BOLLETTINO UNIONE MATEMATICA ITALIANA

VINCENZO DE FILIPPIS

On a subset with nilpotent values in a prime ring with derivation

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 5-B (2002), n.3, p. 833–838.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_3_833_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2002.

On a Subset with Nilpotent Values in a Prime Ring with Derivation.

VINCENZO DE FILIPPIS

Sunto. – Siano R un anello primo, privo di nil ideali destri, d una derivazione non nulla di R, I un ideale bilatero non nullo di R. Se, per ogni x, $y \in I$, esiste n = $n(x, y) \ge 1$ tale che $(d([x, y]) - [x, y])^n = 0$, allora R é commutativo. Come conseguenza si ottiene una estensione di tale risultato per ideali di Lie di R.

Summary. – Let R be a prime ring, with no non-zero nil right ideal, d a non-zero drivation of R, I a non-zero two-sided ideal of R. If, for any $x, y \in I$, there exists $n = n(x, y) \ge 1$ such that $(d([x, y]) - [x, y])^n = 0$, then R is commutative. As a consequence we extend the result to Lie ideals.

This note continues a line of investigation in the literature concerning derivations having nilpotent values. The first such result is due to Herstein [6]. He proved that if R is a prime ring and d an inner derivation of R satisfying $d(x)^n = 0$, for all $x \in R$ and n a fixed integer, then d = 0. Many authors extended this result to arbitrary derivations which act either on Lie ideals or on multilinear polynomials in prime and semiprime rings. In [5] Felzenswalb and Lanski considered derivations satisfying $d(x)^{n(x)} = 0$, for all $x \in I$, an ideal of R, and proved d(I) = 0, when R has no nil right ideal. In [1] Carini and Giambruno studied the case when $d(u)^{n(u)} = 0$, for all $u \in L$, a Lie ideal of R and they proved that d(L) = 0 when R is a prime ring, char $(R) \neq 2$ and R contains no nil right ideal, and then obtain the same conclusion when n is fixed and R is a 2-torsion free semiprime ring. Later in [9] Lanski obtained the same results, removing both the bound on the indices of nilpotence and the characteristic assumption on R. More recently Wong [12] proved that if $f(x_1, \ldots, x_n)$ is a multilinear polynomial on a prime ring R and $d(f(r_1, ..., r_n))^{n(r_1, ..., r_n)} = 0$, for all $r_1, \ldots, r_n \in R$ and *n* depending on the choice of r_1, \ldots, r_n , then $f(x_1, \ldots, x_n)$ is central valued on R provided R contains no non-zero nil right ideal.

Our purpose here is to obtain some information on the structure of a prime ring R, when a special subset of R has nilpotent values. More precisely, let $d \neq 0$ a derivation of R, $A = \{d([x, y]) - [x, y]: x, y \in R\}$. It is known that if R is a 2-torsion free semiprime ring and any element of A is central in R, then R is commutative (see [8]). Moreover if R is semiprime and any element of A is zero or invertible in R, then either R is a division ring or R is the ring of all 2×2 matrices over a division ring (see [3]).

Here we consider the case when *R* is prime and, for any $a \in A$, there exists an integer $n = n(a) \ge 1$ such that $a^n = 0$. We prove the following:

THEOREM 1. – Let R be a prime ring with no non-zero nil right ideal, d a non-zero derivation of R, I a non-zero ideal of R. If for any $x, y \in I$ there exists $n = n(x, y) \ge 1$ such that $(d([x, y]) - [x, y])^n = 0$ then R is commutative.

As a natural consequence, we will also obtain the following extension to Lie ideals:

THEOREM 2. – Let R be a prime ring with no non-zero nil right ideal, d a non-zero derivation of R, L a Lie ideal of R. If, for any $u \in L$, there exists $n = n(u) \ge 1$ such that $(d(u) - u)^n = 0$ then L is central in R, except when L is commutative, char (R) = 2 and R satisfies the standard identity $S_4(x_1, ..., x_4)$.

For sake of completeness, first we state some well known results:

LEMMA 1. – Let R be a prime ring, $d \neq 0$ a derivation of R, L a Lie ideal of R such that d(u) - u = 0, for all $u \in L$. Then L is central in R.

PROOF. – Let $u \in L$, $x \in R$, then d([u, x]) = [u, x]. Expanding this last one, we have [d(u), x] + [u, d(x)] = [u, x] i.e. [u, x] + [u, d(x)] = [u, x]. It follows that [L, d(R)] = (0), which means that $L \subseteq C_R(d(R))$, the centralizers of d(R) in R. Since it is well known that $C_R(d(R)) = Z(R)$, we are done.

LEMMA 2. – Let R be a division ring, $d \neq 0$ a derivation of R, L a Lie ideal of R. If, for any $u \in L$, there exists $n = n(u) \ge 1$ such that $(d(u) - u)^n = 0$, then L is central in R.

