Bollettino

Unione Matematica Italiana

Vincenzo De Filippis

On a subset with nilpotent values in a prime ring with derivation

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 5-B (2002), n.3, p. 833-838.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2002_8_5B_3_833_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

On a Subset with Nilpotent Values in a Prime Ring with Derivation.

Vincenzo De Filippis

Sunto. - Siano R un anello primo, privo di nil ideali destri, d una derivazione non nulla di R, I un ideale bilatero non nullo di R. Se, per ogni $x, y \in I$, esiste $n=$ $n(x, y) \geqslant 1$ tale che $(d([x, y])-[x, y])^{n}=0$, allora R é commutativo. Come conseguenza si ottiene una estensione di tale risultato per ideali di Lie di R.

Summary. - Let R be a prime ring, with no non-zero nil right ideal, d a non-zero drivation of R, I a non-zero two-sided ideal of R. If, for any $x, y \in I$, there exists $n=$ $n(x, y) \geqslant 1$ such that $(d([x, y])-[x, y])^{n}=0$, then R is commutative. As a consequence we extend the result to Lie ideals.

This note continues a line of investigation in the literature concerning derivations having nilpotent values. The first such result is due to Herstein [6]. He proved that if R is a prime ring and d an inner derivation of R satisfying $d(x)^{n}=0$, for all $x \in R$ and n a fixed integer, then $d=0$. Many authors extended this result to arbitrary derivations which act either on Lie ideals or on multilinear polynomials in prime and semiprime rings. In [5] Felzenswalb and Lanski considered derivations satisfying $d(x)^{n(x)}=0$, for all $x \in I$, an ideal of R, and proved $d(I)=0$, when R has no nil right ideal. In [1] Carini and Giambruno studied the case when $d(u)^{n(u)}=0$, for all $u \in L$, a Lie ideal of R and they proved that $d(L)=0$ when R is a prime ring, char $(R) \neq 2$ and R contains no nil right ideal, and then obtain the same conclusion when n is fixed and R is a 2-torsion free semiprime ring. Later in [9] Lanski obtained the same results, removing both the bound on the indices of nilpotence and the characteristic assumption on R. More recently Wong [12] proved that if $f\left(x_{1}, \ldots, x_{n}\right)$ is a multilinear polynomial on a prime ring R and $d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)^{n\left(r_{1}, \ldots, r_{n}\right)}=0$, for all $r_{1}, \ldots, r_{n} \in R$ and n depending on the choice of r_{1}, \ldots, r_{n}, then $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued on R provided R contains no non-zero nil right ideal.

Our purpose here is to obtain some information on the structure of a prime ring R, when a special subset of R has nilpotent values. More precisely, let $d \neq 0$ a derivation of $R, A=\{d([x, y])-[x, y]: x, y \in R\}$. It is known that if R is a 2 -torsion free semiprime ring and any element of A is central in R, then R is
commutative (see [8]). Moreover if R is semiprime and any element of A is zero or invertible in R, then either R is a division ring or R is the ring of all 2×2 matrices over a division ring (see [3]).

Here we consider the case when R is prime and, for any $a \in A$, there exists an integer $n=n(a) \geqslant 1$ such that $a^{n}=0$. We prove the following:

Theorem 1. - Let R be a prime ring with no non-zero nil right ideal, d a non-zero derivation of R, I a non-zero ideal of R. If for any $x, y \in I$ there exists $n=n(x, y) \geqslant 1$ such that $(d([x, y])-[x, y])^{n}=0$ then R is commutative.

As a natural consequence, we will also obtain the following extension to Lie ideals:

Theorem 2. - Let R be a prime ring with no non-zero nil right ideal, d a non-zero derivation of R, L a Lie ideal of R. If, for any $u \in L$, there exists $n=n(u) \geqslant 1$ such that $(d(u)-u)^{n}=0$ then L is central in R, except when L is commutative, $\operatorname{char}(R)=2$ and R satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

For sake of completeness, first we state some well known results:
Lemma 1. - Let R be a prime ring, $d \neq 0$ a derivation of R, L a Lie ideal of R such that $d(u)-u=0$, for all $u \in L$. Then L is central in R.

