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A Characterization of the Essential Spectrum
and Applications.

AREF JERIBI

Sunto. – In questo articolo lo spettro essenziale di operatori lineari chiusi e densamen-
te definiti è caratterizzato in una grande classe degli spazi, che possiedono la pro-
prietà di Dunford-Pettis o che sono isomorfi ad uno degli spazi Lp (V) pD1. È dato
un test di verifica pratico che garantisce la sua stabilità, per gli operatori pertur-
bati. Inoltre applichiamo i risultati ottenuti per studiare lo spettro essenziale del-
l’equazione unidimensionale di trasporto con gli stati di contorno generali. Per
concludere, sono discusse le condizioni sufficienti in termini di contorno e di ope-
ratori di scontro che assicurano l’invarianza dello spettro essenziale dell’operatore
di flusso continuo.

Summary. – In this article the essential spectrum of closed, densely defined linear op-
erators is characterized on a large class of spaces, which possess the Dunford-Pettis
property or which isomorphic to one of the spaces Lp (V) pD1. A practical criteri-
on guaranteeing its stability, for perturbed operators, is given. Further we apply
the obtained results to investigate the essential spectrum of one-dimensional trans-
port equation with general boundary conditions. Finally, sufficient conditions in
terms of boundary and collision operators assuring the invariance of the essential
spectrum of the streaming operator are discussed.

1. – Introduction.

Let A be a closed, densely defined linear operator on a Banach space X ,
and let s (A) (resp. r(A)) denote the spectrum (resp. the resolvent set) of A .
We denote by C(X) (resp. L(X)) the set of all closed, densely defined linear op-
erators (resp. the set of all bounded linear operators) on X to itself and K(X)
the ideal of compact operators of L(X).

DEFINITION 1.1. – Let A� C(X). We define the essential spectrum of the op-
erator A by

sess (A)4 1
C� K(X)

s (A1C) . r

It is well known that if A is a self-adjoint operator on a Hilbert space, the
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essential spectrum of A is the set of limit points of the spectrum of A (with
eigenvalues counted according to their multiplicities), i.e., all points of the
spectrum except isolated eigenvalues of finite multiplicity (see, for example,
[43, 44]).

There are many ways to define the essential spectrum of a closed, densely
defined linear operator on a Banach space. Hence several definitions of the es-
sential spectrum may be found in the literature see, for example, [11, 38] or the
comments in [36], Chapter 11, p. 283, which coincide for self-adjoint operators
on Hilbert spaces. Throughout this paper we are concerned with the so-called
Weyl spectrum.

In 1996 and 1998, motivated by a problem concerning the spectrum of the
transport operator posed in [19], Latrach and Jeribi [24, 27] obtained the fol-
lowing result:

THEOREM 1.1 ([27], Theorem 3.2). – Let (V , S , m) be an arbitrary positive
measure space. If A is a closed densely defined linear operator on Lp (V) (1G
pEQ) then

sess (A)4 1
S� S(Lp (V) )

s (A1S)

where S(Lp (V) ) stands for the ideal of strictly singular operators on
Lp (V). r

Recently, in 1999 Latrach [23] gives an extension of the Theorem 1.1 to
general Banach spaces which possess the Dunford-Pettis property in terms of
weakly compact operators and obtained the following results:

THEOREM 1.2 ([23], Theorem 3.2). – Let A� C(X). If X has the Dunford-Pet-
tis property, then

sess (A)4 1
F� F(X)

s (A1F)

where F(X) denote the family of weakly compact operators on X. r

Let A� C(X), we suppose that the esssential spectrum of A is known. Let’s
perturbe the operator A with the bounded operator K i.e., A1K . What wiIl
the essential spectrum of the operator A1K be? If K is a compact operator on
Banach spaces then sess (A1K)4sess (A) (see Definition 1.1). If K is a strictly
singular on Lp-spaces then sess (A1K)4sess (A) (see Theorem 1.1). If K is a
weakly compact on Banach spaces which possess the Dunford-Pettis property
then sess (A1K)4sess (A) (see Theorem 1.2). But in practice, the perturbed
operator K is neither strictly singular nor weakly compact. So, it is natural to
ask what are the conditions that we must impose on K such that sess (A1K)4
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sess (A). For this, we define the notion of the weak spectrum (which we denote
by s w

F(.) or s w
S (.)) by means of the operators GA

F (X) or GA
S (X), containing strictly

the following sets F(X) and S(Lp (V) ) (see Section 3) and we show the equality
(in the sense of the inclusion) of the sets sess(.) and s w

F(.) or s w
S (.). This gives a

positive answers to an open question posed in [19].
The purpose of the first part of this paper is to point out how, by means of

the concept of regular operators (cf. [7, 17, 29]) and the technique developed in
[24], Section 2, it is possible to improve the definition of the essential spec-
trum, in the same way as in Theorems 1.1 and 1.2, on Banach spaces X
satisfying

(H1)
.
/
´

X has the Dunford-Pettis property or X
is isomorphic to one of the spaces Lp(V, S, dm)
pD1 where (V, S, dm) is a positive mesure space.

