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A-Compactifications and A-Weight of Alexandroff Spaces (*).

A. CATERINO - G. DIMOV - M. C. VIPERA

Sunto. – Questo lavoro riguarda l’insieme ordinato A K(X , a) delle A-compattificazio-
ni di uno spazio di Alexandroff (X , a). Si definisce e si studia l’«A-peso» aw(X , a)
dello spazio (X , a) e, sulla base di risultati in [7], [5], si presentano proprietà reti-
colari di A K(X , a) e di A Kaw (X , a), l’insieme delle A-compattificazioni (Y , t) di
(X , a) tali che w(Y)4aw(X , a). Si caratterizzano le famiglie di funzioni continue
limitate che generano una A-compattificazione di (X , a). In analogia con defini-
zioni e risultati in [3], si introducono e si studiano la nozione di famiglia di fun-
zioni che «A-determina» una A-compattificazione (Y , t) e l’invariante cardinale
ad(Y , t) (minima cardinalità di una famiglia che A-determina (Y , t) ).

Summary. – The paper is devoted to the study of the ordered set A K(X , a) of all, up to
equivalence, A-compactifications of an Alexandroff space (X , a). The notion of A-
weight (denoted by aw(X , a) ) of an Alexandroff space (X , a) is introduced and in-
vestigated. Using results in ([7]) and ([5]), lattice properties of A K(X , a) and
A Kaw (X , a) are studied, where A Kaw (X , a) is the set of all, up to equivalence, A-
compactifications Y of (X , a) for which w(Y)4aw(X , a). A characterization of the
families of bounded functions generating an A-compactification of (X , a) is ob-
tained. The notion of A-determining family of functions, analogous to the one of de-
termining family given in ([3]), is introduced and relations with the original notion
are investigated. A characterization of the families of functions which A-determine a
given A-compactification is found. The cardinal invariant ad(Y , t), corresponding
to the cardinal invariant d(Y , t) defined in ([3]), is introduced and studied.

1. – Introduction.

The notion of an Alexandroff space (briefly, A-space) was introduced by A.
D. Alexandroff in [1] (under the name of completely normal space) as a foun-
dation for a general theory of measures and linear functionals. It was redis-
covered by H. Gordon [12] (under the name of zero-set space) and studied by
many authors (see the excellent survey paper of A. Hager [14]). An A-space is
a pair (X , a), where X is a set and a is a special subfamily of subsets of X ,
called cozero field. We shall be interested only in the separated cozero fields
which, in turn, were rediscovered by E. F. Steiner ([20]) under the name of
separating nest-generated intersection rings, and by R. Alò and H. L. Shapiro

(*) The second author was partially supported by a fellowship for Mathematics of
the NATO-CNR Outreach Fellowship Programme 1999 Bando 219.32/16.07.1999.
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([2]) – as strong delta normal bases (in fact, in [12, 20, 2], the family ]X0UNU�
a( is regarded).

The notion of A-compactification of an A-space was introduced by A. D.
Alexandroff in [1]. A-compactifications were studied in many papers (see, e.g.,
[1, 7, 8, 12, 13, 19]). The present paper was born as an attempt to answer the
following three natural questions:

1. What does it mean «A-compactification which does not increase the
weight»?

2. How can be defined «A-determining families of functions» and what
can be proved about them?

3. Which families of functions generate an A-compactification?

The lattice properties of the ordered set Kw (X) of all, up to equivalence,
Hausdorff compactifications of a Tychonoff space X which have the same
weight as X were studied by A. Caterino and M. C. Vipera in [5]. The notion of
a family of functions determining a compactification was introduced and stud-
ied by B. Ball and S. Yokura [3].

In this paper, we show that many results obtained in [5] and [3] for compactifi-
cations have their analogues for A-compactifications and we prove, as well, some
other results about generation of A-compactifications and about the lattice proper-
ties of the ordered set AK(X , a) of all, up to equivalence, A-compactifications of an
A-space (X , a). The results analogous to those of [5] and [3] cannot be obtained au-
tomatically. For example, one obstacle is that, fixing a cozero field a on a space
(X , t), one can have that any A-compactification of (X , a) has weight strictly
greater than w(X , t). The appropriate notion of weight of an A-space is introduced
in this paper. It is called A-weight and is denoted by aw(X , a). We make use of it in
the whole paper. It is very surprising that it was not introduced till now (as far as
we know). Further, the Hewitt realcompactification yX plays no role in the results
of B. Ball and S. Yokura [3], but its analogue for A-spaces, the Wallman realcom-
pactification y(X , a), takes part in the formulation of the corresponding results for
the A-compactifications. The following curious fact (which can be derived from a
result of A. Hager [13]) shows very clearly the difference between the notions of A-
determining and determining family of functions: if X is a pseudocompact non-lo-
cally compact space then no compactification of X is determined by a constant func-
tion, but every compactification of X is A-determined (with respect to some compat-
ible cozero field) by any constant function.

2. – Preliminaries.

We shall denote by R (resp., Q) the real line (resp., the rationals); P(X) will
stand for the power set of the set X; by v (resp., v 1) it will be denoted the first
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infinite ordinal number (resp., the first uncountable ordinal number) and c will
stand for the cardinality of R.

Let X be a Tychonoff space.

NOTATION 2.1. – As usual, we put C(X)4] f : XK R Nf is continuous(,
C *(X)4] f�C(X)Nf is bounded(. For f�C(X), Coz ( f ) denotes the cozero set
of f . For F ’C(X), we put Coz (F)4]Coz ( f )Nf� F( and we write Coz (X) in-
stead of Coz (C(X) ).

We denote by K(X) the set of all compactifications of X (up to the natural
equivalence). We will consider K(X) partially ordered in the usual way. The
Stone-Čech compactification of X will be denoted by bX and, when X is locally
compact, aX will stand for the Alexandroff one-point compactification of X .

The following is well known:

FACT 2.2. – (a) K(X) is a complete upper semilattice and bX4

max (K(X) );
(b) K(X) is a complete lattice if and only if X is locally compact. In

this case the smallest element of K(X) is the one-point compactification aX
of X .

