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Hysteresis Filtering in the Space
of Bounded Measurable Functions.

PAVEL KREJČÍ (*) - PHILIPPE LAURENÇOT (**)

Sunto. – Si definisce una mappa che associa ad ogni funzione u�L Q (0 , T) e valore
ammissibile rD0 la funzione j con condizione iniziale j 0 che minimizza la varia-
zione totale nell’r-intorno di u su ogni sottointervallo [0 , t] di [0 , T]. Si mostra che
questa mappa è non-espansiva rispetto a u , r e j 0 , e che coincide con il cosiddetto
operatore play se u è una funzione regolata.

Summary. – We define a mapping which with each function u�L Q (0 , T) and an ad-
missible value of rD0 associates the function j with a prescribed initial condition
j 0 which minimizes the total variation in the r-neighborhood of u in each subinter-
val [0 , t] of [0 , T]. We show that this mapping is non-expansive with respect to u , r
and j 0 , and coincides with the so-called play operator if u is a regulated
function.

Introduction.

The subject of the paper is motivated by applications of one-dimensional
hysteresis operators in damage evaluation algorithms based on the classical
rainflow counting method, see [2], [3] for further references. The original
engineering problem consists in estimating the material fatigue caused by a
large number of medium amplitude oscillations. The input signal has the form
of a very long sequence of real numbers representing, say, successive meas-
urements of one stress component. The rainflow method picks out and counts
closed loops of each given amplitude and, according to the so-called Palm-
gren-Miner rule, gives the instantaneous value of the damage functional as a
linear superposition of individual contributions of each closed loop obtained
from the Wöhler diagram. According to the experimental evidence, there
exists a number rD0 such that loops of amplitude smaller than r contribute

(*) This work has been done during the first author’s stay at the Weierstrass Insti-
tute for Applied Analysis and Stochastics (WIAS) in Berlin under the support of the
Deutsche Forschungsgemeinschaft (DFG), and at the Institut Elie Cartan in Nancy.

(**) Partially supported by Procope, Project No. 98158.
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only negligibly to the total damage. Such loops can therefore be filtered out of
the input string in order to reduce the computational complexity. It was shown
in [3] that the rainflow filtering procedure coincides with what is called the
play operator in the literature devoted to the mathematical theory of hystere-
sis, see [2], [6], [7], [9].

It is convenient to represent the input string as a (piecewise constant)
function of time and to consider the play operator in a suitable space of (possi-
bly discontinuous) functions defined in a time interval [0 , T]. A natural candi-
date seems to be the space of left-continuous regulated functions as the clo-
sure of the set of left-continuous piecewise constant functions with respect to
the uniform convergence. For a given parameter rD0, a given left-continuous
piecewise monotone input function u : [0 , T]KR with l monotonicity intervals
[tk21 , tk ], 04t0Et1EREtl4T , and a given initial condition j0�R we define
the output j4Fr [j0 , u] of the play operator Fr by the recurrent formula

j(t)4max ]u(t)2r , min ]u(t)1r , j(tk21 )(((0.1)

for t�] tk21 , tk ], k41, R , l . It was shown in [2] that the operator Fr thus de-
fined is Lipschitz continuous with respect to the supremum norm: it can there-
fore be extended to a Lipschitz continuous operator in the whole space of left-
continuous regulated functions.

Alternatively, the play operator for continuous inputs and j 0� [u(0)2
r , u(0)1r] can be considered as the solution operator of the evolution varia-
tional inequality in the Stieltjes integral form

.
/
´

Nu(t)2j(t)NGr (t� [0 , T] ,

s
0

T

(u(t)2j(t)2y(t) ) dj(t)F0
(0.2)

for every continuous test function y such that Ny(t)NGr for every t , see [7].
The integral is meaningful due to the remarkable fact pointed out in [6] that
the play operator maps continuous functions into continuous functions of
bounded variation.

Our aim here is to construct a further extension of the play operator be-
yond the spaces of continuous or regulated functions. Since both these spaces
are closed in L Q (0 , T), a simple density argument based either on the explicit
formula (0.1) or on the variational inequality (0.2) cannot work. We make use
of another particular property of the play discovered more than ten years ago
by A. Vladimirov and V. Chernorutskii for continuous inputs, namely that it
associates with each function u the function of minimal total variation within
the r-neighborhood of u in each subinterval [0 , t] of [0 , T]. This also illus-
trates the hidden meaning of hysteresis filtering in the original engineering
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problem: the play operator minimizes the amount of relevant information
which has to be stored. The original result has been published only recently in
Sect. 4 of [8], it had been however mentioned earlier as private communication
in [7] and, in another form, in [9] (cf. also the related concept of e-variation of
regulated functions introduced in Sect. 3 of [4]).

