(1+t)^{q} \mu(t)^{q / q^{*}}+\int_{|u|>t}|\nabla u|^{q} d x\right] .
\end{aligned} .\left\{\begin{array}{l}
\end{array}\right) . \tag{3.11}
\end{align*}
$$

In analogous way, we get

$$
\begin{equation*}
I_{3} \leqslant c\left\|g_{1}\right\|_{h_{1}}^{q / p} \mu(t)^{\frac{q}{p}\left(1-\frac{1}{k_{1}}-\frac{p-\alpha}{q^{*}}\right)}\left[(1+t)^{q} \mu(t)^{q / q^{*}}+\int_{|u|>t}|\nabla u|^{q} d x\right] \tag{3.12}
\end{equation*}
$$

and
(3.13) $\quad I_{4} \leqslant c\left\|g_{2}\right\| h_{1}^{/ p} \mu(t)^{\frac{q}{p}\left(1-\frac{1}{k_{2}}-\frac{p-\alpha}{q^{*}}\right)}\left[(1+t)^{q} \mu(t)^{q / q^{*}}+\int_{|u|>t}|\nabla u|^{q} d x\right]$.

Therefore, combining (3.9)-(3.13), we have

$$
\begin{align*}
& \quad \int_{|u|>t}|\nabla u|^{q} d x \leqslant c\left[\mu(t)^{\frac{q}{p}\left(1-\frac{1}{r_{1}}-\frac{p-\alpha}{q^{*}}\right)}+\mu(t)^{\frac{q}{p}\left(1-\frac{1}{r_{2}}-\frac{p-\alpha}{q^{*}}\right)}+\right. \tag{3.14}\\
& +\mu(t)^{\frac{q}{p}\left(1-\frac{1}{k_{1}}-\frac{p-\alpha}{q^{*}}\right)}+\mu(t)^{\left.\frac{q}{p}\left(1-\frac{1}{k_{2}}-\frac{p-\alpha}{q^{*}}\right)\right]\left[(1+t)^{q} \mu(t)^{q / q^{*}}+\int_{|u|>t}|\nabla u|^{q} d x\right] .}
\end{align*}
$$

Let us set $h=\min \left\{r_{1}, r_{2}, k_{1}, k_{2}\right\}$. We can assume that

$$
\begin{equation*}
\mu(t)<1, \quad t \geqslant t_{0} \tag{3.15}
\end{equation*}
$$

for a suitable t_{0}. In this way it results

$$
\begin{aligned}
& \mu(t)^{\frac{q}{p}\left(1-\frac{1}{r_{1}}-\frac{p-1}{m}\right)}+\mu(t)^{\frac{q}{p}\left(1-\frac{1}{r_{2}}-\frac{p-1}{m}\right)}+\mu(t)^{\frac{q}{p}\left(1-\frac{1}{k_{1}}-\frac{p-1}{m}\right)}+ \\
&+\mu(t)^{\frac{q}{p}\left(1-\frac{1}{k_{2}}-\frac{p-1}{m}\right)} \leqslant c \mu(t)^{\frac{q}{p}\left(1-\frac{1}{h}-\frac{p-1}{m}\right)} .
\end{aligned}
$$

Hence, from (3.14) we get

$$
\int_{|u|>t}|\nabla u|^{q} d x \leqslant c \mu(t)^{\frac{q}{p}\left(1-\frac{1}{h}-\frac{p-a}{q^{*}}\right)}\left[(1+t)^{q} \mu(t)^{q / q^{*}}+\int_{|u|>t}|\nabla u|^{q} d x\right] .
$$

Now, for \bar{t} such that ess sup $\left|u_{0}\right| \leqslant \bar{t}<\operatorname{ess} \sup |u|$, we have

$$
\begin{equation*}
\left.M \equiv 1-c \mu(\bar{t})^{\frac{q}{p}\left(1-\frac{1}{h}-\frac{p-a}{q^{*}}\right.}\right)>0 . \tag{3.16}
\end{equation*}
$$

