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Commutative Monoids with Zero-Divisors.

J. C. ROSALES (*)

Sunto. – Vengono descritti alcuni algoritmi per il calcolo del nilradicale e dei divisori
dello zero di uno ¯-monoide commutativo fintamente generato. Tali algoritmi ven-
gono utilizzati per decidere se un ideale assegnato di uno ¯-monoide commutativo
fintamente generato é primo, radicale o primario.

Summary. – We describe algorithms for computing the nilradical and the zero-divisors
of a finitely generated commutative ¯-monoid. These algorithms will be used for de-
ciding if a given ideal of a finitely generated commutative ¯-monoid is prime, radi-
cal or primary.

Introduction.

All semigroups, monoids and groups appearing in this paper are commuta-
tive. For this reason, in the sequel we will omit this adjective. We denote by Z
and N the set of integers and nonnegative integers, respectively.

In the first third of this century some works like [2, 4] started to develop
the theory of ideals of semigroups. This theory is very similar to ideal theory
in rings. For this reason many theorems and definitions in Commutative Alge-
bra have their counterpart in the theory of semigroup ideals. In this way, it is
not amazing that concepts like prime ideal, radical ideal, primary ideal, zero-
divisors and nilradical play an important rôle in the theory of semigroup ide-
als. The study of these concepts have yielded a large amount of papers and
books related to this subject (see for instance [1, 7, 9, 10]). In addition, the
problem of factorization in domains is starting to be studied from a «monoid»
point of view (see for instance [3, 6, 11]).

Rédei proves in [12] that every finitely generated monoid is finitely
presented. Our main goal in this paper is to give algorithmic methods
for deciding from a presentation of a given semigroup if one of its ideals

(*) The author would like to thank P. A. García-Sánchez and the referee for their
comments and suggestions. This paper was supported by the project BFM2000-
1469.
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is prime, radical or primary. We are also interested in computing the
set of zero-divisors of a monoid and its nilradical.

The contents of this paper are distributed as follows. In Section 3 we intro-
duce the concept of ¯-monoid to denote the monoids (M , Q) which have an ele-
ment ¯ such that m¯4¯ for all m�M (we use ¯ instead of 0 in order to distin-
guish this element from the element 04 (0 , R , 0 )�Np). Our aim in that sec-
tion is to give an algorithm for deciding whether a finitely generated monoid is
a ¯-monoid or not. Section 2 is the most relevant part of this paper, and there
we give an algorithmic method for computing the set of zero-divisors of a
finitely presented ¯-monoid. In Section 3 we study the nilradical of a ¯-monoid.
We present two algorithmic methods for computing the nilradical of a finitely
presented ¯-monoid; one of them leans on the results given in Section 2, while
the other relies on the concept of Archimedean component (this is due to the
fact that the nilradical of a ¯-monoid turns out to be its maximal Archimedean
component). In Section 4 we study reduced ¯-monoids, that is, ¯-monoids with
trivial nilradical. We explain two methods for deciding whether a ¯-monoid is
reduced or not, one of which is a consequence of the results appearing in Sec-
tion 2, and the other comes from the methods developed in Section 3. Using
the concept of Archimedean component, we describe how is the set of zero-di-
visors of a reduced ¯-monoid. We finish this section studying those reduced ¯-
monoids whose set of zero-divisors is trivial, and call them integral monoids.
We also give a method for deciding whether a finitely presented ¯-monoid is
an integral monoid or not. Finally, in Section 5, for a given ideal I of a monoid
(M , Q) we show that the monoid M/RI , with RI the Rees congruence associated
to I , is a ¯-monoid, and this fact enables us to study whether I is prime, radical
or primary in terms of being M/RI an integral monoid, reduced or fulfilling
that its nilradical equals its set of zero-divisors. We show how a presentation
of M/RI can be computed from a presentation of M and thus using the methods
exposed in the preceding sections we obtain algorithmic procedures for decid-
ing whether an ideal of a finitely presented monoid is prime, radical or
primary.

Preliminaries.

Let (M , Q) be a monoid generated by ]m1 , R , mp(. We have that the
map

W : NpKM , W(k1 , R , kp )4m1
k1
Rmp

kp

is a monoid epimorphism and M is isomorphic to (Np /s , 1), where s is the
kernel congruence of W (asb holds if W(a)4W(b)). Rédei proves in [12] that
every congruence on Np is finitely generated and thus there exists r4
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](a 1 , b 1 ), R , (a t , b t )(%Np3Np such that s is the least congruence on Np

containing r . Moreover s can be constructed from r in the following way (see
[5]).

(1) Set r 04rNr21ND , where r214](a , b)N(b , a)�r( and D4

](a , a)Na�Np(.

(2) Set r 14](a1c , b1c)N(a , b)�r 0 , c�Np(.