If u is only in L Q (0 , T), there exists still a critical value r(u)D0 such
that the r-neighborhood of u does contain functions of bounded variation for
rDr(u) and does not for rEr(u). We thus state the problem the other way
round using the Vladimirov-Chernorutskii property as another definition of
the play: given u�L Q (0 , T) and rDr(u), we look for the function of minimal
variation in the r-neighborhood of u with a prescribed initial condition.

Our main results (Theorems 1.2, 1.3) state that the play operator is well de-
fined and Lipschitz continuous in L Q (0 , T) for rDr(u). As corollaries, we
prove that (0.1) holds for left-continuous piecewise monotone inputs (and
hence our definition coincides with the classical one on the space of left-contin-
uous regulated functions), a superposition formula (Brokate’s identity) holds,
and that there exists a unique extension up to r4r(u).

The paper is organized as follows. In Section 1 we state the problem and
list our main results. The well-posedness of the play operator in L Q (0 , T) is
established in Section 2. The following Section 3 is devoted to the Lipschitz es-
timate. The corollaries are proved in Section 4.

Acknowledgement. The authors wish to thank M. Brokate, J. Sprekels, U.
Stefanelli, A. Visintin, and the referee for valuable suggestions and comments.

1. – Main results.

Let T�]0 , Q[. We consider the space L Q (0 , T) endowed with the system
of seminorms

VvV[a , b] »4sup ess ]Nv(t)N ; t�]a , b[((1.1)

for 0GaEbGT . Indeed, V QV[0 , T] is a norm.
We further denote by G(a , b) the space of regulated functions u : [a , b]K

R , that is, functions for which both one-sided finite limits u(t1), u(t2) exist
for all t� [a , b], with the convention u(a2) »4u(a), u(b1) »4u(b), and by
BV(a , b) the subset of G(a , b) of functions of bounded variation. The space
G(a , b) endowed with the norm V QV[a , b] is a Banach space and BV(a , b) is dense
in G(a , b) (see e.g. [1]). By LG(a , b) and LBV(a , b) we denote the space of
left-continuous functions from G(a , b) and BV(a , b), respectively.

For any function u�L Q (0 , T) we define the number

r(u) »4 inf ]rD0 ; )h�BV(0 , T), Vu2hV[0 , T]Gr( .(1.2)
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Obviously, r(u) is always finite as r(u)GVuV[0 , T] , and r(u)40 if and only if
u�G(0 , T).

For u�L Q (0 , T), j 0�R and rDr(u) we define the set

Br (j 0 , u) »4]h�LBV(0 , T) ; Vu2hV[0 , T]Gr , h(0)4j 0( .(1.3)

Note that Br (j 0 , u) is non-empty. Indeed, as rDr(u), it follows from (1.2) that
there is h�BV(0 , T) such that Vu2hV[0 , T]Gr . We now introduce the function
h× defined by

h×(0) »4j 0 , h×(t) »4h(t2) , t�]0 , T] .(1.4)

Then h and h× coincide except on a countable subset of [0 , T]. We therefore
have that Vu2h×V [0 , T]Gr and h×�LBV(0 , T) with h× (0)4j 0 , hence
h×� Br (j 0 , u).

DEFINITION 1.1. – For given u�L Q (0 , T), j 0�R and rDr(u) we define
the subset Pr (j 0 , u) of Br (j 0 , u) as the set of all functions j� Br (j 0 , u) such
that

Var
[0, t]

j4 inf mVar
[0, t]

h ; h� Br (j 0 , u)n for every t� [0 , T] .(1.5)

Our main results can be stated as follows.

THEOREM 1.2 (Existence and uniqueness). – Let u�L Q (0 , T), j 0�R and
rDr(u) be given. Then the set Pr (j 0 , u) contains a unique element denoted
by ]r [j 0 , u]. Moreover, there exists a partition 04 t0E t1ERE tl4T such
that the function j»4]r [j 0 , u] is monotone in each closed interval [tk21 , tk ],
k41, R , l , and non-monotone in each interval [tk21 , tk11 ], k41, R , l21.

A typical diagram of the dependence of j4]r [j 0 , u] on u for a special
choice j 04u(0) of the initial condition is shown on Figure 1.