In the second part of the paper we apply the results described above to in-
vestigate the essential spectrum of the following integro-differential operator

AH c(x , j)42j
¯c

¯x
(x , j)2s (j) c(x , j)1

s
21

1

k(x , j , j 8 ) c(x , j 8 ) dj 84TH c1Kc

with general boundary conditions where x� [2a , a], aD0, and j� [21, 1].
This operator describes the transport of particles (neutrons, photons,
molecules of gas, etc.) in a plane parallel domain with a width of 2a mean free
paths. The function c(x , j) represents the number (or probability) density of
gas particles having the position x and the direction cosine of propagation j .
(The variable j may be thought of as the cosine of the angle between the veloc-
ity of particles and the x-direction). The functions s (.) and k(., ., .) are called,
respectively, the collision frequency and the scattering kernel. The boundary
conditions are modeled by

c NG2
4Hc NG1

where G 2 (resp. G 1) is the incoming (resp. outgoing) part of the phase space
boundary, c NG2

(resp. c NG1
) is the restriction of c to G 2 (resp. G 1) and H is a

linear bounded operator from a suitable function space on G 1 to a similar one
on G 2 .

In the classical neutron transport theory (H40), it is well known that

(1.1) sess (T01K)4 ml�C such that Re lG2 lim inf
NjNK0

s (j)n if K40 .
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If Kc0 and if some power of (l2T0 )21 K is compact then it is well known
that s (T01K)Oml�C such that Re lD2 lim inf

NjNK0
s (j)n consists of, at most,

isolated eigenvalues with finite algebraic multiplicities (see, for instance, [20]
or [32]). On the other hand, under the above assumptions, the half plane
ml�C such that Re lG2 lim inf

NjNK0
s (j)n may contain, a priori, some holes in

the resolvent set of T01K . So that (1.1) is not, a priori, true if Kc0 and some
power of (l2T0 )21 K is compact. These remarks remain valid if instead of K
we consider the boundary operator H or both K and H . By taking advantage
of the results of Section 2 and the compactness results obtained in Section 3,
we are going to prove that (1.1) is, actually, true for general classes of bound-
ary and collision operators H and K . More precisely, we give sufficient condi-
tions on the collision operators K under which sess (TH1K)4sess (TH ) regard-
less of the boundary operator H . Furthermore, a broad class of boundary op-
erators H (containing, in particular, those investigated in [12], [13], [14], [19],
[24] and [27]) for which sess (TH )4sess (T0 ) is considered.

Note that even though the spectral theory of transport operators is a clas-
sical theme in transport theory, generally, the analysis focuses on the point
spectrum of these operators (see, for instance, [9], [21], [22], [31], [40], [41] or
[33]). In fact, the knowledge of the (peripheral) point spectrum permits to ob-
tain a simple description of the time asymptotic behaviour (tKQ) of the sol-
ution of the associated Cauchy problem (cf. [9], [41], [20] or [32]).

We organize the paper in the following way: The next section is devoted to
the essential spectrum of closed densely defined linear operators on Banach
spaces which possess the Dunford-Pettis property or which isomorphic to one
of the spaces Lp (V) pD1. The main result of this section is Theorem 2.1. In
Section 3 we apply the results obtained in the second section to investigate the
essential spectrum of the one-dimensional transport operator with general
boundary conditions. Sufficient conditions, bearing on boundary and collision
operators, assuring the invariance of the essential spectrum of the streaming
operator T0 are given. We discuss briefly by discussing the essential spectrum
of transport operator with vacuum boundary conditions in arbitrary dimension
and the essential spectrum of transport operators arising in growing cell
populations.

2. – The main result.

The purpose of this section is to discuss essential spectrum of non-selfad-
joint closed, densely defined linear operator on Banach spaces which possess
the Dunford-Pettis property or which isomorphic to one of the spaces Lp (V)
pD1.

For the sake of completeness we first recall the following notions which
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will be used in the sequel. Let A be a closed, densely defined linear operator
on a Banach space X . A is a Fredholm operator if the null space N(A) of A is fi-
nite dimensional and the range R(A) of A is closed and finite codimensional in
X . The Fredholm index of A is the number i(A)4 dim N(A)2codim R(A).
The Fredholm domain of A , F A , is given by

F A »4]l�C such that l2A is a Fredholm operator on X( .

DEFINITION 2.1. – An operator A� L(X) is called strictly singular if A
is not an isomorphism when restricted to any infinite-dimensional subspace
of X. r

The concept of strictly singular operators was introduced in the pioneering
paper by Kato [17] as a generalization of the notion of compact operators. The
class of strictly singular operators has been extensively studied in the late 60’s
(see, for example, [6, 7], [30, 34] and references therein). For our own use, let
us recall the following three facts. The set of all strictly singular operators on
X , S(X), forms a closed two-sided ideal of L(X) containing K(X), if X is a
Hilbert space then K(X)4 S(X) and the class of weakly compact operators on
L1-spaces is nothing else but the family of strictly singular operators on L1-
spaces (see [34], Theorem 1).