We will usually denote a compactification of X by a pair (Y , t), where t is
the dense embedding of X into the compact space Y . We can suppose, up to
homeomorphism, that X is a subspace of Y and t is the canonical injec-
tion.

NOTATION 2.3. – For a compactification (Y , t) of X , we put Ft4] f�
C *(X)Nf can be continuously extended to Y (.

Let us recall the following (see, e.g., [9, 6]):

FACT 2.4. – For every (Y , t)� K(X) one has:

(a) Ft is a subalgebra of C *(X) which separates points from closed
sets;

(b) Ft is closed with respect to the uniform convergence topology;

(c) If (Z , h) is also in K(X), one has (Y , t)E (Z , h) if and only if
Ft% Fh ;

(d) If (Y , t)4bX , then Ft4C *(X).

NOTATION 2.5. – Let F ’C *(X). Following [6], we denote by eF the diagonal
map of F from X into RNFN . Choosing an interval If’R containing f (X), for each
f� F, we can consider eF as a map from X to a cube »

f� F

If . In case eF is an em-
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bedding, in particular, if F separates points from closed sets, then
(cl(eF (X) ), eF ) is a compactification of X , denoted by eF X .

DEFINITION 2.6. – ([3]) We say that F generates the compactification (Y , t)
if (Y , t) is equivalent to eF X .

The following proposition is well known (see [3] and [6]).

PROPOSITION 2.7. – (a) The family Ft always generates (Y , t);
(b) If F generates (Y , t), then (Y , t) is the smallest element of the set of all

compactifications of X to which every element of F continuously extends. In
particular, F ’ Ft ;

(c) Let ](Yj , tj )(j�J be a family of compactifications. If, for every j�J ,
(Yj , tj ) is generated by a family Fj’C *(X), then 0

j�J
Fj generates

sup
K(X)

](Yj , tj )(j�J .

Now we recall some definitions and known facts about A-spaces and
A-compactifications.

DEFINITION 2.8. – ([1]) Let X be a set. A subfamily a of P(X) is called a
cozero field if it satisfies the following conditions:

a) ¯ , X�a and a is closed under finite intersection and countable
unions.

b) (normality) If A , B�a , ANB4X then there exist disjoint C , D�a
such that ANC4X , BND4X .

c) If A�a then there exist a countable family ]An(n�v , with An�a ,
such that X0A4 1

n�v
An .

A cozero field a is said to be separated if, for every two distinct points of X ,
there is A�a which contains exactly one of them.

The pair (X , a), where a is a (separated) cozero field, is called a (separated)
Alexandroff space (A-space, for short).

DEFINITION 2.9. – ([1]) Let (X , a) be an A-space. For every Z’X , the fami-
ly aNZ4]AOZNA�a( is a cozero field on Z and the pair (Z , aNZ ) is called an
A-subspace of (X , a).

DEFINITION 2.10. – ([1]) A subset D of X is said to be A-dense in (X , a) if
every nonempty member of a meets D . We denote by d(X , a) the minimum of
the cardinalities of all A-dense subsets of (X , a).

DEFINITION 2.11. – ([1]) If (X , a), (Y , g) are A-spaces, an A-map
f : (X , a)K (Y , g) is a map from X to Y such that f 21 (U)�a for every U�g .
An A-map f is called an A-isomorphism if it is bijective and f 21 is also an A-
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map; f is called an A-embedding if the restriction of f to the image f (X) is an A-
isomorhism from (X , a) onto ( f (X), gNf (X) ).

Clearly, the composition of two A-maps is an A-map.

DEFINITION 2.12. – ([12]) Let A 4](Xj , a j )(j�J be a family of A-spaces.
For each j let pj : »

j�J
XjKXj be the projection. We put »

j�J
(Xj , a j )4 g»

j�J
Xj , ah,

where a is the cozero field which we obtain by taking the countable unions of
the finite intersections of all members of the family 0

j�J
]pj

21 (U)NU�a j(.

»
j�J

(Xj , a j ) is the product of the family A in the category of A-spaces and

A-maps.

DEFINITION 2.13. – ([1]) (X , a) is said to be A-compact if every cover of X
contained in a has a finite subcover.

DEFINITION 2.14. – ([1]) Let (X , a) be an A-space. An A-compactification
of (X , a) is a pair ((Y , g), t) where (Y , g) is an A-compact A-space, t : (X , a)K
(Y , g) is an A-embedding and t(X) is A-dense in (Y , g). Given two A-compacti-
fications ((Y , g), t) and ((Y1 , g 1 ), h) we say that ((Y , g), t)G ( (Y1 , g 1 ), h) if
there is an A-map g : (Y1 , g 1 )K (Y , g) such that g i h4 t . If such a map g is an
A-isomorphism then we also have ((Y1 , g 1 ), h)G ( (Y , g), t). In this case we
say that ((Y , g), t) and ((Y1 , g 1 ), h) are equivalent.

We denote by A K(X , a) the set of all, up to equivalence, A-compactifica-
tions of (X , a). The relation G induces a partial order on A K(X , a).

If ((Y , g), t) is an A-compactification of (X , a), we can always suppose that
(X , a) is an A-subspace of (Y , g) and t is the inclusion map.

PROPOSITION 2.15. – ([1, 12]) Every cozero field a on X is a base for a topol-
ogy t a on X . If a is separated, then the space (X , t a ) is Tychonoff.

From now on, all A-spaces will be supposed to be separated and, by the
word «space», we will mean «Tychonoff topological space».

DEFINITION 2.16. – If (X , t) is a space and a is a cozero field on the set X ,
we say that a is a compatible cozero field (or, a is a cozero field on the space
(X , t)) if t4t a .

PROPOSITION 2.17. – ([1, 12]) For every space X , Coz (X) is a compatible
cozero field. Every compatible cozero field on X is contained in Coz (X).