Figure 1. – A diagram of the play operator j4]r [u(0), u].
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THEOREM 1.3 (Lipschitz continuity). – For arbitrary u , v�L Q (0 , T),
j 0 , h 0�R and rDr(u), sDr(v) there holds

V]r [j 0 , u]2]s [h 0 , v]V[0 , T]Gmax ]Nj 02h 0N , Nr2sN1Vu2vV[0 , T]( .(1.6)

The identity (1.7) below for the play defined by (0.1) is in this form due to
Brokate, see Proposition 2.2.16 of [2]. Similar considerations can be found in
Section 34.2 of [6].

COROLLARY 1.4. – For every u�L Q (0 , T), rDr(u), hD0 and j 0 , h 0�R
such that Nj 02h 0NGh we have

]h [j 0 , ]r [h 0 , u] ]4]r1h [j 0 , u] .(1.7)

The next result enables us to extend our construction up to the limit case
r4r(u). In typical cases, the function ]r(u) [j 0 , u] will no longer be of bounded
variation, but the main analytical properties are preserved.

COROLLARY 1.5. – Consider h 0�R and u�L Q (0 , T). Then there exists a
function ]r(u) [h 0 , u]�LG(0 , T) such that

lim
hK01

V]r(u)1h [h 0 , u]2]r(u) [h 0 , u]V[0 , T]40 .(1.8)

Moreover, for every hD0 and j 0� [h 02h , h 01h] we have

]r(u)1h [j 0 , u]4]h [j 0 , ]r(u) [h 0 , u] ] .(1.9)

To conclude, we show that ]r coincides with the classical play operator on
inputs u�LG(0 , T) by proving the following statement.

COROLLARY 1.6. – Let 04 t0E t1ERE tl4T be a partition of [0 , T]. Con-
sider a function u�LG(0 , T) which is monotone in [tk21 , tk ] for every k4
1, R , l . Let j 0�R and rD0 be given. Then the function j4]r [j 0 , u] satis-
fies (0.1).

We prove Theorem 1.2 in Section 2, Theorem 1.3 in Section 3, and the
proofs of Corollaries 1.4, 1.5, 1.6 are given in Section 4.

2. – Existence and uniqueness.

With the notation from Section 1, the aim of this section is to prove Theo-
rem 1.2. As we are working with piecewise monotone functions in Br (j 0 , u),
we first look for subintervals of [0 , T] on which the function u is within a dis-
tance (in L Q) at most r from a monotone function. Before passing to the proof
of Theorem 1.2 itself, we formulate this as an auxiliary statement.
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LEMMA 2.1. – Consider a� [0 , T[ and h 0�R . For t�]a , T] we introduce
the set M(t) defined by

M(t)4]h�LBV(a , t) monotone ; h(a)4h 0 , Vu2hV[a , t]G, r( .(2.1)

Assume that the set

A»4]t�]a , T], M(t)c¯((2.2)

is non-empty and put b»4 sup A . Then there exists a function j�M(b) such
that for every t� [a , b] and h�LBV(a , b) satisfying

h(a)4h 0 , Vu2hV[a , b]Gr(2.3)

there holds

Var
[a , t]

jGVar
[a , t]

h .(2.4)

PROOF OF LEMMA 2.1. – We first prove that M(b) is non-empty. By defini-
tion of b , there exists an increasing sequence ]tn(, tnKb as nKQ and a se-
quence ]h (n)(, h (n)�M(tn ) for n�N . We extend the functions h (n) onto [a , b]
by putting h (n) (t)4h (n) (tn ) for t�] tn , b], and for every n�N we have

Nh (n) (t)NGVuV[0 , T]1r (t� [a , b]

Var
[a , b]

h (n)4Nh (n) (b)2h (n) (a)NGVuV[0 , T]1r1Nh 0N .

By the Helly Selection Principle (see [5]) there is a subsequence of ]h (n)( (not
relabeled) which converges pointwise to a function h�BV(a , b). Moreover, the
functions h (n) being monotone, the sequence ]h (n)( contains either an infinite
number of non-decreasing functions or an infinite number of non-increasing
functions. We may therefore assume that h is monotone in [a , b]. Finally,
since Vu2hV[a , tn ]Gr for every n�N , we have for every non-negative test
function f�L 1 (a , b)

