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Symmetric Models for Lifetimes:
the Role of Exchangeable Equivalence Relations.

ANNA GERARDI - BARBARA TORTI

Sunto. – Si considera un modello relativo ad una popolazione eterogenea suddivisa in
un numero finito di classi, in accordo con una relazione di equivalenza scambiabi-
le. Con questa motivazione si studiano le proprietà delle relazioni di equivalenza
scambiabili ed in particolare se ne caratterizza la struttura delle classi di
equivalenza.

Summary. – A model of a heterogeneous population partitioned into a finite number of
classes according an exchangeable equivalence relation is studied. With this moti-
vation the properties of exchangeable equivalence relations are investigated and, in
particular, the structure of its equivalence classes is characterized.

1. – Introduction.

Exchangeable Equivalence Relations (EER) have been introduced by
Kingman ([5]) in order to study genealogical properties of biological popula-
tions consisting of identical individuals.

In several papers (see [5], [6], [7], also for further references) Kingman
points out that some properties of a given population, such as the age or genet-
ic mutations derive from the correlation among individuals. To characterize
these properties, he introduces the EER’s which, at any time, define both cor-
relation and exchangeability. An EER on N is, roughly speaking, a random
partition of N whose distribution is invariant under permutation (see Def. 2.2
below).

Moreover, when the dimension of the population is infinite, Kingman
shows that the distribution of any EER has an explicit representation.

Another point of interest is to study the connection between EER’s and ex-
changeable sequences ]Zi ( of real-valued r.v.’s. Actually, given ]Zi ( it is quite
obvious that the relation R defined by

(i , j) � R ` Zi 4Zj(1)

is an EER. We say, in this case, that the sequence ]Zi ( generates R. On the
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other hand Aldous proves in ([1]) that any EER is generated by an exchange-
able sequence that is, given R, there exists a (not unique) sequence of ex-
changeable r.v.’s such that Eq. (1) holds.

Two are the main results in this paper.
The first one provides a characterization of the equivalence classes of an

arbitrary EER in terms of the atoms of the De Finetti measure associated to
any sequence generating the EER under consideration.

The second one consists in using this characterization in order to improve a
model arising in reliability and survival analysis.

More precisely, let R be an EER and, taking into account the result in [1],
let ]Zi ( be a sequence generating R. As a consequence of De Finetti theorem,
we can define a random measure a such that the r.v.’s Zi are i.i.d. given a . We
will prove that the equivalence classes of R can be characterized a.s. in terms
of the atoms of the purely discrete component a d of a . Moreover we can obtain
the same representation given by Kingman, pointing out that the distribution
of R only depends on the (random) weights of the atoms of a d . This implies
that, while different sequences can generate the same EER, the weights of
the atoms of a d are uniquely determined.

The structure of the reliability model makes of interest to consider, in par-
ticular, the case when a is purely atomic. The model we deal with can be de-
scribed as follows.

Consider a population ]Ui ( of indistinguishable individuals, divided into a
finite number of different types according to their surviving capacity. We sup-
pose that the subdivision in types induces a non-observable EER, R, on the
population. Let Ti be the r.v.’s representing the lifetime of the i-th item. The
r.v.’s Ti are supposed to be independent given the partition induced by R.
Moreover we suppose that any Ti has a distribution function Gk , given the
event ]Ui is of type k(. Our aim is to compute the joint distribution of the life-
times of an n-dimensional sample drawn from the population.

Observe that in this model, given R one can merely say whether two indi-
viduals are of the same type, without specifying their type. In this respect our
model is more general than the models considered in [8] and in [3]. In [8] the
population was supposed to be finite and labelled into two different types. In
[3] the population is assumed to consist of an infinite sequence of items parti-
tioned into many different types. In both models an exchangeable sequence Zi

of non-observable r.v.’s is considered, such that Zi 4k if and only if the i-th
item is of type k.

Nevertheless, even if our assumptions are more general, the joint distribu-
tion of lifetimes for the sample, turns out to have the same expression obtained
in [3], [4].

The paper is organized as follows. In Section 2 basic definitions are given
and Aldous theorem is recalled. In Section 3, by using De Finetti theorem, we
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obtain the general representation of an EER distribution. In Section 4 the
structure of the equivalence classes is investigated, and finally, in the last Sec-
tion, the application to reliability model is given. Moreover, in the Appendix,
some technical properties of random probability measures are discussed.

2. – Exchangeable equivalence relations and exchangeable sequences.