Proof. - Let $u \in L, x \in R$, then $d([u, x])=[u, x]$. Expanding this last one, we have $[d(u), x]+[u, d(x)]=[u, x]$ i.e. $[u, x]+[u, d(x)]=[u, x]$. It follows that $[L, d(R)]=(0)$, which means that $L \subseteq C_{R}(d(R))$, the centralizers of $d(R)$ in R. Since it is well known that $C_{R}(d(R))=Z(R)$, we are done.

Lemma 2. - Let R be a division ring, $d \neq 0$ a derivation of R, L a Lie ideal of R. If, for any $u \in L$, there exists $n=n(u) \geqslant 1$ such that $(d(u)-u)^{n}=0$, then L is central in R.

Proof. - It follows directly from Lemma 1.
We begin the proof of the main result with the following:
Lemma 3. - Let R be a primitive ring, d a non-zero derivation of R, I a non-zero ideal of R. If, for any $x, y \in I$, there exists $n=n(x, y) \geqslant 1$ such that $(d([x, y])-[x, y])^{n}=0$ then R is commutative.

Proof. - Let V a faithful irreducible right R-module with endomorphisms ring D, a division ring. Since I is a non-zero ideal of R, then R and I are both dense subring of D-linear transformations on V. Suppose that $\operatorname{dim}_{D} V \geqslant 2$. Let $v \in V, r \in I$
such that $v r=0$. Suppose $v d(r) \neq 0$. There exists $w \in V$ such that $v d(r)$ and $w r$ are linearly independent over D. By the density of I, there exist $s_{1}, s_{2} \in I$ such that $v d(r) s_{1}=w, w r s_{2}=v$ and $v d(r) s_{2}=0$. Therefore $v\left(d\left(\left[r s_{1}, r s_{2}\right]\right)-\left[r s_{1}, r s_{2}\right]\right)=v$. Since there exists $n=n\left(r, s_{1}, s_{2}\right) \geqslant 1$ such that $\left(d\left(\left[r s_{1}, r s_{2}\right]\right)-\left[r s_{1}, r s_{2}\right]\right)^{n}=0$, then we get the contradiction $0=v\left(d\left(\left[r s_{1}, r s_{2}\right]\right)-\left[r s_{1}, r s_{2}\right]\right)^{n}=v \neq 0$. Hence, for all $v \in V$ and $r \in I$, if $v r=0$ then $v d(r)=0$.

Now we prove that $v r$ and $v d(r)$ are linearly D-dependent, for all $r \in I$ and $v \in$ V. In fact, if not, by the density of I, there exists $s \in I$ such that $v r s=0$ and $v d(r) s \neq 0$. On the other hand, since $v r s=0$, by the above argument, we have that $v d(r s)=0$ and also $\operatorname{vrd}(s)=0$. Then $0=v d(r s)=v d(r) s+\operatorname{vrd}(s)=$ $v d(r) s \neq 0$, a contradiction. This means that, for any $r \in I$ and $v \in V$, there exists $\alpha_{r, v} \in D$, depending on the choice of r and v, such that $v d(r)=\alpha_{r, v} v r$.

Let now $r_{1}, r_{2} \in I$. Then $v d\left(r_{1}\right)=\alpha_{1} v r_{1}$ and $v d\left(r_{2}\right)=\alpha_{2} v r_{2}$. If $v r_{1}$ and $v r_{2}$ are independent over D, then by $v d\left(r_{1}\right)+v d\left(r_{2}\right)=v d\left(r_{1}+r_{2}\right)=\beta v\left(r_{1}+r_{2}\right)$, we have $\alpha_{1}=\alpha_{2}=\beta$. If $v r_{1}$ and $v r_{2}$ are non-zero and linearly D-dependent, consider the element $v r_{3}$, with $r_{3} \in I$, such that $v r_{3}$ is independent on $v r_{1}$ and $v r_{2}$. Since $v d\left(r_{1}\right)=\alpha_{1} v r_{1}, v d\left(r_{2}\right)=\alpha_{2} v r_{2}$ and $v d\left(r_{3}\right)=\alpha_{3} v r_{3}$, as above we conclude that $\alpha_{1}=\alpha_{2}=\alpha_{3}$. Therefore, fixed $v \in V$, for all $r \in I$, there exists $\alpha=\alpha_{v}$, depending on the choice of v, such that $v d(r)=\alpha_{v} v r$.