s
a

b

f (t)(Nu(t)2h (n) (t)N2r) dtGs
tn

b

f (t)(Nu(t)2h (n) (t)N2r) dtG2VuV[0, T]s
tn

b

f (t) dt ,

and the Fatou lemma yields

s
a

b

f (t)(Nu(t)2h(t)N2r) dtG lim inf
nKQ

s
a

b

f (t)(Nu(t)2h (n) (t)N2r) dtG0 ,

hence Vu2hV[a , b]Gr . We now put h(t) »4h(t2) for t�]a , b], h(a) »4h 0 . Then
h(t)�LBV(a , b) is monotone and coincides almost everywhere with h , hence
h�M(b) and M(b) is thus non-empty.
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We next denote by M 1 (b) (M 2 (b)) the set of non-decreasing (non-increas-
ing, respectively) functions in M(b). Assume first that M 1 (b) is non-empty.
We set

j(t) »4 inf ]h(t); h�M 1 (b)( for t� [a , b] ,(2.5)

and claim that

j�M 1 (b) .(2.6)

Taking (2.6) for granted, we pick h�LBV(a , b) satisfying (2.3) and put

j×(t) »4min mj(t), h 01Var
[a , t]

hn for t� [a , b] .(2.7)

For a.e. t� [a , b] we have by hypothesis

u(t)2rGj(t)Gu(t)1r ,

u(t)2rGh(t)Gh 01Var
[a , t]

h ,

hence

u(t)2rG j×(t)Gu(t)1r a.e. in [a , b] .

Moreover, j× is a non-decreasing left-continuous function on [a , b] satisfying
j×(a)4h 0 , hence j×�M 1 (b), and j×(t)Gj(t) a.e. as well. Recalling (2.5) we con-
clude that j×fj , hence Var

[a , t]
j4j(t)2h 0GVar

[a , t]
h for t� [a , b] and (2.4)

holds.
It remains to check (2.6). It is easy to see that j(a)4h 0 and j is non-de-

creasing on [a , b]. We next prove that there is a sequence ]j (n)( in M 1 (b)
converging pointwisely to j . To this end we argue as in the proof of the Helly
Selection Principle (see [5], pp. 372-374). Recalling that j has only a countable
number of discontinuity points in [a , b] we choose an arbitrary dense count-
able subset K»4]zj(jF1 of [a , b] containing a , b and all discontinuity points
of j . Fix nF1. For each j� ]1, R , n( there is h ( j)�M 1 (b) such that
0Gh ( j) (zj )2j(zj )G1/n . The function

j (n) »4min ]h ( j) , 1G jGn(

then clearly belongs to M 1 (b) and satisfies

0Gj (n) (zj )2j(zj )G1/n , 1G jGn .

Therefore, for every t�K we have

lim
nKQ

j (n) (t)4j(t) .(2.8)
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Each point s� [a , b] 0K is a continuity point of j , and for t�K , tFs we
have

0Gj (n) (s)2j(s)G (j (n) (t)2j(t) )1 (j(t)2j(s) ) ,

hence (2.8) holds for every t� [a , b].
We are now in a position to complete the proof of (2.6). For each n�N

there exists a set Zn% [a , b] of measure zero such that

u(t)2rGj (n) (t)Gu(t)1r for t� [a , b] 0Zn .(2.9)

Then Z»4 0
n41

Q

Zn is a set of measure zero and passing to the limit in (2.9) as

nKQ we obtain

u(t)2rGj(t)Gu(t)1r for t� [a , b] 0Z ,

hence Vu2jV[a , b]Gr . It remains to check that j is left-continuous. Indeed,
put

j(t) »4j(t2) for t�]a , b], j(a) »4h 0 .

Then, as j and j coincide except on a countable set, we conclude that
j�M 1 (b) and jGj . From (2.5) we obtain that j4j , hence (2.6) holds.

Finally, if M 1 (b)4¯ , we necessarily have M 2 (b)c¯ , and putting

j(t) »4 sup ]h(t); h�M 2 (b)( for t� [a , b]

we proceed similarly as in the previous case to complete the proof of Lem-
ma 2.1. r

We now pass to the proof of Theorem 1.2.