DEFINITION 2.2. – An operator A� L(X) is said to be weakly compact if
A(B) is relatively weakly compact for every bounded subset B%X. r

The family of weakly compact operators on X , F(X), is a closed two-sided
ideal of L(X) containing K(X) (cf. [5, 7]). Note also that if X4L1 (V , S , dm),
where (V , S , dm) is a positive measure space or X4C(K) with K is a compact
Hausdorff space then F(X)4 S(X) (cf. [34]).

DEFINITION 2.3. – A Banach space X is said to have the Dunford-Pettis
property (for short property DP) if for each Banach space Y every weakly
compact operator T : XKY takes weakly compact sets in X into norm com-
pact sets of Y. r

The Dunford-Pettis property as defined above was explicity defined
by Grothendieck [10] who undertook an extensive study of this and related
properties. It is well known that any L1 space has the property DP [4].
Also, if V is a compact Hausdorff space C(V) has the property DP [10].
For further examples we refer to [3] or [5], p. 494, 497, 508, and 511.
Note that the property DP is not preserved under conjugation. However,
if X is a Banach space whose dual has the property DP then X has
the property DP (see, e.g., [10]). For more information we refer to the
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paper by Diestel [3] which contains a survey and exposition of the Dun-
ford-Pettis property and related topics.

The following elementary lemma is needed later.

LEMMA 2.1. – (i) If X has the property DP, then

F(X) F(X)% K(X) .

(ii) Let (V , S , dm) be a positive mesure space and pD1. If X is isomor-
phic to one of the spaces Lp (V , S , dm), then

S(X) S(X)% K(X) . r

PROOF. – (i) Let T1 , T2� F(X). If U is a bounded subset of X , then T1 (U) is
relatively weakly compact. Accordingly, since X has the property DP,
T2 (T1 (U) ) is a relatively compact subset of X . That is, T2 T1� K(X).

Assertion (ii) follows from [30], Theorem 1.b and the proof of Lemma is
finished. Q.E.D.

The main result of this section is the following:

THEOREM 2.1. – Let X be a Banach space satisfying the hypothesis
(H1).

i) Let A� C(X).
If X has the Dunford-Pettis property then sess (A)4s w

F (A), where
s w

F (A)4 1
C� G

F
A (X)

s (A1C) and GF
A (X)4]K� L(X) such that (l2A)21 K�

F(X) for some l�r(A)(.
If X is isomorphic to one of the spaces Lp (V) pD1 then sess (A)4s w

S (A),
where s w

S (A)4 1
C� G

S
A (X)

s (A1C) and GS
A (X)4]K� L(X) such that

(l2A)21 K� S(X) for some l�r(A)(.

ii) Let A and B� C(X).
If X has the Dunford-Pettis property and if for some l�r(A)Or(B) we

have (l2A)212 (l2B)21� F(X), then

s w
F (A)4s w

F (B) .

If X is isomorphic to one of the spaces Lp (V) pD1 and if for some l�
r(A)Or(B) we have (l2A)212 (l2B)21 � S(X), then

s w
S (A)4s w

S (B) . r

REMARK 2.1. – a) Let us notice that following Pelczynski [34], Theorem 1,
the class of weakly compact operators on L1-spaces is nothing else but the
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family of strictly singular operators on L1-spaces. So, Theorem 2.1 may be re-
garded as an extension of [24], Theorems 3.1 and 3.2, to Lp-spaces for 1EpE
Q , and an generalization of [24], Theorems 3.1 and 3.2, [27], Theorems 3.2 and
3.3, and [23], Theorem 3.2 and gives an unified definition of the essential spec-
trum on Banach spaces which possess the Dunford-Pettis property or which
isomorphic to Lp (V) pD1.

b) Due to K(X)%
c

GA
F (X) and K(X)%

c

GA
S (X) (see Section 3), the first part

of Theorem 2.1 shows that the definition of the essential spectrum on these
spaces by means of compact operators is restrictive.

c) Observe that, in the definition of the sets GA
F (X) and GA

S (X), if an oper-
ator satisfies the required condition for a fixed l�r(A), then it satisfies it for
every l�r(A).

d) The statement ii) of Theorem 2.1 provides a practical criterion for the
stability of sess (.) for perturbed linear operators and generalizes [37], Theorem
4.7, p. 17. r

PROOF OF THEOREM 2.1. – i) We first claim that sess (A)%s w
F (A) if X has the

Dunford-Pettis property and sess (A)%s w
S (A) if X is isomorphic to one of the

spaces Lp (V) pD1. Indeed, if l�s w
F (A) (resp. l�s w

S (A)) then there exists
K� GA

F (X) (resp. K� GA
S (X)) such that l�r(A1K), hence l�F (A1K) and

i(l2A2K)40.
Let m�r(A), we have

(l2A2K)21 K4 [I1 (l2A2K)21 (m2l1K) ](m2A)21 K .(2.1)

If X has the Dunford-Pettis property, then using (2.1), and the fact that
F(X) is a two-sided ideal of L(X), we infer that (l2A2K)21 K� F(X) and
consequently ((l2A2K)21 K)2� K(X) (see Lemma 2.1 (i)).