(3) The pair (a , b)�s if and only if there exist v0 , R , vk�Np such that
a4v0 , b4vk and (vi , vi11 )�r 1 for all i� ]0, R , k21(.

We now sketch a procedure given in [14] (see also [13]; there the notation
is slightly different from the one used here) for solving the word problem in
Np /s , that is, given a , b�Np decide whether asb holds or not. From r one can
construct a canonical system of generators r4](a 1, b 1), R , (a l, b l)( of s with
respect to a given linear admissible order ] on Np (linear order means that
for all a , b�Np , either a]b or b]a ; an admissible order on Np is an order
such that 0]a for all a�Np and a]b implies a1c]b1c for all a , b , c�Np ;
every linear admissible order on Np is a well order and therefore for any A%
Np there exists min] A , the minimum of A with respect to A). This new system
of generators of s allows us to construct the map NFr : NpKNp as fol-
lows:

(1) if x2a i �Np for all i� ]1, R , l(, then NFr (x)4x ,

(2) if x2a j �Np for all jG i and x2a i11 �Np , then NFr (x)4NFr (x2
a i111b i11).

One can prove that NFr (x)4min] [x]s ([x]s denotes the s-class of x in Np ;
if there is no possible misunderstanding, we will simply write [x]), and there-
fore xsy holds if and only if NFr (x)4NFr (y).

For general results about semigroups and monoids see [5, 16, 8, 14].

1. – Finitely generated ¯-monoids.

Let (M , Q) be a monoid and let 1 be its identity element. The monoid M is a
¯-monoid if there exists m�M such that mx4m for all x�M . This element is
unique and will be denoted by ¯ .

Assume that M is generated by ]m1 , R , mp( and let W , s and r be as in
the preliminaries. The main goal in this section is to give an algorithm for de-
ciding from r whether Np /s (and therefore M) is a ¯-monoid or not. The key
for achieving this goal is Theorem 1. Before stating and proving this theorem
we need some concepts and results.
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If R is a congruence on Nn , then

GR4]a2b�Zn N(a , b)�R(

if a subgroup of Zn . Conversely for a given subgroup H of Zn , we can define
the congruence on Nn

AH4](a , b)�Nn3Nn Na2b�H( .

It is easy to prove (see for instance [12] or [14]) that R’AGR
and that if

aAGR
b , then there exists c�Nn such that (a1c)R(b1c). As a consequence of

this fact one obtains that Nn /R is cancellative if and only if R4AGR
.

Denote by ei the element of Nn all of whose coordinates are equal to zero
with the exception of the ith component, which is equal to one.

THEOREM 1. – The monoid Np /s is a ¯-monoid if and only if ]e1 , R , ep(’Gs .

PROOF. – Necessity. If x�Np is such that [x]4¯ , then [x]1 [ei ]4 [x] for
all i and therefore x1ei2x4ei�Gs .

Sufficiency. If ei�Gs , then eiAGs
0, whence there exists l i�Np such

that (ei1l i ) sl i . Clearly [ei ]1 [l 11R1l p ]4 [l 11R1l p ] for all i�
]1, R , p(. From this it is easily shown that Np /s is a ¯-monoid. r

Let us show now how can we decide from r whether Np /s is a ¯-monoid or
not. In [14] it is proved that Gs is the subgroup of Zp generated by ]a 12

b 1 , R , a t2b t(. Using Theorem 1, the monoid Np /s is a ¯-monoid if and only
if Gs4Zp and this can be checked out by just computing the equations of Gs or
its invariant factors.

Assume henceforward in this section that Np /s is a ¯-monoid. Our next
goal is to give an algorithm for computing from r an element x�Np such that
[x]4¯ . The following proposition gives the key to solve this problem.

PROPOSITION 2. – If Np /s is a ¯-monoid, then the following conditions
hold.

(1) There exists l�N such that l(e11R1ep ) s(l11)(e11R1ep ).

(2) If m�N and m(e11R1ep ) s(m11)(e11R1ep ), then [m(e11R1

ep ) ]4¯ .

PROOF. – (1) Let x4 (x1 , R , xp )�Np be such that [x]4¯ and set l4
max ]x1 , R , xp( (where max (A) stands for the maximum of the set A). Then
there exits y�Np such that l(e11R1ep )4x1y . Hence [l(e11R1ep ) ]4
[x]1 [y]4¯ . In the same way one proves that [(l11)(e11R1ep ) ]4¯ ,
whence l(e11R1ep ) s (l11)(e11R1ep ).
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(2) Note that (m1k)(e11R1ep ) sm(e11R1ep ) for all k�N . Let x�Np

be such that [x]4¯ . Then there exists k�N and y�Np such that (m1k)(e11

R1ep )4x1y , whence [ (m1k)(e11R1ep ) ]4¯ and consequently [m(e11

R1ep ) ]4¯ . r

As we already mentioned in the preliminaries, we have a procedure for
checking whether asb holds or not for any a , b�Np , and therefore we can
compute the least nonnegative integer k such that k(e11R1ep ) s(k1
1)(e11R1ep ) holds. Applying Proposition 2, we get that [k(e11R1ep ) ]4
¯ . We can always decide whether [y]4¯ or not for some y�Np , since we only
have to check if ysk(e11R1ep ) holds.