Let E be the set of equivalence relations on the natural numbers N . Any
j�E can be identified with the family of the pairs of individuals in relation ac-
cording to R, so that E can be regarded as a closed subset of ]0, 1(N3N en-
dowed with the product topology. With respect to the relative topology E is a
Polish space. Let B(E) be the Borel s-algebra of E . Let us note that any finite
permutation p : NKN defines an application (which we again call p , with a
little abuse of notations)

p : EKE jKpj4 ](i , j) :(p21 i , p21 j) �j((2)

DEF. 2.1. – A probability measure P on (E , B(E) ) is called exchangeable if
it is invariant under the application p , that is Pp21 4P , (p .

DEF. 2.2. – An E-valued random variable R is an Exchangeable Equiva-
lence Relation (EER) if its distribution is exchangeable, that is, (p , L(R) 4

L(p R).
The following theorem can be found in [1].

THEOREM 2.3. – Let R be an EER on N . There exists an exchangeable
sequence ]Zi (i�N of non-negative r.v’s, such that

(i , j) � R ` Zi 4Zj(3)

PROOF. – Consider, for any i�N , the random variable

Mi 4min ]j�N :(i , j) � R(

Obviously

(i , j) � R ` Mi 4Mj .

Now, let z4 ]z i ( be a sequence of independent random variables uniformly
distributed on the interval (0 , 1 ). Suppose also the sequence z independent
on R and put

Zi 4z Mi
.
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It is easy to see that ]Zi (i�N is an exchangeable sequence such that
Eq. (3) holds. r

REMARK 2.4. – Observe that since M1 41, the common marginal law of Zi is
uniform on (0, 1). Moreover, it is easy to see that any other sequence of i.i.d.
r.v.’s could be used. The only requirement is that the common marginal law
has to be purely continuous to guarantee that

Zi 4Zj ` Mi 4Mj .

Different sequences can generate the same EER. In the following example we
consider a case of a sequence of purely discrete r.v.’s. and we construct an
EER with a procedure known as the «paintbox construction» ([7]). This con-
struction plays a crucial role in the representation theorem.

Let Z4 ]Zi (i�N be a sequence of i.i.d. random variables taking values in
NN ]0( and let xk 4P(Zi 4k), (iF1, kF0.

Note that 0 Gxk G1 for any k and ! xk 41. Define the E-valued random
variable Rx by the rule

Rx 4 ](i , j) : i4 j or Zi 4Zj F1( .

Let us observe that when Zi 4Zj 40, (i , j) � R iff i4 j . In other words, Zi 40
implies that the equivalence class containing i reduces to ](i , i)(.

PROP. 2.5. – Rx is an EER and its distribution only depends on the se-
quence x4 ]xk , kF0(.

PROOF. – It is easy to see that Rx is an EER. Moreover, (ic j

P( (i , j) � Rx ) 4 !
kF1

x 2
k(4)

Then we see that the distribution of Rx is an exchangeable probability mea-
sure Px on E characterized by the sequence x�˜ where

Px (Q) 4P(Rx � Q); ˜4 mx4 (x0 , x1 , R) : xk F0 and !
kF1

xk G1n r

In the sequel we consider ˜ as a subspace of RN endowed with the usual
topology.

3. – The representation theorem.

In this section we will characterize the structure of the law of an EER by
using some elementary properties of random measures (see Thm. 3.5. below).
Results of this kind are well known (see [1], [7]). However we give a different
proof, and let us notice that our proof allows to obtain an useful description of
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the equivalence classes of R. The probabilistic properties of such classes will
be investigated in the next Section.

First we analyze some properties of exchangeable sequences.
Consider an exchangeable sequence of r.v.’s ]Zi (i�N , and let R be the

EER defined by Eq. (3). Without loss of generality (see Thm. 2.3.) we can as-
sume, (i , Zi F0.

De Finetti theorem states that there exists a s-algebra E (the exchange-
able s-algebra), such that the r.v.’s Zi are independent and identically dis-
tributed given E. This allows us to define a random variable a Z taking values
on the space P(R) of probability measures on R , endowed with the weak con-
vergence topology, such that, for each I� B(R),

a Z (I) 4P(Zi �IN E) (i(5)

The measure a Z satisfies

a Z ( [0 , 1Q) ) 41, P(Z1 �H1 , R , Zn �HNa Z 4a) 4 »
i41

n

a(Hi ).

Note that the purely atomic component a Z
d of a Z is a measure-valued r.v. such

that a Z
d (R) G1. Moreover it can be represented as

a Z
d 4 !

kF1
Xk d ]Yk(

where X4 (X1 , X2 , R), Y4 (Y1 , Y2 , R) are two sequences of real-valued
r.v.’s such that

Xk F0, !
kF1

Xk G1, Yk F0 .