Fix now $r \in I$, with $\operatorname{rank}(r)>1$. For all $u, v \in I, u d(r)=\alpha_{u} u r, v d(r)=$ $\alpha_{v} v r$, for suitable α_{u} and α_{v} in D. If $u r$ and $v r$ are independent over D, then $\alpha_{u} u r+\alpha_{v} v r=(u+v) d(r)=\alpha_{u+v}(u+v) r$ implies $\alpha_{u}=\alpha_{v}=\alpha_{u+v}$. If $u r$ and $v r$ are non-zero and linearly dependent over D, consider $w r$, with $w \in V$, such that $w r$ is independent on $u r$ and $v r$. Thus, since $w d(r)=\alpha_{w} w r$, then $\alpha_{u}=$ $\alpha_{v}=\alpha_{w}$. Hence we have proved that there exists $\alpha \in D$ such that $\alpha v r=v d(r)$, for all $r \in I$ and $v \in V$. Moreover $\alpha \neq 0$. In fact, if $\alpha=0$ then $\operatorname{Vd}(R)=(0)$, which implies the contradiction $d(R)=0$.

Let now $r, s \in I$ and $v \in V$. Since $v d(r s)=\alpha v r s$ and also $v d(r s)=v d(r) s+$ $\operatorname{vrd}(s)=2 \alpha v r s$, then $\alpha v r s=0$, i.e. $\alpha V R^{2}=(0)$ and we get the contradiction $R=0$.

All the previous arguments say that $\operatorname{dim}_{D} V=1$, that is R is a division ring and, by Lemma 2, we are done.

Lemma 4. - Let R be a semiprimitive ring, d a non-zero derivation of R, I a non-zero ideal of R. If, for any $x, y \in I$, there exists $n=n(x, y) \geqslant 1$ such that $(d([x, y])-[x, y])^{n}=0$ then R is commutative.

Proof. - Since R is semiprimitive, the Jacobson's radical $J(R)$ is zero. Then R is a subdirect product of primitive rings. For any P primitive ideal of R, let $\bar{R}=\frac{R}{P}$, which is primitive. Consider the following partition:

$$
K_{1}=\left\{P: d\left(I^{2}\right) \subseteq P\right\}
$$

$K_{2}=\left\{P: d(P) \subseteq P, d\left(I^{2}\right) \nsubseteq P\right\}$

$$
K_{3}=\left\{P: d(P) \nsubseteq P, d\left(I^{2}\right) \nsubseteq P\right\} .
$$

In addition let $J_{i}=\cap P$, for $P \in K_{i}, i=1,2,3$. Moreover $J_{1} J_{2} J_{3} \subseteq J_{1} \cap J_{2} \cap$ $J_{3}=(0)$ and, by the primeness of R, one of the J_{i} must be zero.

If $J_{1}=0$ then $d\left(I^{2}\right)=0$ and so $d=0$, a contradiction.
Suppose $J_{2}=0$. Let \bar{d} the derivation of $\bar{R}=\frac{R}{P}$ induced by d as follows: $\bar{d}(\bar{x})=\overline{d(x)}$, for all $\bar{x}=x+P, x \in R$. Moreover $\bar{I}=I+P$ is an ideal of \bar{R} and $(\bar{d}([\bar{x}, \bar{y}])-[\bar{x}, \bar{y}])=\overline{d([x, y])-[x, y]}$ is nilpotent in \bar{R}, for all $x, y \in I$. By the primitive case, $\bar{R}=\frac{R}{P}$ is commutative, for all $P \in K_{2}$, that is R is commutative.