2. – The zero-divisors of a ¯-monoid.

An element x in a ¯-monoid (M , . ) is a zero-divisor if there exists y�
M0]¯( such that xy4¯ . The set of zero-divisors of M is denoted by
Z D(M).

The main goal of this section is to give an algorithmic method for comput-
ing the set Z D(M) for a given finitely generated ¯-monoid.

An ideal I of a monoid M is a subset of M fulfilling that for every x�I and
s�M , the element xs is again in I . An ideal I is a prime ideal if for every
x , y�M such that xy�I , we have that either x�I or y�I .

LEMMA 3. – If M is a ¯-monoid, then Z D(M) is a prime ideal of M .

PROOF. – If x� Z D(M) and s�M , then there exists y�M0]¯( such that
xy4¯ . Hence (xs)y4¯ and therefore xs� Z D(M). Now take x , y�M such
that xy� Z D(M). Then there exists z�M0]¯( such that (xy)z4¯ . If yzc¯ ,
then x� Z D(M); otherwise y� Z D(M). r

In the sequel we assume that all ¯-monoids appearing in this paper are
nontrivial, that is, they are not equal to ]¯( and consequently 1c¯ .

Given a nonempty subset A of a monoid (M , Q), we denote by

AM4]asNa�A , s�M( .

It is clear that AM is an ideal of M (it is in fact the smallest ideal of M contain-
ing A). We will refer to AM as the ideal generated by A .

LEMMA 4. – Let (M , Q) be a nontrivial ¯-monoid generated by
]m1 , R , mp( and such that ]m1 , R , mp(OZ D(M)4]mi1

, R , mir
(.

Then

Z D(M)4]mi1
, R , mir

( M .
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PROOF. – Clearly ]mi1
, R , mir

( M’ Z D(M). To prove the other inclusion
take x� Z D(M). Then there exists (k1 , R , kp )�Np 0]0( such that x4
m1

k1
Rmp

kp (1 can not be in Z D(M) and for this reason (k1 , R , kp )c0). Since
Z D(M) is a prime ideal, we can find i� ]1, R , p( for which mi� Z D(M).
Hence i� ]i1 , R , ir( and x� ]m1(M’ ]mi1

, R , mir
( M . r

Under the same hypothesis of Lemma 4, set

4(¯)4](k1 , R , kp )�Np Nm1
k1
Rmp

kp4¯( .

The set 4(¯) is equal to W21 (¯), where as above W is the map W : NpKM ,
W(k1 , R , kp )4m1

k1
Rmp

kp ; whence 4(¯) is an ideal of (Np , 1). By Dickson’s
lemma (see for instance [14]) the set of minimal elements with respect to the
usual partial order of 4(¯) is finite (recall that the usual partial order on Np is
defined by (a1 , R , ap )G (b1 , R , bp ) if aiGbi for all i).

For an element x4 (x1 , R , xp )�Np , write Supp (x)4]iNxic0(.

THEOREM 5. – Let (M , Q) be a nontrivial ¯-monoid generated by
]m1 , R , mp( and such that MinimalsG4(¯)4]l 1 , R , l r( (MinimalsG A de-
notes the set of minimal elements of A with respect to the order G). Then mi�
Z D(M) if and only if i�Supp (l 1 )NRNSupp (l r ).

PROOF. – Necessity. If mi� Z D(M), then there exists x4m1
k1
Rmp

k p
�

M0]¯( such that mi x40. Thus (k1 , R , ki21 , ki11, ki11 , R , kp )�4(¯) and
therefore there exists j� ]1, R , r( and y�Np such that (k1 , R , ki1

1, R , kp )4l j1y . If i�Supp (y), then (k1 , R , ki , R , kp )4l i1 (y2ei )�
4(¯), which leads to x4¯ , contradicting the fact that xc¯ . Therefore i�
Supp (y) and consequently i�Supp (l j ).

Sufficiency. Let j� ]1, R , r( and i�Supp (l j ). Then l j2ei�4(¯), be-
cause l j�MinimalsG4(¯). Hence if l j4 (a1 , R , ap ), we get

x4m1
a1
Rmi21

ai21 mi
ai21 mi11

ai11
Rmp

ap
c¯ and xmi4¯ .