If X is isomorphic to one of the spaces Lp (V) pD1, then using (2.1), and
the fact that S(X) is a two-sided ideal of L(X), we infer that (l2A2K)21 K�
S(X) and consequently ((l2A2K)21 K)2� K(X) (see Lemma 2.1 (ii)).

Applying [24] Theorem 2.1, we infer that (I1 (l2A2K)21 K) is a Fred-
holm operator and i(I1 (l2A2K)21 K)40. Using the equality l2A4

(l2A2K)(I1 (l2A2K)21 K) together with Atkinson’s theorem ([29],
Proposition 2.c.7.(ii), p. 77) one gets l�F A and i(l2A)40. Finally, the use
of [37], Theorem 4.5, p. 15, shows that l�sess (A) which proves the claim.

On the other hand, since K(X)% GA
F (X) (resp. K(X)% GA

S (X)) we infer that
s w

F (A)%sess (A) (resp. s w
S (A)%sess (A)) which completes the proof of i).

ii) Without loss of generality, we may suppose that l40. If X has the Dun-
ford-Pettis property, then the operator A 212B 21� F(X). It follows both
from Lemma 2.1 (i) and [42], Theorem p. 287, that F A214F B21 and i(m2
A 21 )4 i(m2B 21 ) for all m�F A21 .
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If X is isomorphic to one of the spaces Lp (V) pD1, then the operator
A 212B 21� S(X). It follows both from Lemma 2.1 (ii) and [42], Theorem p.
287, that F A214F B21 and i(m2A 21 )4 i(m2B 21 ) for all m�F A21 .

We next infer from [37], Lemma 4.6, p. 16, that F A4F B and i(n2A)4
i(n2B) for all n�F A . Now, the use of [37], Theorem 4.5, p. 15, concludes the
proof of ii). Q.E.D.

By Theorem 2.1 and [19], Lemma 4.1, we have:

COROLLARY 2.1. – Let X be a Banach space satisfying the hypothesis (H1)
and let A� C(X). If X has the Dunford-Pettis property, then

sC(A)%s w
F (A) and sR(A)%s w

F (A)

where sC(A) (resp. sR(A) ) denotes the continuous spectrum (resp. the residu-
al spectrum) of A.

If X is isomorphic to one of the spaces Lp (V) pD1, then

sC(A)%s w
S (A) and sR(A)%s w

S (A) . r

The following result provides a characterization of the weak spectrum on a
Banach space X satisfying the hypothesis (H1).

COROLLARY 2.2. – Let X be a Banach space satisfying the hypothesis (H1)
and let A� C(X). If X has the Dunford-Pettis property, then

l�s w
F (A) if and only if l�F A and i(l2A)40 .

If X is isomorphic to one of the spaces Lp (V) pD1, then

l�s w
S (A) if and only if l�F A and i(l2A)40 . r

PROOF. – This corollary immediately follows from Theorem 2.1 (i) and [37],
Theorem 4.5, p. 15. Q.E.D.

3. – Application to transport equations.

In this section we shall apply the results of Theorem 2.1 to the one-dimen-
sional transport equation on Lp-spaces with p� [1 , Q). Indeed, we prove the
invariance of the essential spectrum of T0 , under boundary perturbations, for
a wide class of boundary operators H , that is, sess (TH )4sess (T0 ). Moreover, a
general class of collision operators for which sess (TH1K)4sess (T0 ) is also
given. The main tools of proof are Theorem 2.1 and the compactness results
obtained in this section.
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Let

Xp4Lp [ (2a , a)3 (21, 1); dx dj], (aD0, 1GpEQ)

and

X o
p »4Lp []2a(3 (21, 0); NjNdj]3Lp []a(3 (0 , 1 ); NjNdj]

»4X o
1, p3X o

2, p

equipped with the norm

Vc o ; X o
p V4 [Vc o

1 ; X o
1, p V

p1Vc o
2 ; X o

2, p V
p]1/p

4

ys
21

0

Nc(2a , j)Np NjNdj1s
0

1

Nc(a , j)Np NjNdjz
1/p

.

Moreover we introduce

X i
p »4Lp []2a(3 (0 , 1 ); NjNdj]3Lp []a(3 (21, 0); NjNdj]

»4X i
1, p3X i

2, p

and equipped with the norm

Vc i ; X i
p V4 [Vc i

1 ; X i
1, p V

p1Vc i
2 ; X i

2, p V
p]1/p

4

ys
0

1

Nc(2a , j)Np NjNdj1s
21

0

Nc(a , j)Np NjNdjz
1/p

.

We define the partial Sobolev space Wp by

Wp4mc�Xp such that j
¯c

¯x
�Xpn .