PROOF OF THEOREM 1.2. – Let u�L Q (0 , T), j 0�R and rDr(u) be given.
For some r 8�]r(u), r[ we choose h 8� Br 8 (j 0 , u). According to Assertion
7.3.2.1.(3) of [1], every regulated function can be uniformly approximated by
piecewise constant functions. Since h 8 is left-continuous, the approximations
can be chosen to be left-continuous as well, hence there exists a partition
04s0Es1EREsm4T of [0 , T] and real numbers w1 , R , wm such that the
function w of the form

w(0)4j 0 , w(t)4wi for t�]si21 , si ], i41, R , m

satisfies Vw2h 8 V[0 , T]Gr2r 8 . This means in particular that

w� Br (j 0 , u) .(2.10)
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We next introduce the set

M1 (t)4]h�LBV(0 , t) monotone; h(0)4j 0 , Vu2hV[0 , t]Gr((2.11)

for t� [0 , T]. Owing to (2.10), the function wN[0 , s1 ] belongs to M1 (s1 ), hence the
set

A1 »4]t�]0 , T], M1 (t)c¯(

contains s1 . We apply Lemma 2.1 and putting t1 »4 sup A1Fs1 we find a
function j 1�M1 (t1 ) such that

Var
[0, t]

j 1GVar
[0, t]

h(2.12)

for every t� [0 , t1 ] and h�LBV(0 , t1 ) with h(0)4j 0 , Vu2hV[0 , t1 ]Gr . We stop
the algorithm and put j»4j 1 provided t14T . If t1ET , we first observe that
j 1 is non-constant in [0 , t1 ]; otherwise, for i1 »4max ] j ; sjG t1(F1, the func-
tion j

A
1 : [0 , si111 ]KR defined by

j
A

1 (t) »4
.
/
´

j 0

w(t)

if t� [0 , t1 ]

if t�] t1 , si111 ]

would belong to M1 (si111 ) which contradicts the definition of t1 .
We next continue by induction. Assume that we have already constructed a

partition 04 t0E t1ERE tkET for some kF1 and a sequence ]j 1 , R , j k(

of functions j j : [0 , tj ]KR , 1G jGk , such that

tjFsj for 0G jGk ,(2.13)

j k N[0 , tj ]4j j for 1G jGk ,(2.14)

j k (0)4j 0 and Vu2jV[0 , tk ]Gr ,(2.15)

j k is monotone and non-constant in [tj21 , tj ], 1G jGk ,(2.16)

j j does not admit any monotone extension onto [tj21 , tj1e] such that(2.17)

Vu2jV[0 , tj1e]Gr for any eD0 and 1G jGk ,

Var
[0, t]

j kGVar
[0, t]

h(2.18)

for each t� [0 , tk ] and h�LBV(0 , tk ) with h(0)4j 0 , Vu2hV[0 , tk ]Gr .
We now proceed to the induction step. Assume for instance that j k is non-

decreasing in [tk21 , tk ] and put j k »4j k (tk ). As before we introduce the
set

Mk11 (t)4]h�LBV(tk , t) monotone; h(tk )4j k , Vu2hV[tk , t]Gr((2.19)
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for t�]tk , T]. Put ik »4max ] j ; sjGtk(Fk . Then the function w× : [tk , sik11 ]KR
defined by

w×(tk ) »4j k , w×(t) »4w(t)4wik11 for t�] tk , sik11 ]

belongs to Mk11 (sik11 ), hence the set

Ak11 »4]t�] tk , T], Mk11 (t)c¯(

contains sik11 . As before, we apply Lemma 2.1 and putting tk11 »4 sup Ak11F

sik11Fsk11 we find a function j×k11�Mk11 (tk11 ) such that

Var
[tk , t]

j×k11GVar
[tk , t]

h(2.20)

for every t� [tk , tk11 ] and h�LBV(tk , tk11 ) with h(tk )4j k , Vu2hV[tk , tk11 ]Gr .
Note that for every t�]tk , tk11 ], the set Mk11 (t) contains only non-increas-

ing non-constant functions. Indeed, if there would exist a non-decreasing
function hA�Mk11 (tA) for some tA �] tk , tk11 ], then putting

j
A(t) »4

.
/
´

j k (t)

hA(t)

if t� [0 , tk ] ,

if t�] tk , tA]

we would obtain a non-decreasing extension j
A of j k onto [0 , tA] which would

satisfy Vu2j
A
V[0 , tA]Gr in contradiction with (2.17). This implies in particular

that w(tk1)4wik11Ej k .
We now define the function j k11 by

j k11 (t) »4
.
/
´

j k (t)

j×k11 (t)

if t� [0 , tk ]

if t�] tk , tk11 ] .

By construction, the properties (2.13)-(2.17) are fulfilled at the level k11. It
remains to check that (2.18) holds for j k11 .