Thus mi� Z D(M). r

Applying Theorem 5 and Lemma 4, we can compute Z D(M) from the set
MinimalsG4(¯). Thus we focus our attention on finding a procedure for com-
puting MinimalsG4(¯). We take W and s as in the preliminaries, and let r4
](a 1 , b 1 ), R , (a t , b t )( be a canonical system of generators of s with respect
to a given linear admissible order ] . For x4 (x1 , R , xp ), y4 (y1 , R , yp )�
Np , set

xSy4 (max ]x1 , y1(, R , max ]xp , yp() .
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LEMMA 6. – If x�4(¯), x2b i�Np and x2b i1a i�MinimalsG4(¯), then
x4lSb i for some l�MinimalsG4(¯).

PROOF. – If x�4(¯), then there exits l�MinimalsG4(¯) and y�Np such
that x4l1y . Hence x2l�Np and by hypothesis x2b i�Np . Thus there
exits z�Np such that x4 (lSb i )1z . We prove that z40. Since l�4(¯),
and 4(¯) is an ideal of Np , we get lSb i�4(¯). In addition, (a i , b i )�r’s
and thus ( ( (lSb i )2b i )1a i ) s(lSb i ), whence ((lSb i )2b i )1a i�4(¯).
This yields x2b i1a i4 ( (lSb i )2b i )1a i1z . Since x2b i1a i�
MinimalsG4(¯), we deduce that z40. r

LEMMA 7. – If ]l 1 , R , l r(4MinimalsG4(¯) and l 1Tl 2TRTl r (aTb
means a]b and acb), then x�4(¯) if and only if there exists a sequence
(a i1

, b i1
), R , (a iq

, b iq
) of elements in r fulfilling the following conditions:

(1) x1 !
j41

q

(2a ij
1b ij

)4l 1 ,

(2) x2a i1
�Np ,

(3) x1 !
j41

l

(2a ij
1b ij

)2a il11
�Np for all l� ]1, R , q21(.

PROOF. – Clearly 4(¯)4 [l 1 ] and since ] is a linear admissible order on
Np , we get l 14min] [l 1 ]. Hence x�4(¯) if and only if xsl 1 holds, or equiva-
lently, NFr (x)4l 1 . The proof follows from the definition of NFr (see the
preliminaries). r

The following theorem is the last piece needed to give a procedure for com-
puting 4(¯).

THEOREM 8. – If MinimalsG4(¯)4]l 1TRTl r(, then l k114 (l iSb j )2
b j1a j for some i� ]1, R , k( and j� ]1, R , t(.

PROOF. – Applying Lemma 7, we deduce that l k114x2b j1a j for some
x�4(¯) and some j� ]1, R , t( such that x2b j�Np . Using Lemma 6, we get
that x4lSb j for some l�MinimalsG4(¯). Since r is a canonical system of
generators of s with respect to ] , we have b iTa i (see [13] or [14]).
Thus

l]lSb j4xTx2b j1a j4l k11 ,

which means that l� ]l 1 , R , l k(. r

With all these results we can finally give an algorithm for computing the
set MinimalsG4(¯).
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Algorithm 9.

INPUT: A canonical system of generators r4](a 1 , b 1 ), R , (a t , b t )( of a
congruence s on Np with respect to a given linear admissible order ] . We as-
sume that Np /s is a nontrivial ¯-monoid.

OUTPUT: The set MinimalsG]x�Np N[x]4¯(.

Step 1: Find x�Np such that [x]4¯ (see Section 1).
Step 2: Compute m14min] [x]4NFr (x).
Step 3: Set A4]m1(.
Step 4: Compute B4](aSb j )2b j1a j Na�A , j� ]1, R , t((.
Step 5: Compute C4BOMinimalsG]x�Np N[x]4¯( (note that an ele-

ment b�B is in MinimalsG]x�Np N[x]4¯( if and only if for all yEb ,
NFr (y)cm1).

Step 6: If C’A , then return A ; stop.
Step 7: A»4ANC ; go to Step 4.

3. – The nilradical of a ¯-monoid.

An element x of a ¯-monoid (M , Q) is nilpotent if there exists k�N0]0(
such that x k4¯ . The set of nilpotent elements of M is called the nilradical of
M and it is denoted by Nil (M). For I an ideal of M , set

kI4]x�MNx k�I for some k�N0]0(( ,

the radical of I . The set kI is also an ideal of M and we say that I is a radical
ideal if kI4I . Clearly kI is a radical ideal for every ideal I of M . In particu-
lar, Nil (M)4k]¯( .

We start this section giving an algorithmic method for computing the nil-
radical of a finitely generated ¯-monoid, which is inspired in the results ob-
tained in the preceding section.

Assume henceforward in this section that M is a nontrivial ¯-monoid gen-
erated by ]m1 , R , mp( and take 4(¯) as above. Let ]l 1 , R , l r( be the set of
minimal elements of 4(¯) with respect to G. For every i� ]1, R , r( define
m i4 !

j�Supp (l i )
ej . Set

4( Nil (M) )4](k1 , R , kp )�Np Nm1
k1
Rmp

kp�Nil (M)( .