Suppose now $J_{3}=0$. For all $P \in K_{3}, \overline{d\left(I^{2} P\right)}$ is an ideal of \bar{R} and $\overline{d\left(I^{2} P\right)} \neq 0$. For all $x, y \in I^{2} P$ we have that $d([x, d(y)])-[x, d(y)]=[d(x), d(y)](\bmod P)$. Hence $[\overline{d(x)}, \overline{d(y)}]$ is nilpotent, for all $x, y \in I^{2} P$, i.e. $[X, Y]$ is nilpotent in $\overline{d\left(I^{2} P\right)}$. It is well known that in this case $\overline{d\left(I^{2} P\right)}$ is commutative, that is $\bar{R}=\frac{R}{P}$ is commutative, for all $P \in K_{3}$, and so R is commutative.

Lemma 5. - Let R be a prime ring with no non-zero nil right ideal, $d \neq 0 a$ derivation of R, I a non-zero ideal of R such that, for any $x, y \in I$, $(d([x, y])-[x, y])^{n}=0$, for a suitable $n=n(x, y) \geqslant 1$ depending on the choice of x, y. Let $a, b \in I$. If $a b=0$ then $a d(b)=d(a) b=0$.

Proof. - Let $x \in R$. Then there exists $n \geqslant 1$ such that
$0=(d([b a, x b a])-[b a, x b a])^{n}=(b d(a x b) a+b a x b d(a)+d(b) a x b a-b a x b a)^{n}$
and right multiplying by b, we have: $(b a x b d(a))^{n} b=0$, i.e. $(b d(a) b a x)^{n+1}=0$. By the arbitrariety of $x \in R$ and since R does not contain any non-zero nil right ideal, it follows that $b d(a) b a=0$. Let now $s \in R$ such that $s^{2}=0$. If $c=x s$ and $f=s y$ for $x, y \in I$, then $c f=0$ and, by above argument, $0=s y d(x s) s y x s=$ $\operatorname{syxd} d(s) s y x s$. Since $d(s) s=-s d(s)$, then we have $(d(s) s y x)^{3}=0$, and as above it follows $d(s) s=0$. Moreover, since $a b=0$, then $(b x a)^{2}=0$, for any $x \in R$. Hence $0=b x a d(b x a)=b x a d(b) x a$, i.e. $(a d(b) x)^{3}=0$, so $a d(b)=0$.

Now we are ready to prove:
Theorem 1. - Let R be a prime ring with no non-zero nil right ideal, d a non-zero derivation of R, I a non-zero ideal of R. If for any $x, y \in I$ there exists $n=n(x, y) \geqslant 1$ such that $(d([x, y])-[x, y])^{n}=0$ then R is commutative.

Proof. - Let $S=\left\{s \in R: s^{2}=0\right\}, J$ the Jacobson's radical of R.
Suppose $S \neq 0$, and so $J \neq 0$. Let $T=\{t \in R: a t b=0$ if $a b=0, a, b \in R\}$ and $W=S \cap T$.

If $W=0$ then $d(J)=0$ (see [5, theorem 5]), a contradiction.
Hence consider $W \neq 0$ and $V=\{v \in W: v R v \subseteq T\}$. By the proof of theorem 5 in [5] we get that $V \neq 0$ and $v h v=0$, for all $v \in V$ and for all h nilpotent element of R. Thus, in particular, for all $v \in V$ and $x, y \in I, v(d([x, y])-$ $[x, y]) v=0$. Since R and I satisfy the same differential identities (see [11]), then $v(d([x, y])-[x, y]) v=0$, for all $x, y \in R$. Let $u \in[R, R], r \in R$, then $v(d([u, v r])-[u, v r]) v=0$. By calculation we have $v[R, R](d(v r)) v=0$. In particular $v[x, v y](d(v r)) v=0$, for any $x, y \in R$, that is $v x v y(d(v r)) v=0$. Since R is prime and $v \neq 0$, it follows $d(v r) v=0$, which means that $d(x) x=0$ for any element x of the right ideal $\varrho=v R$ of R. By Lemma in [1] d is an inner derivation induced by $q \in Q$, the Martindale quotients ring of R, that is $d(x)=$ $[q, x]$, for all $x \in R$, moreover $q v=0$. Therefore, for all $r_{1}, r_{2} \in R$, we have