Let h�LBV(0 , tk11 ) be given with h(0)4j 0 , Vu2hV[0 , tk11 ]Gr . The induc-
tion step will be complete if we prove that

Var
[0, t]

j k11GVar
[0, t]

h for every t�] tk , tk11 ] .(2.21)

We first notice that (2.17) yields

h(tk1)Gj k .(2.22)

Indeed, we have w(tk1)Ej k , and if h(tk1)Dj k , there holds w(t)Gj kGh(t)
for t� [tk , tk1d] for some dD0. Consequently Nj k2u(t)NGr a.e. in [tk , tk1

d] and we could extend j k by the constant value j k beyond tk in contradiction
with (2.17).
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We fix the number

t »4 inf ]t� [tk21 , tk ]; j k (t)4j k( ,(2.23)

and check that

max ]h(t), h(t1)(Fj k .(2.24)

Assume for contradiction that (2.24) does not hold. Then there exist eD0, dD0
such that

h(t)Gj k2e(2.25)

for t�] t2d , t1d]O [tk21 , tk ]. Put a»4max ]tk21 , t2d(, b»4min ]tk , t1d(.
Then (2.16) yields j k (a)Ej k , j k (b)4j k . Taking a smaller value of e if neces-
sary we may assume that j k (a)Gj k2e . Put

j
A(t) »4

.
/
´

min ]j k (t), j k2e(

j k (t)

for t�]a , b] ,

for t� [0 , a]N]b , tk ] .
(2.26)

Then, owing to (2.25), we have

u(t)1rFj k (t)F j
A(t)Fmin ]j k (t), h(t)(Fu(t)2r

for a.e. t�]a , b], and j
A is non-decreasing in [tk21 , tk ] with j

A(b)Ej k (b)4j k ,
hence

Var
[0, b]

j
A
EVar

[0, b]
j k ,

which contradicts (2.18).
We thus proved that (2.24) holds. Now we distinguish two cases:

(i) tE tk :

Let us introduce an auxiliary function h* by the formula

h*(t) »4
.
/
´

j k

h(t)

for t�] t, tk ] ,

for t� [0 , t]N] tk , tk11 ] .
(2.27)

Then (2.20) yields

Var
[tk , t]

j k11GVar
[tk , t]

h*(2.28)

for every t� [tk , tk11 ] and from (2.18) we obtain

Var
[0, tk ]

j k11G Var
[0, tk ]

h*.(2.29)
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On the other hand, for t�] tk , tk11 ] we have

(2.30) Var
[0, t]

h2Var
[0, t]

h*4Var
[t, tk]

h1Nh(tk1)2h(tk )N2Nh(t)2j kN2Nj k2h(tk1)N ,

where, by (2.22) and (2.24), either h(t)Fj k and

Nh(t)2j k N1Nj k2h(tk1)N4h(t)2h(tk1)GVar
[t, tk ]

h1Nh(tk )2h(tk1)N ,

or h(t)Ej k , h(t1)Fj k and

Nh(t)2j k N1Nj k2h(tk1)N42j k2h(t)2h(tk1)G2h(t1)2h(t)2h(tk1)

GVar
[t, tk ]

h1Nh(tk )2h(tk1)N ,

hence Var
[0, t]

hFVar
[0, t]

h* and (2.21) follows from (2.28) and (2.29).

(ii) t4 tk :

Put h**(t) »4h(t) for t� [0 , tk [N] tk , tk11 ], h**(tk ) »4j k . Then (2.18) and
(2.20) yield

Var
[0, tk ]

j k11G Var
[0, tk ]

h , Var
[tk , t]

j k11GVar
[tk , t]

h** for t�] tk , tk11 ] .(2.31)

By (2.22) and (2.24) we have h**(tk1)4h(tk1)Gj k , h(tk )Fj k4h**(tk ),
hence

Var
[tk , t]

h**4Var
[tk , t]

h2Nh(tk1)2h(tk )N1Nh**(tk1)2h**(tk )N

4Var
[tk , t]

h1j k2h(tk )GVar
[tk , t]

h ,

and we obtain (2.21) from (2.31). The induction step is complete.
Owing to (2.13), after a finite number of steps we obtain tl4T for some

lGm . Putting j»4j l we have found a function j� Pr (j 0 , u) satisfying the
conditions of Theorem 1.2, and the existence part is proved.

To prove uniqueness, we consider an arbitrary function h� Pr (j 0 , u) and
put

V(t) »4Var
[0, t]

j4Var
[0, t]

h

for t� [0 , T], where j is the element of Pr (j 0 , u) we have just constructed
above. Assume that

t× »4max ]t� [0 , T]; j4h in [0 , t](ET .