Therefore, we get

$$
M \int_{|u|>t}|\nabla u|^{q} d x \leqslant c(1+t)^{q} \mu(t)^{\frac{q}{p}\left(1-\frac{1}{h}-\frac{p-\alpha}{q^{*}}\right)+\frac{q}{q^{*}}, ~}
$$

that is

$$
\begin{equation*}
\frac{1}{\mu(t)^{1 / q}}\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{1 / q} \leqslant \frac{c}{M}(1+t) \mu(t)^{-\frac{1}{p}\left(\frac{1}{h}+\frac{p-1}{m}\right)} \tag{3.17}
\end{equation*}
$$

for every $t \geqslant L$, where L is the greatest lower bound of levels greater then 1 satisfying (3.15) and (3.16).

On the other hand, the following inequality holds true ([T]; see also [M], Lemma 4.1 and proof of Theorem 2.1)

$$
\begin{equation*}
q^{1 / q}\left(1-\frac{q^{\prime}}{k^{\prime}}\right)^{1 / q^{\prime}} \frac{n \omega_{n}^{1 / n}}{\mu(t)^{1 / k}} \int_{t}^{+\infty} \mu(\tau)^{1 / k-1 / n} d \tau \leqslant \frac{1}{\mu(t)^{1 / q}}\left(\int_{|u|>t}|\nabla u|^{q} d x\right)^{1 / q} \tag{3.18}
\end{equation*}
$$

for some $k<q$, where ω_{n} denotes the measure of the ball of \mathbb{R}^{n} having radius equal to $1, q^{\prime}$ and k^{\prime} denote the Hölder congiugate exponent of q and k, respectively.

Combining (3.17) and (3.18), we get

$$
\begin{equation*}
\frac{1}{1+t} \leqslant \frac{c}{M} \frac{\mu(t)^{\frac{1}{k}-\frac{1}{p}\left(\frac{1}{h}+\frac{p-1}{m}\right)}}{\int_{t}^{+\infty} \mu(\tau)^{1 / k-1 / n} d \tau} \tag{3.19}
\end{equation*}
$$

for every $t \geqslant L$.
Now, let us denote

$$
\delta=\frac{\frac{1}{k}-\frac{1}{n}}{\frac{1}{k}-\frac{1}{p}\left(\frac{1}{h}+\frac{p-1}{m}\right)}
$$

Since (3.1) holds true, it results $\delta<1$. Moreover, from (3.19) we get

$$
\begin{equation*}
\int_{L}^{\text {ess sup }|u|} \frac{1}{(1+t)^{\delta}} d t \leqslant \frac{c}{M(1-\delta)} \int_{L}^{\text {ess sup }|u|} \frac{d}{d \tau}\left(\int_{t}^{+\infty} \mu(\tau)^{1 / k-1 / n} d \tau\right)^{1-\delta} d t \tag{3.20}
\end{equation*}
$$

Using (3.19) we can majorize the right hand-side in (3.20) obtaining (see also [T])

$$
\begin{equation*}
\int_{L}^{\text {ess sup }|u|} \frac{1}{(1+t)^{\delta}} d t \leqslant\left(\frac{c}{M}\right)^{\delta} \frac{1}{(1-\delta)} \mu(L)^{\frac{1}{n}-\frac{1}{p}\left(\frac{1}{h}+\frac{p-1}{m}\right)} . \tag{3.21}
\end{equation*}
$$

Since

$$
\int_{L}^{+\infty} \frac{1}{(1+t)^{\delta}} d t=+\infty
$$

(3.21) yields that u belongs to $L^{\infty}(\Omega)$.