(see the appendix for technical details).

PROP. 3.1. – Let a�P(R) be such that

a d 4 !
kF1

xk d ]yk(

(a d is the purely atomic components of a). Then

P(Zi 4Zj Na Z 4a) 4P( (i , j) � Rx )(6)

where Rx is defined by Eq. (4).

PROOF. – The conditional independence of the Zi implies

P(Zi 4Zj Na Z 4a) 4s
A

a(dx) a(dy) 4s
R

s
Ax

a(dx) a(dy)
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where A4 ](x , y) �R2 : x4y( and, (x�R , Ax 4 ]y�R :(x , y) �A( 4 ]x(.
On the other hand a discrete measure a d and a continuous measure a c such

that a4a d 1a c are uniquely determined and a c (Ax ) 40. Thus

P(Zi 4Zj Na Z 4a) 4s
R

s
Ax

a(dx) a d (dy) 4s
R

a d (]x() a(dx) 4 !
kF1

xk
2

and the statement is proved, by Eq. (4). r

As a straightforward consequence we have

PROP. 3.2. – If a�P(R) is a purely continuous measure, then P(Zi 4

Zj Na Z 4a) 40.

REMARK 3.3. – From Prop. 3.1. we get the following equalities

P(Zi 4Zj Na Z ) 4P(Zi 4Zj Na Z
d ) 4P(Zi 4Zj NX , Y) 4P(Zi 4Zj NX) .

We are now able to give the main result of this section

THEOREM 3.4. – For any exchangeable sequence Zi of non-negative r.v.’s,
there exists a ˜-valued r.v. X 4 (X0 , X1 , X2 , R) such that

P(Zi 4Zj ) 4s
˜

P( (i , j) � Rx ) n X (dx)

where n X is the law of X on ˜ .

PROOF. – The statement is a consequence of Prop. 3.1. In fact the sequence
(X1 , X2 , R) of the weights of the atoms of a Z uniquely defines a ˜-valued r.v.
X by setting

X 4 (X0 , X1 , R) and X0 412 !
kF1

Xk 4a Z
c (R) . r

By using this result, we are able to give our proof of the representation
theorem.

THEOREM 3.5. – Let R be an EER. There exists a random variable X on ˜ ,
such that, its distribution n X is uniquely determined, and

P(R � Q) 4s
˜

Px (Q)n X (dx)

where Px is the measure defined by the paintbox construction.
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PROOF. – Let ]Zi (i�N be an exchangeable sequence of non-negative r.v.’s
generating R. For instance one can consider the sequence given in Thm. 2.3.
Since

P(Zi 4Zj ) 4P( (i , j) � R)

the statement is an easy consequence of Thm. 3.4. r

REMARK 3.6. – For any R, the sequence Z generating R is not uniquely de-
termined. However, for any exchangeable non-negative sequence generating
R, are uniquely determined the weights X1 , X2 , R of the purely atomic com-
ponent of the associated random measure.

4. – Equivalence classes and occupation numbers.

Let R be an EER and let Z4 (Z1 , Z2 , R) be any exchangeable sequence
of non-negative r.v.’s which generates R. We remember that Z uniquely de-
fines two sequences X4 (X1 , X2 , R) and Y4 (Y1 , Y2 , R) such that the ran-
dom measure associated to Z is

a Z 4 !
kF1

Xk d ]Yk(1a Z
c .

We want to discuss the structure of the equivalence classes of R. Consider the
a.s. disjoint sets

Ck 4 ]i�N s.t. Zi 4Yk ( (kF1 .(7)

Each nonempty Ck is an equivalence class of R. Let

C0 4N2 0
kF1

Ck

and observe that (i� C0 , the equivalence class of R containing i reduces to
](i , i)( a.s., that is

(i4 j P(i� C0 , (i , j) � R) 4P(]Zi cYk , (k(O ]Zi 4Zj ( )40 .

Since P(i� C0 NX) 4X0 , the family of the nonempty sets defined by Eq. (7) co-
incides with the equivalence classes of R iff X0 40, that is iff a Z is purely
atomic. As we will see, this is the case when R has a finite number of classes.
To study such a situation we need a preliminary result.

Let En be the set of equivalence relations on ]1, 2 , R , n( and define the
(measurable) map r n : EKEn by

(j�E r n j4 ](i , j) �j s.t. i , j� ]1, 2 , R , n(( .

Consider the r.v. r n R. It is clear that it is an equivalence relation on
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]1, 2 , R , n( whose distribution is invariant under permutation of
]1, 2 , R , n(. Define, (kF1

l n
k 4 !

i41

n

I]Zi4Yk( .