THEOREM 2.18. – ([4, 15]) Let X be a space. Then Coz (X) is the unique com-
patible cozero field on X if and only if X is Lindelöf or almost compact.
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PROPOSITION 2.19. – ([1]) Let (X , a) be an A-space and let X4 (X , t a ).
Then:

(a) A subset D of X is A-dense in (X , a) if and only if it is dense in X .
Hence d(X , a)4d(X).

(b) (X , a) is A-compact if and only if X is compact. In this case one has
a4Coz (X).

PROPOSITION 2.20. – ([1]) Let (X , a), (Y , g) be A-spaces and let f : (X , a)K
(Y , g) be an A-map. Then:

(a) f is a continuous map from (X , t a ) to (Y , t g );
(b) if f is an A-isomorphism then it is a homeomorphism;
(c) if f is an A-embedding, it is also a topological embedding.
The converses hold in case X and Y admit a unique cozero field.

From 2.18, 2.19 and 2.20 it follows:

PROPOSITION 2.21. – Let X be a space and let a be a compatible cozero field
on X . If ( (Y , g), t) is an A-compactification of (X , a), then (Y , t) is a com-
pactification of X . If ( (Y , g), t) and ( (Y1 , g 1 ), h) are A-compactifications of
(X , a), then ( (Y , g), t)G ( (Y1 , g 1 ), h) if and only if (Y , t)G (Y1 , h). In par-
ticular ( (Y , g), t) and ( (Y1 , g 1 ), h) are equivalent if and only if (Y , t) and
(Y1 , h) are equivalent compactifications of X .

Therefore, an A-compactification of (X , a) can be viewed as a compactifica-
tion (Y , t) of X such that Coz (Y)NX4a or, equivalently, Coz (Ft )4a . More-
over, (A K(X , a),G) can be considered as a subset of the ordered set
(K(X),G).

NOTATION 2.22. – We denote by F(a) the set of all bounded A-maps from
(X , a) to (R , Coz (R) ). One has F(a)’C *(X), where X4 (X , t a ).

It is easy to see that the set of the complements of the elements of a forms
a normal base on X (in the sense of [10]). The Wallman compactification in-
duced by that base (see [10]) is denoted by b(X , a). It is well known that
b(X , Coz (X) )4bX .

THEOREM 2.23. – ([1]) Let (X , a) be an A-space. Then:
(a) b(X , a) is an A-compactification;
(b) For every (Y , t)�A K(X , a), one has (Y , t)Gb(X , a), that is b(X , a)

is the maximum of A K(X , a);
(c) F(a)4]f�C *(X)Nf has a continuous extension to b(X , a)(.
(d) If (Y , t)�A K(X , a) then Ft’ F(a).
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If X is any space and (Y , t) is a compactification of X , then (Y , t)�
A K(X , a), where a4Coz (Y)NX4Coz (Ft ) is a compatible cozero field on X .
Therefore:

PROPOSITION 2.24. – For every space X , one has K(X)4 0
a� C F

A K(X , a),

where C F is the set of all compatible cozero fields on X . The union is disjoint,
so we have a partition of K(X).

For all undefined here notions and notations see [9].

3. – A-weight of Alexandroff spaces and weight of A-compactifica-
tions.

DEFINITION 3.1. – Let (X , a) be an A-space. We will say that a subset B of
a is an A-base for (X , a) if every element of a can be expressed as a countable
union of members of B. The A-weight of (X , a), denoted by aw(X , a), will be
the minimum cardinality of an A-base.

DEFINITION 3.2. – Let (X , a) be an A-space. A subset S of a is said to be an
A-subbase of a if the family of the finite intersections of the elements of S is an
A-base for a . Clearly aw(X , a) is also the minimum cardinality of an
A-subbase.

REMARK 3.3. – Every A-(sub)base of (X , a) is a (sub)base for the space
(X , t a ).

REMARK 3.4. – If B is an A-(sub)base of (X , a), then, for every cozero field
g on X containing B, one has a’g .

The following proposition is obvious.

PROPOSITION 3.5. – Let (X , a) be an A-space. Then:
(a) NaNG (aw(X , a) )v .
(b) For each Z’X , one has aw(Z , aNZ )Gaw(X , a).
(c) w(X , t a )Gaw(X , a).

Let us show that the inequality in 3.5(c) can be strict.

EXAMPLE 3.6. – If D is a discrete space with NDN4c , then NCoz (D)N4
NP(D)N42c . Hence, by 3.5(a) and the fact that c v4c , we obtain
aw(D , Coz (D) )Dc4w(D).

The above example can be generalized as follows.
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PROPOSITION 3.7. – Let m be a cardinal such that, for every cardinal u sat-
isfying uE2m , one has u vE2m . Then, for the discrete space D(m) of cardinaly
m , one has aw(D(m), Coz (D(m) ) )Dw(D(m) ).

Notice that, under GCH, every cardinal with uncountable cofinality satis-
fies the hypothesis of the above proposition (see, e.g., [17]). On the other hand,
it is compatible with ZFC that v 1 does not satisfy it.

THEOREM 3.8. – Let (X , a) be an A-space and let X4(X , t a ) be Lindelöf.
Then aw(X , a)4w(X).

PROOF. – Since a is a base for t a , there exists a base B ’a with NBN4

w(X). Every element U of a , being an Fs , is Lindelöf and so it is a countable
union of members of B. Therefore B is an A-base for a . Hence aw(X , a)G
w(X , t a ). Now 3.5(c) finishes the proof. r

We will show later (see 3.18, 3.20) that there exist non-Lindelöf spaces X
such that for every compatible cozero field a on X one has aw(X , a)4
w(X).

PROPOSITION 3.9. – For a family ](Xj , a j )(j�J of A-spaces, one has

aw g»
j�J

(Xj , a j )h4max gNJN , sup
j�J

]aw(Xj , a j )(h .

PROOF. – It follows from the fact that the family 0
j�J

]pj
21 (U)NU�a j( is an

A-subbase for »
j�J

(Xj , a j ) (see 2.12). r

The proof of the following proposition is essentially the same as the proof
of the analogous result about weight and open continuous maps.