Note that 4(Nil (M) )4W21 (Nil (M) ) and that it is a radical ideal of Np that
contains 4(¯).

PROPOSITION 10. – Under the above hypothesis, 4(Nil (M) )4
]m 1 , R , m r(1Np .



COMMUTATIVE MONOIDS WITH ZERO-DIVISORS 781

PROOF. – Take x�4(Nil (M) ). Then kx�4(¯) for some k�N0]0(. There-
fore there exist i� ]1, R , r( and y�Np such that kx4l i1y . It is clear that
Supp (l i )’Supp (x), whence x� ]m i(1Np’ ]m 1 , R , m r(1Np .

To prove the other inclusion, take x� ]m 1 , R , m r(1Np . Then there exist
i� ]1, R , r( and y�Np such that x4m i1y . This leads to Supp (l i )4
Supp (m i )’Supp (x) and for this reason we can find k�N0]0( and z�Np for
which kx4l i1z . Hence kx�4(¯)’4(Nil (M) ), and since 4(Nil (M) ) is radi-
cal, we conclude that x�4(Nil (M) ). r

Let W and s be as in the preliminaries and let r be a system of generators
of s . Applying the last proposition and the results obtained in the preceding
section, the reader can check that we have a procedure for computing from r
the ideal 4(Nil (M) ) and thus Nil (M).

Our next goal is to describe how Nil(M) is distributed inside M . To this
end we recall the concept of Archimedean component of a semigroup.

An element x of a semigroup (S , Q) is Archimedean (see [16]) if for all y�S
there exist k�N0]0( and z�S such that x k4yz (observe that if TS is defined
by aTS b if ac4b for some c�S , then the above condition translates to
yTS x k for some k�N0]0(). A semigroup is Archimedean provided that all its
elements are Archimedean. The element x is idempotent if x 24x . A semilat-
tice is a semigroup all of whose elements are idempotent. For a semigroup
(S , Q), we define the binary relation 8 on S by a8b if there exist k , l�N0]0(
and c , d�S such that a k4bc and b l4ad . Tamura and Kimura proved in [15]
that 8 is a congruence on S and that the quotient semigroup S/8 is a semilat-
tice. The 8-classes of S are called the Archimedean components of S . They
are Archimedean subsemigroups of S .

It is easy to check that if (A , Q) is a semilattice, then the binary relation G,
defined by aGb if ab4b , is an order relation on A (that is, it is reflexive, tran-
sitive and antisymmetric). Moreover ab4supremumG]a , b( (see for instance
[14]; supremumG]a , b( denotes the supremum of ]a , b( with respect to G).

PROPOSITION 11. – If (S , Q) is a ¯-monoid, then Nil (S)4max
G8

(S/8), where
[x]8G8 [y]8 if [x]8 [y]84 [y]8 .

PROOF. – We first prove that Nil (S)4 [¯]8 . Take x�Nil (S). Then there
exists k�N0]0( such that x k4¯ . Clearly this implies that x8¯ holds and this
means that x� [¯]8 . Conversely, if x� [¯]8 , then there exist k�N0]0( and
y�S for which x k4¯y . Therefore x k4¯ and for this reason x�Nil (S).

We now prove that [¯]84maxG8 (S/8). If [x]8�S/8 , then [x]8 [¯]84
[x¯]84 [¯]8 , whence [x]8G8 [¯]8 . r

Using this result we give an alternative way for computing the nilradical of
a finitely generated ¯-monoid. Assume that r is a canonical system of genera-
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tors of a congruence s over Np . In [14] there is an algorithmic procedure for
computing the Archimedean components of Np /s from r . In particular, there
it is shown that if C is an Archimedean component of Np /s , then there exist
A1

C , R , Al
C , A C’ ]1, R , p( (which can be computed from r) such that:

(1) 0
i41

l

Ai
C4A C ,

(2) [x]s�C if and only if Supp (x)’A C and Ai
C’Supp (x) for some

i� ]1, R , l(.

Observe that C is the maximal Archimedean component of Np /s if and only
if A C4]1, R , p(. Applying Proposition 11, we deduce the following algo-
rithm.

Algorithm 12.

INPUT: A canonical system of generators of a congruence s on Np with re-
spect to a given linear admissible order ] . We assume that Np /s is a nontriv-
ial ¯-monoid.

OUTPUT: A set ]m 1 , R , m r(%Np such that 4(Nil (Np /s) )4]m 1 , R , m r(1Np .

Step 1: Compute A1
C , R , Ar

C for the maximal Archimedean component
C of Np /s (see [14]).

Step 2: Set m i4 !
j�Ai

C
ej for every i� ]1, R , r(.

Step 3: Return ]m 1 , R , m r(; stop.

4. – Reduced ¯-monoids.