It is well know that any function c�Wp has traces on ]2a( and ]a( in X o
p

and X i
p (see, for instance [2] or [8]). They are denoted, respectively, by c o and

c i , and represent the outgoing and the incoming fluxes («o» for outgoing and
«i» for incoming).

We define the operator TH by

.
`
/
`
´

TH : D(TH )%Xp

c

D(TH )4]c�Wp

KXp

KTH c(x , j)42j
¯c

¯x
(x , j)2s (j) c(x , j)

such that Hc o4c i( ,
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where s (.)�L Q (21, 1) and H is the boundary operator defined by

.
/
´

H : X o
p KX i

p

H� L(X o
p , X i

p ) .

Note that the spectrum of the operator T0 (i.e., H40) was analyzed in [19]. In
particular we have

s (T0 )4sC(T0 )4]l�C such that Re lG2l*((3.1)

where sC(T0 ) denotes the continuous spectrum of T0 and l* »4

lim inf
NjNK0

s (j).

REMARK 3.1. – As a consequence of (3.1) and Corollary 2.1 is that

sess (T0 )4]l�C such that Re lG2l*( . r

Let us now consider the resolvent equation for TH

(l2TH ) c4W(3.2)

where W is a given element of Xp and the unknown c must be sought in D(TH ).
For Re l1l*D0, the solution of (3.2) is formally given by

(3.3) c(x , j)4

.
`
`
/
`
`
´

c(2a , j) e
2

(l1s(j) )Na1xN

NjN 1

1

NjN
s

2a

x

e
2

(l1s(j) )Nx2x 8 N

NjN W(x 8 , j) dx 8 0EjE1,

c(a , j) e
2

(l1s(j) )Na2xN

NjN 1

1

NjN
s
x

a

e
2

(l1s(j) )Nx2x 8 N

NjN W(x 8 , j) dx 8 21EjE0,

whereas c(a , j) and c(2a , j) are given by

(3.4) c(a,j)4c(2a,j) e
22a(l1s (j))

NjN 1
1

NjN
s

2a

a

e
2

(l1s (j))Na2xN

NjN W(x,j) dx 0EjE1,

(3.5) c(2a , j)4c(a , j) e
22a(l1s (j) )

NjN 1

1

NjN
s

2a

a

e
2

(l1s (j) )Na1xN

NjN W(x , j) dx 21EjE0.
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In the sequel we shall need the following operators:

.
/
´

Ml : X i
pKX o

p , Ml u

(M 1
l u)(2a , j)

(M 2
l u)(a , j)

»4 (M 1
l u , M 2

l u) with

»4u(2a , j) e
22a

NjN
(l1s(j) )

, 0EjE1,

»4u(a , j) e
22a

NjN
(l1s(j) )

, 21EjE0

.
/
´

Bl : X i
pKXp , Bl u

(B 1
l u)(2a , j)

(B 2
l u)(a , j)

»4x (21, 0) (j) B 2
l u1x (0 , 1 ) (j) B 1

l u with

»4u(2a , j) e
21

NjN
(l1s(j) )Na1xN

, 0EjE1,

»4u(a , j) e
21

NjN
(l1s(j) )Na2xN

, 21EjE0

.
`
/
`
´

Gl : XpKX o
p , Gl W

G 1
l W

G 2
l W

»4 (G 1
l W , G 2

l W) with

»4
1

NjN
s

2a

a

e
21

NjN
(l1s(j) )Na2xN

W(x , j) dx , 0EjE1,

»4
1

NjN
s

2a

a

e
21

NjN
(l1s(j) )Na1xN

W(x , j) dx , 21EjE0

and

.
`
/
`
´

Cl : XpKXp , Cl W

C 1
l W

C 2
l W

»4x (21, 0) (j) C 2
l W1x (0 , 1 ) (j) C 1

l W with

»4
1

NjN
s

2a

x

e
21

NjN
(l1s(j) )Nx2x 8N

W(x 8 , j) dx 8 , 0EjE1,

»4
1

NjN
s
x

a

e
21

NjN
(l1s(j) )Nx2x 8N

W(x 8 , j) dx 8 , 21EjE0

where x (21, 0)(.) and x (0 , 1 )(.) denote, respectively, the characteristic functions
of the intervals (21, 0 ) and (0 , 1 ). The operators Ml , Bl , Gl and Cl are
bounded on their respective spaces. In fact, their norms are bounded above,
respectively, by e 22a(Rel1l*) , [p(Rel1l*) ]

2
1

p , (Re l1l*)
2

1

q and (Re l1
l*)21 where q denotes the conjugate of p . For the details we refer to
[18].

Now we may write Eqs. (3.4) and (3.5) abstractly in the space Xp
o in the op-

erator form

c o4Ml Hc o1Gl W .(3.6)
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We define the real l 0 by

l 0 »4
.
/
´

2l*

2l*1
1

2a
log (VHV)

if VHVG1

if VHVD1 .

It follows from the norm estimate of Ml that, for Re lDl 0 , VMl HVE1 and
consequently

c o4 !
nF0

(Ml H)n Gl W .(3.7)

On the other hand, Eq. (3.3) can be rewritten in form

c4Bl Hc o1Cl W .