PROPOSITION 3.10. – If f : (X , a)K (Y , g) is a surjective A-map such that,
for every A�a , f (A)�g , then aw(Y , g)Gaw(X , a).

The following result is analogous to the well-known theorem of P. Alexan-
droff and P. Urysohn.

PROPOSITION 3.11. – For every A-base B of (X , a), there is an A-base B1’ B

such that NB1N4aw(X , a).

PROOF. – Let B0 be an A-base of (X , a) with NB0N4aw(X , a). We put J4
](B1 , B2 )� B03B0 N)A� B : B1’A’B2(. For every (B1 , B2 )�J we choose
A(B1 , B2 )� B with B1’A(B1 , B2 )’B2 and we put B14]A(B1 , B2 ) N(B1 , B2 )�J(. One
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has NB1NGaw(X , a). We will prove that B1 is an A-base of (X , a). If U�a ,
then U is the union of a countable family C 4]Vn(n�v’ B0 . Every Vn is the
union of a countable family ]An , m(m�v’ B and every An , m is the union of a
countable family ]Wn , m , k(k�v’ B0 . Then C84]Wn , m , k(n , m , k�v is a countable
subfamily of B0 whose union is U . Put I4 (C83C)OJ . Then NIN4v . Clearly,
for every W� C8 , there is V� C such that (W , V)�I . Therefore,
]A(W , V)((W , V)�I is a countable subfamily of B1 whose union is U . r

PROPOSITION 3.12. – Let (X , a) be an A-space and let X4 (X , t a ). If (Y , t)
is an A-compactification of (X , a) then w(X)Gaw(X , a)Gw(Y).

PROOF. – Since (X , a) is (A-isomorphic to) an A-subspace of (Y , Coz (Y) ),
one has aw(X , a)Gaw(Y , Coz (Y) )4w(Y). r

The second inequality in the above proposition can be strict. If X is any sec-
ond countable space, then, by 3.8, aw(X , Coz (X) )4w(X)4v . As we know,
bX�A K(X , Coz (X) ) and it is easy to see that w(bX)4c .

COROLLARY 3.13. – Every space X has a compatible cozero field a such that
aw(X , a)4w(X).

PROOF. – This follows from 3.12 and from the fact that for every space X
there is a compactification (Y , t) such that w(Y)4w(X) (see 2.3.23 of
[9]).

REMARK 3.14. – The above corollary implies that, if X is (Lindelöf or) al-
most compact, then aw(X , a)4w(X), where a is the unique compatible cozero
field.

COROLLARY 3.15. – For every (X , a), aw(X , a)G2d(X , a) .

PROOF. – One has aw(X , a)Gw(b(X , a) )G2d(X , t a )42d(X , a) . r

COROLLARY 3.16. – For every A-space (X , a), one has w(X , t a )G
aw(X , a)G2w(X , t a ) .

PROOF. – It follows from 3.15, 3.5(c) and the fact that d(X)G
w(X). r

COROLLARY 3.17. – If X is a space such that w(X)42d(X) , then for every
compatible cozero field a one has aw(X , a)4w(X).

EXAMPLE 3.18. – The Niemytzski plane satisfies the hypothesis of the above
corollary and is not Lindelöf.



A. CATERINO - G. DIMOV - M. C. VIPERA848

REMARK 3.19. – Notice that that both possibilities in the inequality stated in
3.15 can be realized. Indeed, Example 3.18 shows that there exist spaces
(X , a) such that aw(X , a)42d(X , a) . On the other hand, every space X for
which w(X)E2d(X) (e.g., every metrizable space) has, according to 3.13, a com-
patible cozero field a such that aw(X , a)4w(X) and hence aw(X , a)E2d(X) .

COROLLARY 3.20. – If X is a space such that w(X)4w(bX), then w(X)4
aw(X , a), for every compatible cozero field a on X .

PROOF. – It follows from the inequalities w(X)Gaw(X , a)Gw(b(X , a) )G
w(bX)4w(X). r

DEFINITION 3.21. – For an A-space (X , a), we put

A Kaw (X , a)4](Y , t)�A K(X , a)Nw(Y)4aw(X , a)( .

We will see that A Kaw (X , a) is always nonempty.

LEMMA 3.22. – Let (Y , t)�A K(X , a) and let G ’ Ft . If Coz (G) is an A-base
of (X , a), then G generates an A-compactification (Z , h) of (X , a) with
(Z , h)G (Y , t).

PROOF. – Since Coz (G) is a base of X4 (X , t a ), we have that G separates
points from closed sets. Therefore G generates a compactification (Z , h) of X
(see 2.5, 2.6). Then, by 2.7(b), one has G ’ Fh and (Z , h)G (Y , t). Hence, by 2.4,
Fh’ Ft . Then Coz (G)’Coz (Fh )’Coz (Ft ). Since Coz (Fh )4Coz (Z)NX is a coz-
ero field on X , we obtain, by 3.4, that a’Coz (Fh )’Coz (Ft )4a , that is
Coz (Ft )4a . Hence (Z , h)�A K(X , a). r

THEOREM 3.23. – For every (Y , t)�A K(X , a), there exists (Z , h)�
A Kaw (X , a) such that (Z , h)G (Y , t).

PROOF. – Let B be an A-base of (X , a) with NBN4aw(X , a). Since a4

Coz (Ft ), for every B� B we can choose fB� Ft such that B4Coz (fB ). Put G 4

] fB NB� B(. Then NGN4aw(X , a). By the above lemma, G generates an A-
compactification (Z , h) of (X , a) such that (Z , h)G (Y , t). Since (Z , h) is
(homeomorphic to) a subspace of RNGN , one has w(Z)Gaw(X , a). The reverse
inequality always holds (see 3.12), so the conclusion follows. r

COROLLARY 3.24. – For every A-space (X , a), the following are equiva-
lent:

(a) aw(X , a)Dw(X , t a );
(b) w(Y)Dw(X , t a ), for every (Y , t)�A K(X , a).
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PROOF. – It follows from 3.12 and from the above theorem. r

The following definition generalizes the notion of the Hewitt realcompacti-
fication yX of a space. Let us note, before stating it, that a is a compatible coz-
ero field on a space X if and only if the family ]X0UNU�a( is a separating,
nest-generated intersection ring (in the sense of E. F. Steiner [20]) (also
called strong delta normal base in [2]).