A ¯-monoid (M , Q) is reduced if Nil (M)4]¯(. Like the definitions given
abover, this one is also motivated by Ring Theory. However in the literature
one can find different definitions of reduced monoid. The most common defini-
tion is that of monoid without units. In this paper a reduced ¯-monoid means ¯-
monoid without nilpotent elements.

As usual we start this section giving a procedure for deciding whether a
finitely generated ¯-monoid is reduced or not.

PROPOSITION 13. – Let (M , Q) be a ¯-monoid generated by ]m1 , R , mp(

and let 4(¯) be as above. Assume that ]l 1 , R , l r( is the set of minimal ele-
ments of 4(¯) with respect to G. The following conditions are equiva-
lent.

(i) M is a reduced ¯-monoid.

(ii) For all i� ]1, R , r(, the element l i belongs to ]0, 1(p (or equiva-
lently l i4m i , using the notation of the preceding section).
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PROOF. – (i) implies (ii). Assume that l i� ]0, 1(p . Then there exits j�
]1, R , p( such that l i22ej�Np . It is clear that l i2ej�4(¯) and l i1 (l i2

2ej )42(l i2ej )�4(¯). Hence

m1
l i1

Rmj21
l ij21 mj

l ij21 mj11
l ij11

Rmp
l ip�Nil (M)0]¯( .

(ii) implies (i). Assume that x4m1
k1
Rmp

kp�Nil (M). Then there exists
k�N0]0( such that x k4¯ , whence k(k1 , R , kp )�4(¯). Thus we can find i�
]1, R , r( and y�Np such that (kk1 , R , kkp )4l i1y . Since l i� ]0, 1(p ,
there exists z�Np for which (k1 , R , kp )4l i1z . This implies (k1 , R , kp )�
4(¯) and consequently x4¯ . r

Let s be a congruence on Np such that Np /s is a ¯-monoid and r a system of
generators of s . With the results shown in Section 2, we can compute from r
the set of minimal elements of 4(¯) with respect to G. Thus Proposition 13
gives an effective method for deciding whether N/s is a reduced ¯-monoid or
not.

Another way to decide whether Np /s is a reduced ¯-monoid or not is
achieved with the help of the following proposition.

PROPOSITION 14. – Let (M , Q) be a ¯-monoid generated by ]m1 , R , mp(

and let 4(Nil (M) ) be as above. Assume that 4(Nil (M) )4]l 1 , R , l r(1Np .
The following conditions are equivalent.

(i) M is a reduced ¯-monoid.

(ii) For all i� ]1, R , r(, (m1
l i1

Rmp
l ip )24m1

l i1
Rmp

l ip , where
(l i1

, R , l ip
)4l i .

PROOF. – (i) implies (ii). If Nil (M)4]¯(, then m1
l i1

Rmp
l ip4¯ and clear-

ly ¯24¯ .
(ii) implies (i). If (m1

l i1
Rmp

l ip )24m1
l i1

Rmp
l ip , then m1

l i1
Rmp

l ip is an
idempotent element of Nil (M). Recall that Nil (M) is an Archimedean compo-
nent of M and thus an Archimedean semigroup. In [16] it is shown that every
Archimedean semigroup has at most an idempotent element, and since ¯ is an
idempotent element of Nil (M), we conclude that ¯4m1

l i1
Rmp

l ip . r

Using the results obtained in Section 3 and Proposition 14 we can decide
whether Np /s is a reduced ¯-monoid or not: we can compute l 1 , R , l r such
that 4(Nil (Np /s) )4]l 1 , R , l r(1Np /s ; thus we only have to check whether
l i s 2l i holds or not for all i and this can be achieved using NFr with r a
canonical system of generators of s .

Our next goal is to describe the set Z D(M) in the case M is a reduced
¯-monoid.
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Given a monoid (M , Q), set

U(M)4]x�MNxy41 for some y�M( ,

which is a group called the group of units of M . If M is a ¯-monoid, we al-
ready know that Nil (M)4maxG8 (M/8). It can be easily proved that U(N)4
minG8 (M/8). In [14] it is shown that a finite semilattice with maximum and
minimum is a lattice and therefore there exists the supremum and infimum of
every pair of elements. Observe that this is the case for (M/8 ,G8 ) with M a
finitely generated monoid.

THEOREM 15. – Let (M , Q) be a finitely generated reduced ¯-monoid and
let

]C1 , R , Cr(4MaximalsG8 (M/88]Nil (M)()

(MaximalsG8 (A) stands for the set of maximal elements of the set A with re-
spect to the order G8 ). If C4 infimumG8]C1 , R , Cr( (infumumG8 A denotes
the infimum of A with respect to G8 ), then the following conditions are
equivalent:

(i) x� Z D(M),

(ii) [x]8G8 C .