Substituting (3.7) into the above equation we get

c4 !
nF0

Bl H(Ml H)n Gl W1Cl W .

Hence, ]l�C such that Re lDl 0(%r(TH ) and for Re lDl 0 we have

(l2TH )214 !
nF0

Bl H(Ml H)n Gl1Cl .(3.8)

THEOREM 3.1. – Suppose that the boundary operator H is strictly singu-
lar, then

sess (TH )4sess (T0 ) . r

PROOF. – Let us first note that the operator Cl is nothing else but (l2
T0 )21 . Therefore, if Re lDl 0 , then l�r(TH )Or(T0 ) and

(l2TH )212 (l2T0 )214Ql ,(3.9)

where

Ql4 !
nF0

Bl H(Ml H)n Gl .

Since H is strictly singular, we infer from [29], Proposition 2.c.5.(ii), p. 76,
that Ql is strictly singular too. Now the use of (3.9) together with Theorem 2.1,
gives the desired result. Q.E.D.

REMARK 3.2. – The series defining Ql converges in the operator
norm. r
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REMARK 3.3. – It should be observed that the result of Theorem 3.1 is not
optimal. Indeed, let p42 and consider the following boundary operator

.
`
/
`
´

HA : X2
oKX2

i

uKH
A

u

HAu»4gH11

H21

0
0
hgu1

u2
h ,

where

.
/
´

H11 : X o
1, 2

u(2a , j)

KX i
1,2

Ku(2a , 2j)

with H21 is an arbitrary operator.
Hence, in spite of the fact that HA is not strictly singular, the use of [19],

Proposition 4.1, shows sess (THA )4sess (T0 ). r

Next we consider the transport operator AH4TH1K where K is the
bounded operator given by

.
/
´

K : Xp

c

KXp

K s
21

1

k(x , j , j 8 ) c(x , j 8 ) dj 8

where k(., ., .) is a measurable function from [2a , a]3 [21, 1]3 [21, 1]
to R .

Observe that the operator K acts only on the variable j 8 , so x may be
viewed merely as a parameter in [2a , a]. Hence we may consider K as a func-
tion K : x� [2a , a]KK(x)�Z where Z»4 L(Lp ( [21, 1], dj) ).

In the following we will make the assumptions:

(H2)

.
`
/
`
´

K is measurable, i.e.,

(3.10) ]x�[2a, a] such that K(x)�O( is measurable if O%Z is open,

there exists a compact subset T%Z such that

(3.11) K(x)�T a.e.

and finally

(3.12) K(x)�K(Lp([21, 1], dj)) a.e.

where K(Lp ( [21, 1], dj) ) denotes the set of all compact operators on
Lp ( [21, 1], dj).
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Obviously, the hypothesis (3.11) implies that

K(.)�L Q (]2a , a[, Z) .(3.13)

Let c�Xp . It is easy to see that (Kc)(x , j)4K(x)c(x , j) and then, by (3.13),
we have

s
21

1

N(Kc)(x , j)Np djGVK(.)Vp
LQ (]2a , a[, Z)s

21

1

Nc(x , j)Np dj

and therefore

s
2a

a

s
21

1

N(Kc)(x , j)Np djdxGVK(.)Vp
LQ (]2a , a[, Z)s

2a

a

s
21

1

Nc(x , j)Np dj dx .

Thus leads to the estimate

VKVL(Xp )GVK(.)VLQ (]2a , a[, Z) .(3.14)

THEOREM 3.2. – Let p� [1 , Q) and suppose that the collision operator K
satisfies the hypothesis (H2) on Xp . Then

sess (AH )4sess (TH ) .

Further, if the boundary operator H is strictly singular then

sess (AH )4sess (T0 )4]l�C such that Re lG2l*( . r

REMARK 3.4. – As we have already mentioned in Section 2, F(X1 )4 S(X1 ).
Accordingly, Theorem 3.2 is a natural extension to Lp-spaces (1EpEQ) of
[24], Corollary 4.1 and Theorem 4.3. Note also that, since K(Xp )% GTH

(Xp ),
Theorem 3.2 generalizes [19], Theorem 4.5 and Corollary 4.1. r

To prove this theorem the following lemmas are required.

LEMMA 3.1. – If K satisfies (H2) then, for any l�C such that Re lD2l*,
the operator (l2TH )21 K is compact on Xp for 1EpEQ and weakly compact
on X1. r

The following lemma is inspired and adapted from [32], Lemma 2.3.