From (1.2) and (1.3) we deduce that u belongs to $W^{1, p}(a)$. Indeed

$$
\begin{gathered}
\int_{\Omega} a(x)|u|^{p} d x \leqslant\|u\|_{\infty}^{p}\|a\|_{1} \\
\frac{1}{\left(1+\|u\|_{\infty}\right)^{\alpha}} \int_{\Omega} a(x)|\nabla u|^{p} d x \leqslant \int_{\Omega} a(x) \frac{|\nabla u|^{p} d x}{(1+|u|)^{\alpha}} \leqslant \\
\leqslant F(u)+\int_{\Omega} b_{1}(x)|u|^{\beta_{1}}+\int_{\Omega} g_{1}(x) d x \leqslant \\
\leqslant G(u)+\left\|b_{1}\right\|_{r_{1}}\|u\|_{\infty}^{\beta_{1}}+\left\|g_{1}\right\|_{1} \leqslant c
\end{gathered}
$$

Finally, we get that u is a minimizer of F. Indeed

$$
\begin{aligned}
F(u) & \geqslant \inf \left\{F(v): v \in W^{1, p}(a) \text { s.t. } v-u_{0} \in W_{0}^{1, p}(a)\right\} \geqslant \\
& \geqslant \min \left\{G(v): v \in W^{1, p}(a) \text { s.t. } v-u_{0} \in W_{0}^{1, p}(a)\right\} \geqslant \\
& \geqslant G(u)=F(u) .
\end{aligned}
$$

Remark 3.1. - Let us observe that, if $|\Omega|$ is small enough, i.e. $|\Omega|<$ $\min \{1,1 / 2 c\}$, then (3.14) and (3.16) hold true for every $t \geqslant \operatorname{ess} \sup \left|u_{0}\right|$ and (3.20) gives the following apriori bound for $|u|$

Remark 3.2. - If we choose $\alpha=0$ and $a(x)$ constant in Ω, Theorem 3.1 gives the classical results for coercive functionals on $W_{0}^{1, p}(\Omega)$ (see, for example, [LU]).

REFERENCES

[AFT] A. Alvino - V. Ferone - G. Trombetti, A priori estimates for a class of non uniformly elliptic equations, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 381-391.
[BO] L. Boccardo - L. Orsina, Existence and regularity of minima for integral functionals noncoercive in the energy space, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 95-130.
[BDO] L. Boccardo - A. Dall'Aglio, L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51-58.
[C1] A. Cianchi, Local minimizers and rearrangements, Appl. Math. Optim., 27 (1993), 261-274.
[C2] A. Cianchi, Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations, 22 (1997), 16291646.
[CS] A. Cianchi - R. Schianchi, A priori sharp estimates for minimizers, Boll. Un. Mat. Ital., 7-B (1993), 821-831.
[DG] E. De Giorgi, Teoremi di semicontinuità nel calcolo delle variazioni, Lectures Notes, INDAM 1968.
[GP1] D. Giachetti - M. M. Porzio, Existence results for some non uniformly elliptic equations with irregular data, J. Math. Anal. Appl., 257 (2001), 100130.
[GP2] D. Giachetti - M. M. Porzio, Regularity results for some elliptic equations with degenerate coercivity, Preprint.
[G] E. Giusti, Metodi diretti nel calcolo delle Variazioni, UMI, 1994.
[LU] O. A. Ladyzenskaya - N. N. Ural'ceva, Equations aux dérivées partielles de type elliptic, Dunod, Paris, 1968.
[M] V. Maz'Ja, Sobolev spaces, Springer-Verlag, Berlin (1985).
[Me] A. Mercaldo, Boundedness of minimizers of degenerate functionals, Differential Integral Equations, 9 (1996), 541-556.
[MS] M. K. V. Murthy - G. Stampacchia, Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl., 90 (1971), 1-122.
[S] R. Schianchi, An L^{∞}-estimates for the minima of functionals of the calculus of variations., Differential Integral Equations, 2 (1989), 383-421.
[T] G. Talenti, Boundedeness of minimizers, Hokkaido Math. Jour., 19 (1990), 259-279.
[Tr] C. Trombetti, Existence and regularity for a class of non uniformly elliptic equations in two dimensions, Differential Integral Equations, 13 (2000), 687-706.

Dipartimento di Matematica e Applicazioni «R. Caccioppoli»
Università di Napoli «Federico II», Via Cintia-80126 Napoli, Italia
e-mail: mercaldo@unina.it