PROOF. – (i) implies (ii). Assume that [x]8G8 C does not hold. Then there
exists j� ]1, R , r( such that [x]8G8 Cj does not hold. Hence for y�Cj , we
obtain [x]8 [y]84Nil (M)4]¯( and therefore xy4¯ . Since yc¯ , we get
x� Z D(M).

(ii) implies (i). If yc¯ , then y� ]¯(4Nil (M), whence [y]8G8 Cj for
some j� ]1, R , r(. This leads to the fact [x]8 [y]8GCj and consequently
xyc¯ . r

We conclude this section studying a special kind of reduced ¯-monoids, the
so called integral monoids, which are those ¯-monoids such that Z D(M)4
]¯(. Every integral monoid is a reduced ¯-monoid.

PROPOSITION 16. – Let (M , Q) be a ¯-monoid. The following conditions are
equivalent.

(i) M is an integral monoid.

(ii) M is reduced and ][¯]8( is a prime ideal of M/8 .
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PROOF. – (i) implies (ii). If M is an integral monoid, then it is reduced and
[¯]84Nil (M)4]¯(. Assume that there exists x , y�M such that [x]8 [y]84
]¯( and [x]8c ]¯(c [y]8 . Then xy4¯ , but xc¯cy , which contradicts the
fact that M is an integral monoid.

(ii) implies (i). If xy4¯ , then ]¯(4 [¯]84 [x]8 [y]8 . Hence either
[x]84]¯( or [y]84]¯( and consequently either x4¯ or y4¯ . r

We now give an algorithmic procedure for deciding whether a finitely gen-
erated ¯-monoid is an integral monoid or not. From the results obtained at the
beginning of this section we can already check whether a finitely generated ¯-
monoid is reduced or not. Using Proposition 16 it is enough to give a method
for finding out if ][¯]8( is a prime ideal of M/8 . This method is derived from
the following proposition.

PROPOSITION 17. – Let (M , Q) be a nontrivial finitely generated ¯-monoid.
Then ][¯]8( is a prime ideal of M/8 if and only if there is only one maximal
element in M/80][¯]8(.

PROOF. – Recall that [¯]84maxG8 (M/8) and that U(M)4 [1]84
minG8 (M/8). Note also that [1]8c [¯]8 and that M/8 is finite.

Necessity. If [x]8 , [y]8�MaximalsG8 (M/80][¯]8() and [x]8c [y]8 ,
then applying the definition of G8 we obtain [x]8 [y]84 [¯]8 , whence ][¯]8(
is not a prime ideal of M/8 .

Sufficiency. Take C to be the only maximal element of M/88][¯]8( with
respect to G8 . If [x]8c [¯]8c [y]8 , then [x]8G8 C and [y]8G8 C . Thus
[x]8 [y]8G8 C and for this reason [x]8 [y]8c [¯]8 . r

Let s be a congruence on Np and C1 , C2 be two Archimedean components of
Np /s . Using the same notation introduced at the end of Section 3, it is easy to
show that C1G8 C2 if and only if A C1’A C2 .

Algorithm 18.

INPUT: A canonical system of generators of a congruence s on Np with re-
spect to a given linear admissible order ] . We assume that Np /s is a nontriv-
ial ¯-monoid.

OUTPUT: «Np /s is an integral monoid» or «Np /s is not an integral
monoid».

Step 1: Compute A4]A C NC is an Archimeden component of Np /s(
(see [14]).

Step 2: Compute B4Maximals’ (A± ]1, R , p() (maximals with re-
spect to the set-inclusion order).



J. C. ROSALES786

Step 3: If B has more than two elements, then Return «Np /s is
not an integral monoid»; stop.

Step 4: Check if Np /s is reduced.
Step 5: If Np /s is not reduced, Return «Np /s is not an integral

monoid»; stop.
Step 6: Return «Np /s is an integral monoid»; stop.

5. – Radical, prime and primary ideals of a monoid.

In this section we apply the results obtained above in order to decide
whether a given ideal of a finitely generated monoid is prime, radical or prima-
ry. To this end we recall the concept of Rees congruence associated to an
ideal.

Given an ideal I of a monoid (A , Q), the Rees congruence associated to I
(see for instance [8]) is defined by a RI b if either ]x , y(’I or x4y .

LEMMA 19. – Let I be an ideal of a monoid (A , Q). Then the monoid A/ RI is
a ¯-monoid.

PROOF. – Take x�I . Since I is an ideal, for all a�A , we have xa�I . This
implies that [a]RI

[x]RI
4 [x]RI

and thus [x]RI
4¯ . r

The following result points out the connection between the concepts of
prime, radical and primary ideal, and the concepts studied in the preceding
sections. An ideal I of a monoid (A , Q) is primary if whenever xy�I for some
x , y�A and x�I , we get y k�I for some k�N0]0(.

PROPOSITION 20. – Let I be an ideal of the monoid (A , Q).