Observe that the maximum exists by the left-continuity of j and h . We find
k� ]1, R , l( such that t×� [tk21 , tk [ and assume for instance that j is non-
decreasing in [tk21 , tk ]. The function tO j(t)2h(t)4j(t×)2V(t×)1V(t)2h(t)
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is non-decreasing and positive in ] t×, tk ]. As j and h have the same total varia-
tion on every subinterval of [0 , T] and coincide on [0 , t×], there holds j(t×1)2
j(t×)4Nh(t×1)2h(t×)N4Nh(t×1)2j(t×)N , hence either j(t×1)4h(t×1), or
j(t×1)2h(t×1)42(j(t×1)2j(t×) ). Assume first that j(t×1)2h(t×1)4eD0.
Then j(t× 1 )2j(t×)4e/2 , and putting

j×(t) »4
.
/
´

j(t)

j(t)2e/2

for t� [0 , t×]N] tk , T] ,

for t�] t×, tk ] ,

we see that j× is non-decreasing in [tk21 , tk ], and for a.e. t� [tk21 , tk ] we have
u(t)1rFj(t)F j×(t)Fh(t)Fu(t)2r with Var

[0, tk ]
j×4V(tk )2e/2 , which is a

contradiction.
Therefore we necessarily have j(t×1)4h(t×1). We fix some k�]0 , j(tk )2

h(tk )[ and put

s»4 inf ]t� [t×, tk ]; j(t)2h(t)Fk( .

Clearly sD t× and for t�] t×, s[ we have

0Ej(t)2h(t)EkGj(s1)2h(s1) .(2.32)

We next define the number

e»4j(s)2h(s)�]0 , k] ,(2.33)

and choose dD0 in such a way that

Nj(s)2j(t)NGe/2 , Nh(s)2h(t)NGe/2 (t� [s2d , s]%] tk21 , s] .

We have j(s1)2j(s2d)4V(s1)2V(s2d)FNh(s1)2h(s2d)N , hence

s»4min ]e , j(s1)2j(s2d)(D0 .

Indeed, s40 would imply j(s1)2j(s2d)4h(s1)2h(s2d)40, hence
j(s1)2h(s1)4j(s2d)2h(s2d) which contradicts (2.32).

We define the function

j×(t) »4
.
/
´

j(t)

min ]j(t), j(s1)2s(

j(t)2s

for t� [0 , s2d]N] tk , T],

for t�]s2d , s],

for t�]s , tk ] .

(2.34)

Then j× is non-decreasing in [tk21 , tk ], j×(t)Gj(t) for every t�]s2d , tk ].
On the other hand,

j×(t)2h(t)Fj(s2d)2h(t)4 (j(s)2h(s) )1 (j(s2d)2j(s) )1 (h(s)2h(t) )

F0 for every t�]s2d , s] and

j×(t)2h(t)Fj(t)2h(t)2eF0 for every t�]s , tk ] ,
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hence Vu2j× V[0 , T]Gr , while Var
[0, tk ]

j×4 Var
[0, tk ]

j2sEV(tk ), which is a contra-

diction. This completes the proof of Theorem 1.2. r

3. – Lipschitz continuity.

In this section we give the proof of Theorem 1.3. It will be based on the fol-
lowing two lemmas.

LEMMA 3.1. – Consider u�L Q (0 , T), rDr(u), j 0�R and j4]r [j 0 , u].
Assume that there is a subinterval [t 0 , t 1 ] of [0 , T] on which there
holds

j(t)Dj(t 0 ) (t�]t 0 , t 1 ] .(3.1)

Then for each eD0 and t�]t 0 , t 1 ] the set

Mj , e
1 (t) »4]t�]t 0 , t[, j(t)Gu(t)2r1e((3.2)

has positive measure.

LEMMA 3.2. – Consider u�L Q (0 , T), rDr(u), j 0�R and j4]r [j 0 , u].
Assume that there is a subinterval [t 0 , t 1 ] of [0 , T] on which there
holds

j(t)Ej(t 0 ) (t�]t 0 , t 1 ] .(3.3)

Then for each eD0 and t�]t 0 , t 1 ] the set

Mj , e
2 (t) »4]t�]t 0 , t[, j(t)Fu(t)1r2e((3.4)

has positive measure.

We prove only the assertion of Lemma 3.1; Lemma 3.2 is completely
analogous.