DEFINITION 3.25 ([16, 13, 19, 12]). – Let a be a compatible cozero field on
the space X . Let us consider the following subspace of b(X , a):

y(X , a)4]u�b(X , a)Nu has the countable intersection property( .

(We recall that b(X , a) is the space of all Za-ultrafilters, where Za4

]X0UNU�a(). The space y(X , a) is called the Wallman realcompactification
of X with respect to a .

Let us recall some known facts about y(X , a). First of all, yX4

y(X , Coz (X) ). Further, y(X , a) is always realcompact. For acCoz (X),
y(X , a) can be different from X even when X is realcompact. An equivalent
definition of y(X , a) is the following one:

y(X , a)41 ]U�Coz (b(X , a) )NX%U( .

More generally one has:

THEOREM 3.26. – (Theorem 3.9 of [19], Theorem 4.2 of [13]) Let (Y , t) be an
A-compactification of (X , a). Then the canonical map from b(X , a) onto Y
maps homeomorphically y(X , a) onto its image. Hence X’y(X , a)’Y (up to
homeomorphism). Moreover, y(X , a)41 ]U�Coz (Y)NX%U(.

COROLLARY 3.27. – Let a be a compatible cozero field on the space X .
(a) If aw(X , a)4w(X) then w(y(X , a) )4w(X).
(b) If y(X , a) is Lindelöf, then w(y(X , a) )4aw(X , a).

PROOF. – (a) From 3.23 and 2.23 we have that A Kaw (X , a)c¯ . Let Y�
A Kaw (X , a). Then, by 3.26, w(X)Gw(y(X , a) )Gw(Y)4aw(X)4w(X).

(b) We know from 2.18 that y(X , a) has a unique compatible cozero field
g4Coz (y(X , a) ) and, by 3.8, aw(y(X , a), g)4w(y(X , a) ). Let Y�
A Kaw (X , a). Then, by 3.26, aw(X , a)Gw(y(X , a) )Gw(Y)4aw(X , a). r
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4. – Lattice properties.

Let (X , a) be an A-space and let X4 (X , t a ).

LEMMA 4.1. – Let (Y , t), (Z , h), (S , u)� K(X) and suppose (Y , t)G
(Z , h)G (S , u). If (Y , t), (S , u)�A K(X , a), then (Z , h) is also in
A K(X , a).

PROOF. – One has Ft’ Fh’ Fu and Coz (Ft )4Coz (Fu )4a . r

PROPOSITION 4.2. – (a) For every S ’A K(X , a), one has sup
K(X)

S �A K(X , a)

(hence sup
K(X)

S 4 sup
A K(X , a)

S and A K(X , a) is a complete upper subsemilattice

of K(X) );
(b) If S ’A K(X , a) has an infimum in A K(X , a), then inf

A K(X , a)
S 4

inf
K(X)

S.

(c) If A K(X , a) has a smallest element, then A K(X , a) is a complete
lattice.

PROOF. – To prove (a), it suffices to observe that sup
K(X)

S G sup
K(X)

(A K(X , a) )4

max (A K(X , a) )4b(X , a) and apply 4.1. The proof of (b) is an easy conse-
quence of 4.1 and (c) follows from the fact that A K(X , a) is a complete upper
semilattice. r

In Cor. 4.9 of [8], it was shown by a different proof that A K(X , a) is a com-
plete upper semilattice.

Let us note, in connection with 4.2(b), that if S ’A K(X , a) has an infimum
in K(X), then, in general, we cannot affirm that S has an infimum in A K(X , a)
(see Example 4.9 below).

If a space X has more than one compatible cozero field, the local compact-
ness of X is not sufficient to ensure that A K(X , a) has a smallest element. A
necessary and sufficient condition is given in [7]. We need first some
definitions.

DEFINITION 4.3. – ([7]) Let X be a space and let a be a compatible cozero
field on X . X is said to be realcompact with respect to b(X , a) (or with respect
to any element of A K(X , a)) if y(X , a)4X . X is said to be pseudocompact
with respect to b(X , a) if y(X , a)4b(X , a). Clearly X is realcompact (pseudo-
compact) if and only if X is realcompact (resp. pseudocompact) with respect to
b(X , Coz (X) )(4bX).

THEOREM 4.4. – (Theorems 3, 4 of [7]) (a) NA K(X , a)N41 if and only if X
is pseudocompact with respect to b(X , a).
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(b) If NA K(X , a)ND1, then A K(X , a) has a smallest element if and only
if y(X , a) is locally compact and Lindelöf.

We will need the following fact obtained in the proof of Theorem 4 of
[7]:

LEMMA 4.5. – [7] Let (Z , h) be an A-compactification of (X , a) and let
z1 , z2�Z0y(X , a). Then the compactification of X4 (X , t a ) obtained by col-
lapsing z1 and z2 to one point is still an A-compactification of (X , a).

Now we can prove the following:

PROPOSITION 4.6. – Let X be a space and let a be a compatible cozero field
on X . Suppose that X is realcompact with respect to b(X , a).

(a) If X is locally compact, then inf
K(X)

(A K(X , a) ) is the one-point compacti-
fication aX of X .

(b) If X is not locally compact then A K(X , a) does not have infimum in
K(X).