(1) I is a prime ideal if and only if A/ RI is an integral monoid.
(2) I is a radical ideal if and only if A/ RI is a reduced ¯-monoid.
(3) I is a primary ideal if and only if Nil (A/ RI )4 Z D(A/ RI ).

PROOF. – (1) Necessity. Let [x]RI
� Z D(A/ RI ). Then there exists y�I such

that [x]RI
[y]RI

4¯ . Hence xy�I and y�I , which implies that x�I , whence
[x]RI

4¯ . Thus Z D(A/ RI )4]¯( and consequently A/ RI is an integral
monoid.

Sufficiency. If xy�I , then [x]RI
[y]RI

4¯ and therefore either [x]RI
4¯ or

[y]RI
4¯ , which leads to either x�I or y�I .

(2) Necessity. If [x]RI
�Nil (A/ RI ), then there exists k�N0]0( such

that x k�I . By hypothesis, this implies x�I and thus [x]RI
4¯ .

Sufficiency. If x k�I for some k�N0]0(, then [x]RI
k 4¯ . This means

[x]RI
�Nil (A/ RI )4]¯(, whence x�I .
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(3) Necessity. Take [x]RI
� Z D(A/ RI ). Then there exists y�I such that

[x]RI
[y]RI

4¯ . Hence xy�I and y�I . Since I is primary, there exists k�
N0]0( such that x k�I , which leads to [x]RI

k 4¯ and therefore [x]RI
�

Nil (A/ RI ). The other inclusion follows from the definition of Nil (A/ RI ) and
Z D(A/ RI ).

Sufficiency. If xy�I and x�I , then [x]RI
[y]RI

4¯ and [x]RI
c¯ . Hence

[y]RI
� Z D(A/ RI )4Nil (A/ RI ), which yields [y]RI

k 4¯ for some k�N0]0(.
Therefore y k�I . r

If we want to apply Proposition 20 to a finitely generated monoid A4Np /s
for which a system of generators r of s is known, we still need to figure out
how to construct A/ RI for any ideal I of A . The following will be of great help
for this purpose. If r4](a 1 , b 1 ), R , (a t , b t )( and I4][l 1 ]s , R , [l r ]s(1A ,
define

r I4](l 1 , l 2 ), R , (l 1 , l r ), (l 11e1 , l 1 ), R , (l 11ep , l 1 )( ,

set r4rNr I , and let s be the congruence on Np generated by r.

LEMMA 21. – Let A , s , r , I , r I , r and s be as above. For every x , y�Np ,
[x]s4 [y]s if and only if either [x]s4 [y]s or ][x]s , [y]s(’I .

PROOF. – Necessity. Assume that [x]s4 [y]s and that [x]sc [y]s . We must
prove that ][x]s , [y]s(’I . Since xsy holds, there exist v0 , R , vl�Np such
that v04x , vl4y and (vi , vi11 )�r1 for all i� ]0, R , l21( (see the prelimi-
naries). Moreover [x]sc [y]s and thus there is an i� ]1, R , l21( such that
(vi , vi11 )�r 1 . Set k4min ]iN(vi , vi11 )�r 1(. Then xsvk holds and since
(vk , vk11 )�r 1 , we get that there exist (a , b)�r INr I

21 and c�Np such that
(vk , vk11 )4 (a1c , b1c). This implies that [x]s4 [vk ]s�I . In a similar way
one gets [y]s�I .

Sufficiency. Clearly s’s and thus [x]s4 [y]s implies [x]s4 [y]s . If
][x]s , [y]s(’I , then there exist i , j� ]1, R , r( and z , t�Np such that [x]s4

[l i ]s1 [z]s and [y]s4 [l j ]s1 [t]s . This means that xs(l i1z) and that ys(l j1

t). Applying that r I’r one can easily deduce that (l i1z) sl 1 and (l j1 t) sl 1

hold. Hence [x]s4 [y]s . r

THEOREM 22. – Under the same hypothesis of Lemma 21, the monoid A/ RI

is isomorphic to Np /s.

PROOF. – Define f : AKNp /s, f ( [x]s )4 [x]s . Using that s’s, we deduce
that f is well defined. Moreover f is a monoid epimorphism. To conclude the
proof, it suffices to show that the kernel congruence of f is exactly RI . But this
follows easily from Lemma 21. r
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Summarizing, Proposition 20, Theorem 22 and the algorithms given in the
preceding sections provide us with effective methods for deciding whether the
ideal I4][l 1 ]s , R , [l r ]s(1Np /s is prime, radical or primary once we know a
system of generators of s .
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[12] L. RÉDEI, The theory of finitely generated commutative semigroups, Pergamon,

Oxford-Edinburgh-New York, 1965.
[13] J. C. ROSALES, Function minimum associated to a congruence on integral n-tuple

space, Semigroup Forum, 51 (1995), 87-95.
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