PROOF. – It follows directly from Lemma 1.

We begin the proof of the main result with the following:

LEMMA 3. – Let R be a primitive ring, d a non-zero derivation of R, I a non-zero ideal of R. If, for any $x, y \in I$, there exists $n = n(x, y) \ge 1$ such that $(d([x, y]) - [x, y])^n = 0$ then R is commutative.

PROOF. – Let *V* a faithful irreducible right *R*-module with endomorphisms ring *D*, a division ring. Since *I* is a non-zero ideal of *R*, then *R* and *I* are both dense subring of *D*-linear transformations on *V*. Suppose that dim_{*D*} $V \ge 2$. Let $v \in V$, $r \in I$ such that vr = 0. Suppose $vd(r) \neq 0$. There exists $w \in V$ such that vd(r) and wr are linearly independent over D. By the density of I, there exist $s_1, s_2 \in I$ such that $vd(r) s_1 = w$, $wrs_2 = v$ and $vd(r) s_2 = 0$. Therefore $v(d([rs_1, rs_2]) - [rs_1, rs_2]) = v$. Since there exists $n = n(r, s_1, s_2) \geq 1$ such that $(d([rs_1, rs_2]) - [rs_1, rs_2])^n = 0$, then we get the contradiction $0 = v(d([rs_1, rs_2]) - [rs_1, rs_2])^n = v \neq 0$. Hence, for all $v \in V$ and $r \in I$, if vr = 0 then vd(r) = 0.

Now we prove that vr and vd(r) are linearly *D*-dependent, for all $r \in I$ and $v \in V$. In fact, if not, by the density of *I*, there exists $s \in I$ such that vrs = 0 and $vd(r) \ s \neq 0$. On the other hand, since vrs = 0, by the above argument, we have that vd(rs) = 0 and also vrd(s) = 0. Then $0 = vd(rs) = vd(r) \ s + vrd(s) = vd(r) \ s \neq 0$, a contradiction. This means that, for any $r \in I$ and $v \in V$, there exists $a_{r,v} \in D$, depending on the choice of *r* and *v*, such that $vd(r) = a_{r,v}vr$.

Let now $r_1, r_2 \in I$. Then $vd(r_1) = \alpha_1 vr_1$ and $vd(r_2) = \alpha_2 vr_2$. If vr_1 and vr_2 are independent over D, then by $vd(r_1) + vd(r_2) = vd(r_1 + r_2) = \beta v(r_1 + r_2)$, we have $\alpha_1 = \alpha_2 = \beta$. If vr_1 and vr_2 are non-zero and linearly D-dependent, consider the element vr_3 , with $r_3 \in I$, such that vr_3 is independent on vr_1 and vr_2 . Since $vd(r_1) = \alpha_1 vr_1$, $vd(r_2) = \alpha_2 vr_2$ and $vd(r_3) = \alpha_3 vr_3$, as above we conclude that $\alpha_1 = \alpha_2 = \alpha_3$. Therefore, fixed $v \in V$, for all $r \in I$, there exists $\alpha = \alpha_v$, depending on the choice of v, such that $vd(r) = \alpha_v vr$.

Fix now $r \in I$, with rank (r) > 1. For all $u, v \in I$, $ud(r) = a_u ur$, $vd(r) = a_v vr$, for suitable a_u and a_v in D. If ur and vr are independent over D, then $a_u ur + a_v vr = (u+v)d(r) = a_{u+v}(u+v)r$ implies $a_u = a_v = a_{u+v}$. If ur and vr are non-zero and linearly dependent over D, consider wr, with $w \in V$, such that wr is independent on ur and vr. Thus, since $wd(r) = a_w wr$, then $a_u = a_v = a_w$. Hence we have proved that there exists $a \in D$ such that avr = vd(r), for all $r \in I$ and $v \in V$. Moreover $a \neq 0$. In fact, if a = 0 then Vd(R) = (0), which implies the contradiction d(R) = 0.

Let now $r, s \in I$ and $v \in V$. Since vd(rs) = avrs and also vd(rs) = vd(r)s + vrd(s) = 2avrs, then avrs = 0, i.e. $aVR^2 = (0)$ and we get the contradiction R = 0.

All the previous arguments say that $dim_D V = 1$, that is *R* is a division ring and, by Lemma 2, we are done.

LEMMA 4. – Let R be a semiprimitive ring, d a non-zero derivation of R, I a non-zero ideal of R. If, for any $x, y \in I$, there exists $n = n(x, y) \ge 1$ such that $(d([x, y]) - [x, y])^n = 0$ then R is commutative.