PROOF. – Suppose that A K(X , a) has an infimum (Y , t) in K(X) and there
are two distinct points y1 , y2 in Y0X . Let (Z , h)�A K(X , a) and let q be the
unique map from Z onto Y which is the identity on X . Then there are z1 , z2�
Z0X such that q(zi )4yi , i41, 2 . By the above lemma, the compactification of
X obtained by collapsing z1 and z2 to one point is still in A K(X , a), but it can-
not be greater than or equal to (Y , t), which is a contradiction. Therefore, if
(Y , t)4 inf

K(X)
(A K(X , a) ), then Y0X must contain just one point. This proves

both (a) and (b). r

COROLLARY 4.7. – Let X be a realcompact space. If X is locally compact,
then

inf
K(X)

(A K(X , Coz (X) ) )4aX .

If X is not locally compact then A K(X , Coz (X) ) does not have infimum in
K(X).

PROOF. – Put a4Coz (X) in Proposition 4.6. r

REMARK 4.8. – Suppose X is locally compact. Put a min4Coz (aX)NX (where
aX is the one-point compactification of X). One has a min’a for every compati-
ble cozero field (see 2.4(c)). Hence, unless X admits only a unique compatible
cozero field, a mincCoz (X). Therefore aX�A K(X , Coz (X) ) (and is the small-
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est element in it) if and only if X is almost compact or Lindelöf (see 2.18). It is
known that, if X is not Lindelöf, then one has A K(X , a min )4]aX( (Theorem
2.6 of [19]).

In [7] it is proved that, if X is not either Lindelöf or locally compact, then X
does not admit a smallest compatible cozero field.

EXAMPLE 4.9. – The space D4D(c) is locally compact but yD4D is not
Lindelöf. Then, by 4.4(b), A K(D , Coz (D) ) does not have a smallest element.
However, by Proposition 4.6 (or Corollary 4.7), inf

K(D)
(A K(D , Coz (D) ) )4aD .

Let (X , a) be an A-space and put X4 (X , t a ). We will give some lattice
properties of A Kaw (X , a) regarded as subset of the partially ordered set
A K(X , a).

THEOREM 4.10. – (a) If (Y , t)�A Kaw (X , a), (Z , h)�A K(X , a) and
(Z , h)G (Y , t), then (Z , h)�A Kaw (X , a);

(b) A subset S of A Kaw (X , a) has a supremum in A Kaw (X , a) if and only
if the supremum of S in A K(X , a) belongs to A Kaw (X , a);

(c) A Kaw (X , a) is a m-complete upper subsemilattice of A K(X , a), where m
is equal to aw(X , a);

(d) Let S ’A Kaw (X , a). Then S has a supremum in A Kaw (X , a) if and
only if there is a subset 8’ S, with N8NGm4aw(X , a), such that

sup
A K(X , a)

84 sup
A K(X , a)

S.

PROOF. – (a) follows from 3.12 and from the well known result about the
weight of perfect images.

(b) easily follows from (a).
To prove (c), let ](Yj , tj )(j�J be a subfamily of A Kaw (X , a), with NJNGm .

Every Yj can be embedded in a Tychonoff cube of weight m , that is, (Yj , tj ) is
generated by a family Fj’C *(X), with NFjN4m . Then, by 2.7(c), the family
F 4 0

j�J
Fj generates sup

K(X)
](Yj , tj )(j�J4 sup

A K(X , a)
](Yj , tj )(j�J . Since NFN4m , one

has sup
A K(X , a)

](Yj , tj )(j�J�A Kaw (X , a).

The «if» part of (d) easily follows from (c). Conversely, suppose that the
family S 4](Yj , tj )(j�J has a supremum (Y , t) in A Kaw (X , a) (or, equivalent-
ly, sup

A K(X , a)
S�A Kaw (X , a)). We know, by 4.2(a) and by 2.7(c), that F4 0

j�J
Ftj

generates (Y , t). By Proposition 2.7 of [5] and Theorem 4.2 of [3], F contains a
family G with NGN4m which generates (Y , t). For every g� G, choose j(g)�J
such that g� Ftj( g)

. Put 84](Yj( g) , tj( g) )(g� G . Then clearly (Z , h)4
sup

A K(X , a)
8G sup

A K(X , a)
S 4 (Y , t). On the other hand, G ’ Fh ; hence (Y , t)G

(Z , h). r
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PROPOSITION 4.11. – (a) sup
A K(X , a)

(A Kaw (X , a) )4b(X , a);

(b) A Kaw (X , a) is a complete upper semilattice if and only if b(X , a)�
A Kaw (X , a).

PROOF. – We know, by 4.2(a), that A Kaw (X , a) has a supremum (Y , t)�
A K(X , a). Thus we have only to prove b(X , a)G (Y , t), that is, that every f�
F(a) extends to (Y , t) (see 2.23(c) and 2.4(c)). Let (Z , h) be any element of
A Kaw (X , a) and let G ’C *(X) be a generating family for (Z , h), with NGN4

aw(X , a). We can suppose that G separates points from closed sets ([9],
2.3.23). Since (Z , h)�A K(X , a), one has G ’ F(a). Let f be any element of
F(a). Then GN] f ( generates a compactification (Z1 , h1 ). Since GN] f (%
F(a), one has (Z , h)G (Z1 , h1 )Gb(X , a). Hence, by 4.1, (Z1 , h1 )�A K(X , a).
Moreover, we have w(Z1 )4NGN] f (N4aw(X , a), that is (Z1 , h1 )�
A Kaw (X , a). This implies that (Z1 , h1 )G (Y , t), i.e. f� Fh1

’ Ft (see 2.4(c)).
Therefore f extends to (Y , t) and this proves (a). (b) immediately fol-
lows. r

EXAMPLE 4.12. – The condition «b(X , a)�A Kaw (X , a)» in 4·11(b) is satis-
fied, for example, by:

(a) every A-space (X , a) which is pseudocompact with respect to b(X , a)
(this follows from 4.4(a) and 3.23);

(b) every A-space (X , a) such that w(X)4w(bX), where X4 (X , t a ) (this
follows from the proof of 3.20).