$$
0=v\left(q\left[r_{1}, r_{2}\right]-\left[r_{1}, r_{2}\right] q-\left[r_{1}, r_{2}\right]\right) v=v q\left[r_{1}, r_{2}\right] v-v\left[r_{1}, r_{2}\right] v=(v q-v)\left[r_{1}, r_{2}\right] v
$$

and so $(v q-v)[R, R] v=0$. Since $v \neq 0$, then $v q=v$.
By our assumption, for any $x \in R$ there exists $m \geqslant 1$ such that

$$
\begin{aligned}
0=([q,[v, x]]- & {[v, x])^{m}=([q, v x-x v]-v x+x v)^{m}=} \\
& (-q x v-v x q+x v q-v x+x v)^{m}=(-q x v-v x q-v x+2 x v)^{m} .
\end{aligned}
$$

Right multiplying by v we obtain that $(-v x)^{m} v=0$, so $(-v x)^{m+1}=0$, which means that $v R$ is a nil right ideal of R. Since R has no non-zero nil right ideal, then $v=0$.

The previous contradiction says that $S=0$, that is R is a domain and so $d([x, y])-[x, y]=0$, for all $x, y \in I$. Thus we conclude, by Lemma 1 , that R is commutative.

We conclude this paper with an extension of previuos theorem to Lie ideals. First we premit the following:

Lemma 6. - Let R be a prime ring and L a non-central Lie ideal of R. Then either there exists a non-zero ideal I of R such that $0 \neq[I, R] \subseteq L$ or L is commutative, $\operatorname{char}(R)=2$ and R satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. - See [7, pp. 4-5], [4, lemma 2, proposition 1], [10, theorem 4].

Finally we have:
Theorem 2. - Let R be a prime ring with no non-zero nil right ideal, d a non-zero derivation of R, L a Lie ideal of R. If, for any $u \in L$, there exists $n=$
$n(u) \geqslant 1$ such that $(d(u)-u)^{n}=0$ then L is central in R, except when L is commutative, $\operatorname{char}(R)=2$ and R satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. - Suppose L is not central. In this case R cannot be commutative. By Lemma 6 either $[I, I] \subseteq L$, for some ideal I of R, or $\operatorname{char}(R)=2$, L is commutative and R satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$. Since in the first case, by Theorem 1, we have the contradiction that R is commutative, we are done.

REFERENCES

[1] M. Bresar, One-sided ideals and derivations of prime rings, Proc. Amer. Math. Soc., 122 (1994), 979-983.
[2] L. Carini - A. Giambruno, Lie ideals and nil derivations, Boll. UMI, 6 (1985), 497-503.
[3] V. De Filippis, Automorphisms and derivations in prime rings, Rendiconti di Mat. Roma, serie VII vol. 19 (1999), 393-404.
[4] O. M. Di Vincenzo, On the n-th centralizers of a Lie ideal, Boll. UMI, 7, 3-A (1989), 77-85.
[5] B. Felzenszwalb - C. Lanski, On the centralizers of ideals and nil derivations, J. Algebra, 83 (1983), 520-530.
[6] I. N. Herstein, Center-like elements in prime rings, J. Algebra, 60 (1979), 567-574.
[7] I. N. Herstein, Topics in Ring theory, University of Chicago Press, Chicago 1969.
[8] M. Hongan, A note on semiprime rings, Int. J. Math. Math. Sci., 20, No. 2 (1997), 413-415.
[9] C. Lanski, Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc., 108, No. 1 (1990), 31-37.
[10] C. Lanski - S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42, No. 1 (1972), 117-135.
[11] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, vol. 20, No. 1 (1992), 27-38.
[12] T. L. Wong, Derivations with power-central values on multilinear polynomials, Algebra Colloquium, 3:4 (1996), 369-378.

Dipartimento di Matematica, Università di Messina
Salita Sperone 31, 98166 Messina e-mail: enzo@dipmat.unime.it