PROOF. – Since *R* is semiprimitive, the Jacobson's radical J(R) is zero. Then *R* is a subdirect product of primitive rings. For any *P* primitive ideal of *R*, let $\overline{R} = \frac{R}{P}$, which is primitive. Consider the following partition:

$$K_1 = \{P : d(I^2) \subseteq P\}$$

 $K_2 = \left\{ P : d(P) \subseteq P, \ d(I^2) \notin P \right\}$

$$K_3 = \{P : d(P) \notin P, d(I^2) \notin P\}.$$

In addition let $J_i = \cap P$, for $P \in K_i$, i = 1, 2, 3. Moreover $J_1 J_2 J_3 \subseteq J_1 \cap J_2 \cap J_3 = (0)$ and, by the primeness of R, one of the J_i must be zero.

If $J_1 = 0$ then $d(I^2) = 0$ and so d = 0, a contradiction.

Suppose $J_2 = 0$. Let \overline{d} the derivation of $\overline{R} = \frac{R}{P}$ induced by d as follows: $\overline{d}(\overline{x}) = \overline{d(x)}$, for all $\overline{x} = x + P$, $x \in R$. Moreover $\overline{I} = I + P$ is an ideal of \overline{R} and $(\overline{d}([\overline{x}, \overline{y}]) - [\overline{x}, \overline{y}]) = \overline{d([x, y]) - [x, y]}$ is nilpotent in \overline{R} , for all $x, y \in I$. By the primitive case, $\overline{R} = \frac{R}{P}$ is commutative, for all $P \in K_2$, that is R is commutative.

Suppose now $J_3 = 0$. For all $P \in K_3$, $\overline{d(I^2P)}$ is an ideal of \overline{R} and $\overline{d(I^2P)} \neq 0$. For all $x, y \in I^2P$ we have that d([x, d(y)]) - [x, d(y)] = [d(x), d(y)] (mod P). Hence $[\overline{d(x)}, \overline{d(y)}]$ is nilpotent, for all $x, y \in I^2P$, i.e. [X, Y] is nilpotent in $\overline{d(I^2P)}$. It is well known that in this case $\overline{d(I^2P)}$ is commutative, that is $\overline{R} = \frac{R}{P}$ is commutative, for all $P \in K_3$, and so R is commutative.

LEMMA 5. – Let R be a prime ring with no non-zero nil right ideal, $d \neq 0$ a derivation of R, I a non-zero ideal of R such that, for any $x, y \in I$, $(d([x, y]) - [x, y])^n = 0$, for a suitable $n = n(x, y) \ge 1$ depending on the choice of x, y. Let a, $b \in I$. If ab = 0 then ad(b) = d(a)b = 0.

PROOF. – Let $x \in R$. Then there exists $n \ge 1$ such that

 $0 = (d([ba, xba]) - [ba, xba])^n = (bd(axb)a + baxbd(a) + d(b)axba - baxba)^n$

and right multiplying by *b*, we have: $(baxbd(a))^n b = 0$, i.e. $(bd(a) bax)^{n+1} = 0$. By the arbitrariety of $x \in R$ and since *R* does not contain any non-zero nil right ideal, it follows that bd(a) ba = 0. Let now $s \in R$ such that $s^2 = 0$. If c = xs and f = sy for $x, y \in I$, then cf = 0 and, by above argument, 0 = syd(xs) syxs = syxd(s) syxs. Since d(s) s = -sd(s), then we have $(d(s) syx)^3 = 0$, and as above it follows d(s) s = 0. Moreover, since ab = 0, then $(bxa)^2 = 0$, for any $x \in R$. Hence 0 = bxad(bxa) = bxad(b) xa, i.e. $(ad(b)x)^3 = 0$, so ad(b) = 0.

Now we are ready to prove:

THEOREM 1. – Let R be a prime ring with no non-zero nil right ideal, d a non-zero derivation of R, I a non-zero ideal of R. If for any $x, y \in I$ there exists $n = n(x, y) \ge 1$ such that $(d([x, y]) - [x, y])^n = 0$ then R is commutative.

PROOF. – Let $S = \{s \in R : s^2 = 0\}$, J the Jacobson's radical of R.

Suppose $S \neq 0$, and so $J \neq 0$. Let $T = \{t \in R : atb = 0 \text{ if } ab = 0, a, b \in R\}$ and $W = S \cap T$.

836

If W = 0 then d(J) = 0 (see [5, theorem 5]), a contradiction.