PROPOSITION 4.13. – (a) A subset S of A Kaw (X , a) has an infimum in
A Kaw (X , a) if and only if S has a lower bound in A K(X , a); in this case one
has inf

A Kaw (X , a)
S 4 inf

A K(X , a)
S;

(b) A Kaw (X , a) is a lattice if and only if A K(X , a) is a lattice;
(c) A Kaw (X , a) is a complete lower semilattice if and only if A K(X , a)

has a smallest element.

PROOF. – (a) follows from 4.2(a) and 4.10(a). (b) is a consequence of (a) and
4.10(c). Clearly (a) also implies (c). r

Combining 4.13(c) with the Theorems 3, 4 of [7], mentioned above (see 4.4),
we obtain:

COROLLARY 4.14. – A Kaw (X , a) is a complete lower semilattice if and only
if either (X , a) is pseudocompact with respect to b(X , a) or y(X , a) is locally
compact and Lindelöf.
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5. – A-determining families of functions.

The following lemma is essentially known.

LEMMA 5.1. – ([9], 2.3.D) Let X be a space and let F ’C *(X). Then F gener-
ates a compactification of X if and only if the family ] f 21 (a , 1Q)Nf� F, a�
R(N ]g 21 (2Q , b)Ng� F, b�R( is a subbase for (the open sets of ) X .

THEOREM 5.2. – Let X be a space and let a be a compatible cozero field on
X . A family F ’C *(X) generates an A-compactification of (X , a) if and only
if the family

S 4] f 21 (a , 1Q)Nf� F, a�R(N ] g 21 (2Q , b)Ng� F, b�R(

is an A-subbase of (X , a).

PROOF. – First suppose that S is an A-subbase of (X , a). This implies that S

is a subbase for X . Hence, by the above lemma, F generates a compactification
(Y , t) of X . Then F ’ Ft and, clearly, S ’Coz (Ft )4Coz (Y)NX . On the other
hand, one can easily see that F ’ F(a) and hence every member of F extends to
b(X , a) (see 2.23(c)). Then, by 2.7(b), (Y , t)Gb(X , a) and Ft’ F(a) (see also
2.4). Therefore S ’Coz (Ft )’a . Since S is an A-subbase for (X , a), we obtain
Coz (Ft )4a , that is, (Y , t)�A K(X , a).

Now suppose that F generates an A-compactification (Y , t)4eF X. Let us
denote by pf the projection from K4 »

f� F

If onto If , for each f� F (see 2.5 and

2.6). Put 84](a , 1Q)Na�R(N ](2Q , b)Nb�R(. For every V�a one has
V4eF

21 (U), with U�Coz (K). Since U is an Fs , then U is Lindelöf, so it is a
countable union of open sets of the form pf1

21 (T1 )OROpfn
21 (Tn ) with fi� F,

Ti�8 for every i . Since, for f� F, pf i eF4 f , V is a countable union of sets of
the form f1

21 (T1 )ORO fn
21 (Tn ). This means that S is an A-subbase of

(X , a). r

REMARK 5.3. – The above theorem remains true if, in the definition of S, we
replace R by Q or by the set of the dyadic rationals.

Let X be a space. Following [3], we say that a subfamily F of C *(X) deter-
mines a compactification (Y , t) of X if (Y , t)4min ](Z , h)� K(X)NF ’ Fh(.
We put d(Y , t)4min ]NFNNF determines (Y , t)(

DEFINITION 5.4. – Let (X , a) be an A-space. We say that a family F ’ F(a)
A-determines an A-compactification (Y , t) of (X , a) if (Y , t)4min ](Z , h)�
A K(X , a)NF ’ Fh(.

Clearly, if (Y , t) is an A-compactification of (X , a) then a family F ’ F(a)
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A-determines (Y , t) if and only if Ft4O]Fh N(Z , h)�A K(X , a), F ’ Fh(.
Let X be a space and let a be a compatible cozero field. Every subfamily of

C *(X) which generates a compactification (Y , t)�A K(X , a), also A-deter-
mines (Y , t). More generally, if F ’ F(a) determines (Y , t)�A K(X , a), then F

also A-determines (Y , t). The converse is not true in general (see 5.5 below
and take there X to be a pseudocompact, non-locally compact space).

EXAMPLE 5.5. – Let X be a space and let C be any family of constant
real-valued functions on X . Clearly C ’ F(a) for every compatible cozero field
a on X .

Notice that, when X is not locally compact, C does not determine any com-
pactification of X (see Theorem 2.1 of [3]).

Let us consider the following three cases.
(a) Let X be locally compact. Then, clearly, C A-detemines (and deter-

mines) the A-compactification aX of (X , a min ).
(b) Let X be a realcompact, non-Lindelöf space. Then, by 4.4, C does not A-

determine any A-compactification of (X , Coz (X) ).
(c) Let X be pseudocompact. Then X is pseudocompact with respect to

b(X , a) for every compatible cozero field a (see Cor. 5.5 of [13]). Hence, as it
follows from 3.26 (or 4.4(a)), NA K(X , a)N41 for every a . Therefore, for every
a , C A-determines b(X , a). Now, 2.24 implies that every compactification
(Y , t) of X is A-determined by C with respect to (X , a), where a4

Coz (Y)NX .
More generally, one clearly obtains:

PROPOSITION 5.6. – Let (X , a) be an A-space. If X4 (X , t a ) is pseudocom-
pact with respect to b(X , a), then every F ’ F(a) A-determines b(X , a).

REMARK 5.7. – It is possible to easily extend to A-determining families
many properties of determining families. For instance, the easily formulated
analogues of Theorems 3.2, 3.3 of [3] remain true for A-determining families.
In particular, if we put X4 (X , t a ) and consider C *(X) endowed with the
topology of uniform convergence, then a family F ’ F(a) A-determines (Y , t)�
A K(X , a) if and only if clF(a) (F )4clC *(X) (F ) A-determines (Y , t).

NOTATION 5.8. – If (Y , t)�A K(X , a), let us denote by qt the unique map
from b(X , a) to Y which is the identity on X .