LEMMA 3.2. – Assume that K satisfies the hypothesis (H2). Then K can by
approximated, in the uniform topology, by a sequence (Kn )n of operators of
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the form

k n (x , j , j 8 )4 !
j41

n

h j (x) u j (j) b j (j 8 )

where h j(.)�L Q ( [2a , a], dx), u j(.)�Lp ( [21, 1], dj) and b j(.)�Lq ( [2
1, 1], dj) (q denotes the conjugate of p). r

PROOF. – Let eD0. By the assumption (3.11) there exist K1 , R , Km such
that (Ki )i%T and T% 1

1G iGm
B(Ki , e) where B(Ki , e) is the open ball, in

K(Lp ( [21, 1], dj) ), centred at Ki and with radius e .
Let A14B(K1 , e), A24B(K2 , e)2A1 , R , Am4B(Km , e)2Am21 . Clearly,

AiOAj4¯ if ic j and T% 1
1G iGm

Ai .
Let 1G iGm and denote by Ii the set

Ii4K 21 (Ai )4]x�]2a , a[ such that K(x)�Ai( .

Hence we have IiOIj4¯ if ic j and ]0 , 1[4 1
i41

m

Ii .

Consider now the following step function from ]2a , a[ to Z defined by

S(x)4 !
i41

m

x Ii
(x) Ki

where x Ii
(.) denotes the characteristic function of Ii . Obviously, S(.) satisfies

the hypothesis (H2) i.e., (3.10), (3.11) and (3.12). Then using (3.13) we get K2

S�L Q (]2a , a[, Z). Moreover, an easy calculation leads to

VK2SVLQ (]2a , a[, Z)Ge .

Now, using (3.14) we obtain

VK2SVL(Xp )GVK2SVLQ (]2a , a[, Z)Ge .

Hence, we infer that the operator K may be approximated (for the uniform
topology) by operators of the form

U(x)4 !
i41

m

h i (x) Ki

where h j(.)�L Q ( [2a , a], dx) and Ki� K(Lp ( [21, 1], dj) ). On the other
hand, each compact operator Ki on Lp ( [21, 1], dj) is a limit (for the norm
topology) of a sequence of finite rank operators because Lp ( [21, 1], dj) (1G
pEQ) admits a Schauder Basis. This ends the proof. Q.E.D.
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PROOF OF LEMMA 3.1. – Let l be such that RelD2l*. In view of (3.8) we
have

(l2TH )21 K4 !
nF0

Bl H(Ml H)n Gl K1Cl K .

In order to conclude, it suffices to show that !
nF0

Bl H(Ml H)n Gl K and Cl K

are compact on Xp (1EpEQ) and weakly compact on X1 .
We claim that Gl K and Cl K are compact on Xp for 1EpEQ and weakly

compact on X1 .
By Lemma 3.2, it suffices to prove the result for an operator K whose ker-

nel is in the form k(x , j , j 8 )4h(x) u(j) b(j 8 ) where h(.)�L Q ( [2a , a], dx),
u(.)�Lp ( [21, 1], dj) and b(.)�Lq ( [21, 1], dj).

Consider W�Xp ,

.
/
´

(G 1
l KW)(j)4s

21

1

s
2a

a

1

NjN
h(x) u(j) e

21

NjN
(l1s (j))Na2xN

b(j 8) W(x, j 8) dx dj 8, 0EjE1

4JlUW

where U and Jl denote the following bounded operators

.
/
´

U : Xp

W

KLp ( [2a , a], dx)

K s
21

1

b(j) W(x , j) dj

.
/
´

Jl : Lp ( [2a , a], dx)

c

KX1, p
o

K s
2a

a
1

NjN
h(x) u(j) e

21

NjN
(l1s (j) )Na2xN

c(x) dx .

It is now sufficient to show that Jl is compact for 1EpEQ and weakly com-
pact for p41.

In fact, the compactness follows from [15], Theorem 11.6, p. 275, if we
show

s
21

1ys
2a

a

N 1

NjN
h(x) u(j) e

21

NjN
(l1s (j) )Na2xNN

q
dxz

p/q

NjNdjE1Q
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(Jl is then a Hille-Tamarkin operator). Indeed, let us first observe that we
have

s
2a

a

N 1

NjN
h(x) u(j) e

21

NjN
(l1s(j) )Na2xNN

q
dxGVhVQ

q Nu(j)Nq

NjNq
s

2a

a

e
2q

(l1s(j) )Na2xN

NjN dx

GVhVQ
q Nu(j)Nq

q( Re l1l*)NjN(q21)

which leads to

ys
2a

a

N 1

NjN
h(x) u(j) e

21

NjN
(l1s(j) )Na2xNN

q
dxz

p/q

GVhVQ
p Nu(j)Np

[q( Re l1l*) ]p21 NjN21
.

Integrating in j from 21 to 1 we obtain

s
21

1ys
2a

a

N 1

NjN
h(x) u(j) e

21

NjN
(l1s(j))Na2xNN

q
dxz

p/q

NjNdjGs
0

1

VhVQ
p Nu(j)Np

[q(Re l1l*)]p/q
dj

GVhVQ
p VuVp

[q( Re l1l*) ]p/q
EQ .

For the case p41, it is easy to see that the operator Jl satisfies the following
estimates:

VJl VGVhVQ VuVL1
.