Hence consider $W \neq 0$ and $V = \{v \in W : vRv \subseteq T\}$. By the proof of theorem 5 in [5] we get that $V \neq 0$ and vhv = 0, for all $v \in V$ and for all h nilpotent element of R. Thus, in particular, for all $v \in V$ and $x, y \in I$, v(d([x, y]) - [x, y]) v = 0. Since R and I satisfy the same differential identities (see [11]), then v(d([x, y]) - [x, y]) v = 0, for all $x, y \in R$. Let $u \in [R, R]$, $r \in R$, then v(d([u, vr]) - [u, vr]) v = 0. By calculation we have v[R, R](d(vr)) v = 0. In particular v[x, vy](d(vr)) v = 0, for any $x, y \in R$, that is vxvy(d(vr)) v = 0. Since R is prime and $v \neq 0$, it follows d(vr) v = 0, which means that d(x) x = 0 for any element x of the right ideal $\varrho = vR$ of R. By Lemma in [1] d is an inner derivation induced by $q \in Q$, the Martindale quotients ring of R, that is d(x) = [q, x], for all $x \in R$, moreover qv = 0. Therefore, for all $r_1, r_2 \in R$, we have

$$0 = v(q[r_1, r_2] - [r_1, r_2] q - [r_1, r_2]) v = vq[r_1, r_2] v - v[r_1, r_2] v = (vq - v)[r_1, r_2] v$$

and so (vq - v)[R, R] v = 0. Since $v \neq 0$, then vq = v.

By our assumption, for any $x \in R$ there exists $m \ge 1$ such that

$$\begin{aligned} 0 &= ([q, [v, x]] - [v, x])^m = ([q, vx - xv] - vx + xv)^m = \\ &\quad (-qxv - vxq + xvq - vx + xv)^m = (-qxv - vxq - vx + 2xv)^m. \end{aligned}$$

Right multiplying by v we obtain that $(-vx)^m v = 0$, so $(-vx)^{m+1} = 0$, which means that vR is a nil right ideal of R. Since R has no non-zero nil right ideal, then v = 0.

The previous contradiction says that S = 0, that is R is a domain and so d([x, y]) - [x, y] = 0, for all $x, y \in I$. Thus we conclude, by Lemma 1, that R is commutative.

We conclude this paper with an extension of previuos theorem to Lie ideals. First we premit the following:

LEMMA 6. – Let R be a prime ring and L a non-central Lie ideal of R. Then either there exists a non-zero ideal I of R such that $0 \neq [I, R] \subseteq L$ or L is commutative, char(R) = 2 and R satisfies the standard identity $S_4(x_1, ..., x_4)$.

PROOF. – See [7, pp. 4-5], [4, lemma 2, proposition 1], [10, theorem 4]. ■

Finally we have:

THEOREM 2. – Let R be a prime ring with no non-zero nil right ideal, d a non-zero derivation of R, L a Lie ideal of R. If, for any $u \in L$, there exists n =

 $n(u) \ge 1$ such that $(d(u) - u)^n = 0$ then L is central in R, except when L is commutative, char(R) = 2 and R satisfies the standard identity $S_4(x_1, ..., x_4)$.

PROOF. – Suppose L is not central. In this case R cannot be commutative. By Lemma 6 either $[I, I] \subseteq L$, for some ideal I of R, or char(R) = 2, L is commutative and R satisfies the standard identity $S_4(x_1, \ldots, x_4)$. Since in the first case, by Theorem 1, we have the contradiction that R is commutative, we are done.

REFERENCES

- M. BRESAR, One-sided ideals and derivations of prime rings, Proc. Amer. Math. Soc., 122 (1994), 979-983.
- [2] L. CARINI A. GIAMBRUNO, Lie ideals and nil derivations, Boll. UMI, 6 (1985), 497-503.
- [3] V. DE FILIPPIS, Automorphisms and derivations in prime rings, Rendiconti di Mat. Roma, serie VII vol. 19 (1999), 393-404.
- [4] O. M. DI VINCENZO, On the n-th centralizers of a Lie ideal, Boll. UMI, 7, 3-A (1989), 77-85.
- [5] B. FELZENSZWALB C. LANSKI, On the centralizers of ideals and nil derivations, J. Algebra, 83 (1983), 520-530.
- [6] I. N. HERSTEIN, Center-like elements in prime rings, J. Algebra, 60 (1979), 567-574.
- [7] I. N. HERSTEIN, *Topics in Ring theory*, University of Chicago Press, Chicago 1969.
- [8] M. HONGAN, A note on semiprime rings, Int. J. Math. Math. Sci., 20, No. 2 (1997), 413-415.
- [9] C. LANSKI, Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc., 108, No. 1 (1990), 31-37.
- [10] C. LANSKI S. MONTGOMERY, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42, No. 1 (1972), 117-135.
- [11] T. K. LEE, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, vol. 20, No. 1 (1992), 27-38.
- [12] T. L. WONG, Derivations with power-central values on multilinear polynomials, Algebra Colloquium, 3:4 (1996), 369-378.

Dipartimento di Matematica, Università di Messina Salita Sperone 31, 98166 Messina e-mail: enzo@dipmat.unime.it

838

Pervenuta in Redazione il 28 gennaio 2002