If F ’ Ft , then, for every f� F, we denote by f Y the unique extension of f to
Y . Put F Y4] f Y Nf� F(. For every F ’ F(a), we denote by F y(X , a) the exten-
sions of the elements of F to y(X , a) (see Definition 3.25).

REMARK 5.9. – Let (Y , t)�A K(X , a). We know that the restriction
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of qt to y(X , a) is the identity map and qt maps b(X , a)0y(X , a) onto
Y0y(X , a) (see the proof of Theorem 3.9 of [19]).

If (Y , t)G (Z , h), where (Z , h) is also in A K(X , a), then, clearly, the
canonical map q from Z to Y is the identity on y(X , a) and maps Z0y(X , a) on-
to Y0y(X , a).

For every (Y , t)�A K(X , a), let us denote by ty the embedding of y(X , a)
into Y . Clearly, (Y , ty ) is a compactification of y(X , a). One has (Y , t)G (Z , h)
if and only if (Y , ty )G (Z , hy ).

THEOREM 5.10. – Let (X , a) be an A-space and suppose that X4 (X , t a ) is
not pseudocompact with respect to b(X , a). Let F be a subset of F(a) and let
(Y , t)�A K(X , a). Then F A-determines (Y , t) if and only if F ’ Ft and F Y

separates points of Y0y(X , a).

PROOF. – (¨) Clearly, we have that F ’ Ft . Let us prove that F Y separates
points of Y0y(X , a).

Suppose y1 , y2�Y0y(X , a) are not separated by F Y . From Lemma 4.5 it
follows that the compactification (Z , h) of X obtained by collapsing y1 and y2 to
one point, is still an A-compactification of (X , a). But, clearly, F ’ Fh and this
is a contradiction because (Z , h)G (Y , t).

(ˆ) We shall show that F A-determines (Y , t).
Let (Z , h)�A K(X , a) be such that F ’ Fh . For f� F, one has f b(X , a)4

f Z
i qh . Hence f b(X , a) is constant on the sets qh

21 (z), for z�Z . We need to prove
that there is a continuous map q : ZKY which is the identity on X . Let us de-
fine q as follows: q(z)4z if z�y(X , a); q(z)4qt (u) if z�Z0y(X , a), where u�
qh
21 (z). We need to prove that qt (u) is independent on the choice of u . Suppose

that, for u , v�qh
21 (z) one has y14qt (u)cqt (v)4y2 . There is f� F such that

f Y (y1 )c f Y (y2 ). Since f b(X , a)4qt i f Y , one has f b(X , a) (u)c f b(X , a) (v), a contra-
diction. Therefore q is well defined and satisfies qt4q i qh . Since qh is a quo-
tient map, q is continuous. This completes the proof. r

COROLLARY 5.11. – Suppose (X , a) satisfies the hypotheses of the above
theorem and let (Y , t)�A K(X , a). A subset F of Ft A-determines (Y , t) if and
only if F y(X , a) determines the compactification (Y , ty ) of y(X , a).

In particular, if X is realcompact with respect to b(X , a), then (Y , t) is
A-determined by F if and only if it is determined by F as compactification
of X .

PROOF. – It follows from the above theorem and Theorem 2.1 of [3]. r

DEFINITION 5.12. – Let (X , a) be an A-space. For (Y , t)�A K(X , a), let us
denote by ad(Y , t) the minimum cardinality of a subfamily of F(a) which A-de-
termines (Y , t).
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COROLLARY 5.13. – Let (X , a) be as in 5.10 and let (Y , t)�A K(X , a). Then
ad(Y , t)4d(Y , ty ).

PROOF. – From 5.11 one has d(Y , ty )Gad(Y , t). Let G be a subfamily of
C *(y(X , a) ) which determines (Y , ty ). Put F 4] gNX Ng� G(. Then F ’ Ft and
G 4 F y(X , a) . Hence, by 5.11, F A-determines (Y , t). Since NFN4NGN , we ob-
tain ad(Y , t)Gd(Y , ty ). r

PROPOSITION 5.14. – Let (Y , t), (Z , h)�A K(X , a). Then:

(a) ad(Y , t)Gw(Y0y(X , a) )Gw(Y0X).

(b) If y(X , a) is locally compact and ad(Y , t) is infinite, then
ad(Y , t)4w(Y0y(X , a) ).

(c) If (Y , t)G (Z , h), and ad(Z , h) is infinite, then ad(Y , t)G
ad(Z , h).

PROOF. – (a) and (b) follow from 5.13 and Theorem 4.2 of [3].
(c) follows from 5.9, 5.13 and Theorem 4.3 of [3]. r

PROPOSITION 5.15. – If (Y , t)�A K(X , a) and w(Y)Daw(X , a), then
ad(Y , t)4w(Y).

PROOF. – Suppose F A-determines (Y , t) and NFNEw(Y). Let (Z , h)�
A Kaw (X , a) and (Z , h)E (Y , t) (see 3.23). Then there is G ’ Fh , with NGN4

aw(X , a), which separates points from closed sets of X . Clearly NGNFNE

w(Y). Since F ’ GNF ’ Ft , clearly GNF A-determines (Y , t). But GNF sep-
arates points from closed sets and, hence, it also generates (Y , t). Then
w(Y)GNGNFN , a contradiction. r

A consequence of the Stone-Weierstrass theorem is that, for a compactifi-
cation (Y , t) of X , w(Y)4d(Ft ) (with respect to the topology of uniform con-
vergence). So one has:

COROLLARY 5.16. – Let (Y , t)�A K(X , a) and suppose w(Y)Daw(X , a). If
F A-determines (Y , t) then there exists G % F which A-determines (Y , t) with
NGN4ad(Y , t).

PROOF. – From F % Ft , we obtain d(F )Gd(Ft ) (since the topology of uni-
form convergence is metrizable). Let G be a dense subset of F of cardinality
d(F ). By 5.7, G A-determines (Y , t) and one has, using 5.15, that ad(Y , t)G
NGN4d(F )Gd(Ft )4w(Y)4ad(Y , t).
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