Call ]l n
k ( the occupation numbers of r n R.

PROP. 4.1.

lim
nKQ

l n
k

n
4Xk(8)

PROOF. – The sequence ]I]Zi4Yk(( is an exchangeable sequence and its ex-
changeable s-algebra coincides with E. Then, the thesis is a consequence of the
strong law of large numbers for exchangeable sequences [2]

lim
nKQ

l n
k

n
4E[I]Zi4Yk( N E] 4a Z (]Yk () 4Xk . r

Previous proposition allows us to look at the r.v.’s X1 , X2 , R as frequencies of
the elements belonging to the equivalent classes of r n R. This result was
proved by Kingman together with Thm. 3.4. ([7]); our proof is directly related
to the approach followed in this paper.

From now on we assume that R has a finite number of classes: N R NGd
a.s.. Setting

C n
k 4 ]i� ]1, R , n( s.t. Zi 4Yk( k41, R , d

we have that l n
k 4Card (C n

k ).

PROP. 4.2. – Suppose N R NGd a.s.. Then, the random measure defined by
Eq. (5) is purely atomic.

PROOF. – We note that Prop. 4.1 implies that Xk c0 for all but a finite num-
ber of indexes. Then,

!
kF1

l n
k

n
41 (nF1 and !

kF1
Xk 4 lim

nKQ
!
kF1

l n
k

n
41. r(9)

We want to find the joint distribution of the occupation numbers. To this
end we first need the following
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LEMMA 4.3. – Let k1 , R , kn be natural numbers such that ki � ]1, R , d(,
(i41, R , n .

P(1 � Cn
k1

, R , n� Cn
kn

) 4E[Xk1
Q Q QXkn

] .(10)

PROOF. – For any n ,

P(1 � C n
k1

, R , n� C n
kn

) 4E[P(Z1 4Yk1
, R , Zn 4Ykn

NX , Y)] 4(11)

4E k»
i41

n

P(Zi 4Yki
NX , Y)l . r

PROP. 4.4. – The joint distribution of the occupation numbers is a mixture of
multinomials and it is a multinomial distribution only when the distribution n X

of X is a degenerate distribution.

PROOF. – Recall that

l n
k 4 !

i41

n

I]Zi4Yk( and !
k41

n

l n
k 4n .

Let h1 , R , hd be natural numbers such that h1 1R1hd 4n . By the ex-
changeability of the Zi

P(l n
1 4h1 , R , l n

d 4hd NXY) 4
n!

h1 ! Q Q Qhd !
X h1

1 Q Q QX hd
d .

Then

P(l n
1 4h1 , R , l n

d 4hd ) 4E[P(l n
1 4h1 , R , l n

d 4hd NX , Y) ](12)

and finally

P(l n
1 4h1 , R , l n

d 4hd ) 4
n!

h1 ! Q Q Qhd !
E[X h1

1 Q Q QX hd
d ] . r(13)

5. – The reliability model.

Consider a countable heterogeneous population P 4 ]Ui ( and let ]Ti ( be
the family of non-negative r.v.’s denoting the lifetimes of each item Ui � P. Let
also ]Gk (k41, R , d be given distribution functions and suppose that the popula-
tion is divided into d different types and that the lifetime Ti of any individual
Ui of type k admits the distribution function Gk .

In this section we suppose that the information about the relationships
among individuals are characterized by an EER which selects the individuals
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of the same type. Under these conditions we want to determine the joint sur-
vival function of a sample lifetimes T1 , R , Tn .

More precisely, define the equivalence relations R by the rule

(i , j) � R ` Ui and Uj are of the same type

and assume that R is any EER. Let ]Zi ( be an exchangeable sequence of non-
negative r.v.’s generating R. Since N R NGd , a Z is a purely atomic mea-
sure

a Z 4 !
kF1

Xk d ]Yk( .

We are then in the frame discussed in Section 4, and the equivalence classes of
R coincide with the nonempty sets of the family

Ck 4 ]i�N s.t. Zi 4Yk ( k41, R , d .

We make the following assumption (n�N , j1 , R , jn �N , k1 , R , kn �
]1, R , d(, and for any permutation p on ]1, R , d(,

P(Tj1
G t1 , R , Tjn

G tn Nj1 � Cp k1
, R , jn � Cp kn

) 4 »
i41

n

Gki
(ti ) .(14)

Note that Eq. (14) implies that T1 , R , Tn are conditionally independent given
R. We are also assuming that each item belonging to the class Cp k

is of type k ,
and this is an arbitrary choice. The particular choice P k 4k reproduces the
model discussed in [3]. On the other hand, the structure of the joint survival
function of T1 , R , Tn turns out to be independent of this choice.