The last inequality shows that Jl depends continuously (in the uniform topolo-
gy) on u(.)�L1 ( [21, 1], dj). But the set of bounded functions which vanich in
a neighborhood of j40 is dense in L1 ( [21, 1], dj), so Jl is a limit, in the uni-
form topology, of integral operators with bounded kernels. Hence Jl is a weak-
ly compact operator on L1 ( [2a , a], dx) (see [5], Corollary 11, p. 294).

A similar reasoning allows us to reach the same result for the operator
Gl

2 K and Cl K . This concludes the proofs of the claim and lem-
ma. Q.E.D.

Now we are in a position to prove Theorem 3.2.

PROOF OF THEOREM 3.2. – The hypothesis on K together with Lemma 3.1
implies that K� GTH

(Xp ). Now the result follows from Theorems 2.1 (i), 3.1
and Remark 3.1. Q.E.D.
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We consider the essential spectrum of the multidimensional neutron trans-
port equation. To this purpose, consider the neutron transport operator

A0 c(x , v)4

2v
¯c

¯x
(x , v)2s (v) c(x , v)1s

V

k(x , v , v 8 ) c(x , v 8 ) dv 84T0 c1Kc

where T0 is the streaming operator and K denotes the integral part of A0 (the
collision operator), (x , v)�D3V , where the configuration space D is an open
and bounded subset of R N , NF1. The velocity space V is an arbitrary open
subset of R N . The unbounded operator A0 (i.e., H40) is studied in the Banach
space Lp (D3V). Its domain is

D(A0 )4D(T0 )4mc�Lp (D3V) such that v
¯c

¯x
�Lp (D3V), c NG2

40n
where

G 24](x , v)�¯D3V such that v is ingoing at x�¯D( .

It is well known that

s (T0 )4]l�C such that Re lG2l*(

(see, for instance, [16], Corollary 12.11, p. 272). More precisely we have

sess (T0 )4sC(T0 )4]l�C such that Re lG2l*((3.15)

(see [19], p. 6211).
The existence of the eigenvalues of T01K in the half-plan ]l�C such that

Re lD2l*( is related to the compactness of some iterate of (l2T0 )21 K (see
[16], Chap. 12). Unfortunately, this does not prevent from the appearance of
holes, included in the resolvent set of A0 , in the region ]l�C such that Re lG
2l*(. However, if K is compact on L1 (V) then (l2T0 )21 K is compact on
Lp (D3V) (1EpEQ) and weakly compact on L1 (D3V) (see [32], Lemma
2.1) and consequently we have the following result.

THEOREM 3.3. – Suppose that K is compact on Lp (V , dv). Then

sess (A0 )4]l�C such that Re lG2l*( . r

PROOF. – The hypothesis on K together with Lemma 3.1 implies that K�
GT0

(Lp (D3V) ). Now the result follows from Eq. (3.15) and Theorem 2.1
(i). Q.E.D.

We close this section by discussing briefly the essential spectrum of the
transport operator arising in growing cell populations. It is about the follow-
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ing partial differential equation

(3.16) AH c(m , v)42v
¯c

¯m
(m , v)2s (m , v) c(m , v)1

s
a

b

r(m , v , v 8 ) c(m , v 8 ) dv 84SH c1Kc

where m�[0, 1], v , v 8�[a, b] with 0GaEbEQ and s(m,v)4s
a

b

r(m, v, v 8) dv 8.

This equation describes the number density c(m , v) of cell population as a
function of the degree of maturation m , the maturation velocity v . The degree
of maturation is defined so that m40 at birth and m41 at the death of a cell.
The transition rate r(m , v , v 8 ) specifies the transition of cells from a matura-
tion velocity to another one while s (m , v) denotes the total transition cross
section.

The boundary conditions are given by

c NG 0
4H(c NG 1

)(3.17)

where G 04]0(3 [a , b] and G 14]1(3 [a , b], c NG 0
(resp. c NG 1

) denotes the
restriction of c to G 0 (resp. G 1) while K is a linear operator from a suitable
function space on G 1 to a similar one on G 0 .

Rotenberg studied essentially the Fokker-Plank approximation of (3.16)
for which he obtained numerical solutions. Using eigenfunction expansion
technique, Van der Mee and Zweifel [39] obtained analytical solutions for a va-
riety of linear boundary conditions. Using Lebowitz and Rubinow’s boundary
conditions (cf. [28] or [35]), Boulanouar and Leboucher [1] proved that the as-
sociated Cauchy problem to the Rotenberg model is governed by a positive C 0-
semigroup and they gave sufficient conditions guaranteeing its irreducibility.
Similar results were also obtained in [8], Chap. 13. Recently, Latrach and
Jeribi [25, 26] gives some existence results of the stationary problem (3.16)
supplemented the boundary conditions (3.17).

Arguing as above we have:

THEOREM 3.4. – Let p� [1 , Q) and suppose that the collision operator K is
compact on Lp ( [a , b]; dv). Then

sess (AH )4sess (SH ) .

Further, if the boundary operator H is strictly singular then

sess (AH )4sess (S0 )4]l�C such that Re lG2ess- inf s (., .)( . r
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