In fact, taking into account Eq. (10) the joint distribution function of
T1 , R , Tn is given by

P(T1 G t1 , R , Tn G tn ) 4 !
k1 , R , kn

1, R , d

Gk1
(t1 ) Q Q QGkn

(tn ) E[Xk1
Q Q QXkn

](15)

which coincides with the same equation obtained in [3]. Moreover

PROP. 5.1. – The sequence ]Ti ( is exchangeable.

PROOF. – For any nD1 and for any permutation p on ]1, R , n(,
Eq. (10) implies that

P(T1 G t1 , R , Tn G tn ) 4P(Tp1 G t1 , R , Tpn G tn ) . r

The previous Proposition allows us to give a concluding remark. Let
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us point out that we can define a EER on P by the rule

(i , j) � RT ` Ti 4Tj

and RT has the properties discussed in Section 4.
Then the following holds.

PROP. 5.2. – Given the distribution functions ]G1 , R , Gd (, and a sequence
]Ti ( of non negative random variables, under the assumptions

(i) At most d different types can be found in P.

(ii) The sequence ]Ti ( is exchangeable,

then, taking into account Eq. (15), the model is uniquely determined by a law
on the set

˜d 4mx4 (x1 , R , xd ) : xk F0 and !
k41

d

xk 41n .

Let us finally observe that a different ordering of the classes implies a dif-
ferent assignment of the type of an item belonging to the class Ck . This in turn
reduces to a different choice of the law on ˜d .

Appendix.

Let P(R1 ) be the space of the probability measures on R1 endowed with
the topology of the weak convergence. It is well known that it is a separable
and complete metrizable space.

If a is a P(R1 )-valued r.v., there exist two r.v.’s X4 (X1 , X2 , R) and Y4

(Y1 , Y2 , R) such that

i) Xk F0, (k , and !
kF1

Xk G1,

ii) Yk F0, (k ,

iii) the discrete component a d of a is a r.v. that admits the represen-
tation

a d 4 !
kF1

Xk d ]Yk( .

The proof is a consequence of the following properties

(1) (TD0, (t� [0 , T], let a(t) be a real-valued non-decreasing cadlag
function and (dD0, set

v T (d) 4 sup
Nu2vNEd

Na(u)2a(v)N .
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Then

lim
dK0

v T (d) 4 sup
t� [0 , T]

(a(t)2a(t2)) .

PROOF. – First note that

lim
dK0

v T (d) F sup
t� [0 , T]

(a(t)2a(t2)) .

Suppose that the strictly inequality holds.
Then there exist eD0, an infinitesimal sequence ]d k (, and two sequences

]uk (, ]vk ( such that 0 Evk 2uk Gd k and

a(vk )2a(uk ) D sup
t� [0 , T]

(a(t)2a(t2))1e .(16)

Without loss of generality, we can assume ]uk (, ]vk ( bounded and s.t.

lim
kKQ

uk 4 lim
kKQ

vk 4u .

Then Eq. (16) implies that u is a discontinuity point and that there exist subse-
quences such that uk Ku2, vk Ku1. Then

lim
kKQ

(a(vk )2a(uk )) 4a(u)2a(u2) F sup
t� [0 , T]

(a(t)2a(t2))1e

which is a contradiction. r

(2) (t� [0 , 1Q), At 4a[0 , t] is a stochastic process with non decreasing
cadlag trajectories.

PROOF. – Let ] fn ( be a sequence of bounded continuous functions on
[0 , 1Q) s.t. fn H I[0 , t] . then

At 4 lim
kK1Q

s
R

fn (x) a(dx) . r

(3) (HD0, t4 inf ]tF0 s.t. At 2At2DH( is a random variable.

PROOF. – (tF0,

]tD t( 4 ](s� [0 , t], As 2As2GH( 4m sup
s� [0 , t]

(As 2As2GHn4

m lim
dK0

v t (d) GHn . r
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Finally the sequence Y can be defined recursively as follows

Y1 4 infmtF0 s.t.
1

2
GAt 2At2G1n

and, for nD1, k42n21 11, R , 2n 21

Y2n21 4 infmtF0 s.t.
1

2n
GAt 2At2G

1

2n21 n
Yk 4 infmtFYk21 s.t.

1

2n
GAt 2At2G

1

2n21 n
while, as far as the sequence X is concerned we set

Xk 4a(]Yk () I]YkE1Q( . r

Finally, let us observe that, when a has at most d atoms a.s., Xk 4c0 for at
most d indexes.
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