PROOF OF LEMMA 3.1. – We first check that under the hypotheses
of Lemma 3.1, the set

Aj (t)4]t�]t 0 , t[, Nu(t)2j(t 0 )NDr(

has positive measure for every t�]t 0 , t 1 ]. Indeed, assume for contradiction
that there is t *�]t 0 , t 1 ] such that meas Aj (t *)40. Putting

j*(t) »4
.
/
´

j(t)

j(t 0 )

if t� [0 , t 0 ]N] t *, T] ,

if t�]t 0 , t *] ,
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we have, on the one hand, j*� Br (j 0 , u). On the other hand, (3.1) yields

Var
[0, t *]

jF Var
[0, t 0 ]

j1j(t *)2j(t 0 )D Var
[0, t 0 ]

j4 Var
[0, t *]

j*

which contradicts Definition 1.1 and Theorem 1.2.
We next proceed to the proof of (3.2). Arguing by contradiction again we

assume that there is eD0 and t *�]t 0 , t 1 ] such that

meas Mj , e
1 (t *)40 .

Recalling Theorem 1.2, we find k� ]1, R , l( such that t 0� [tk21 , tk [ and put
t* »4min ]t *, tk(. Then

meas Mj , e
1 (t*)40 ,(3.5)

j is non-decreasing on [t 0 , t*] (recall (3.1)) .(3.6)

Consider t�]t 0 , t*[. It follows from (3.1) that, for almost every t�Aj (t),
there holds

j(t 0 )Ej(t)Gu(t)1r and Nu(t)2j(t 0 )NDr ,

consequently

j(t 0 )Eu(t)2r for a.e. t�Aj (t) .

Combining this inequality with (3.5) yields

j(t 0 )Ej(t)2e for a.e. t�Aj (t) .(3.7)

As the set Aj (t) has positive measure for every t�]t 0 , t*[, we may let t tend
to t 01 in (3.7) and conclude that

j(t 0 )Gj(t 01)2e .(3.8)

We now define a function j×�LBV(0 , T) by

j×(t) »4
.
/
´

j(t)

j(t)2e

if t� [0 , t 0 ]N]t*, T] ,

if t�]t 0 , t*] .

Owing to (3.5), we have Vu2j×V[t 0 t*]Gr and thus j×� Br (j 0 , u). On the other
hand, (3.6), (3.8) yield that j× is non-decreasing in [t 0 , t*] and

Var
[0, t*]

j×4 Var
[0, t 0 ]

j1j×(t*)2j×(t 0 )4 Var
[0, t*]

j2e

which contradicts Theorem 1.2. Consequently meas Mj , e
1 (t)D0 for every t�

]t 0 , t 1 ] and the proof of Lemma 3.1 is complete. r

We are now ready to prove Theorem 1.3.

PROOF OF THEOREM 1.3. – Let u , v�L Q (0 , T), j 0 , h 0�R and rDr(u), sD
r(v) be given, and put j»4]r [j 0 , u], h»4]s [h 0 , v]. We first prove that for
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every t� [0 , T] we have

j(t)2h(t)Gmax ]Nj 02h 0N , Nr2sN1Vu2vV[0 , T]( .(3.9)

Interchanging the roles of j and h and taking the maximum over t� [0 , T] we
then obtain the assertion of Theorem 1.3.

To prove (3.9), we put

d0 »4max ]Nj 02h 0N , Nr2sN1Vu2vV[0 , T](

and consider an arbitrary dDd0 . Assume that there is t 1�]0 , T] such
that

j(t 1 )2h(t 1 )Dd ,(3.10)

and put

t 0 »4 sup ]t� [0 , t 1 ]; j(t)2h(t)Gd( .(3.11)

Clearly t 0F0 and the left continuity of j and h entails that j(t 0 )2h(t 0 )Gd ,
hence t 0Et 1 . We have thus found a subinterval [t 0 , t 1 ] of [0 , T] such
that

j(t 0 )2h(t 0 )Gd and j(t)2h(t)Dd for t�]t 0 , t 1 ] .(3.12)

According to Theorem 1.2, we may assume that both j and h are monotone in
[t 0 , t 1 ] by taking a smaller t 1 if necessary. Now we have either

j(t)Dj(t 0 ) for t�]t 0 , t 1 ] ,(3.13)

or there is t *�]t 0 , t 1 ] such that

j(t *)Gj(t 0 ) .(3.14)

If (3.13) holds true, we put e»4d2d0D0. By Lemma 3.1 the set Mj , e
1 (t 1 ) has

positive measure and we have for a.e. t�Mj , e
1 (t 1 ) that

j(t)2h(t)Gu(t)2r1e2 (v(t)2s)GVu2vV[0 , T]1e1s2r

Gd01eGd ,

hence a contradiction with (3.12).
On the contrary, if (3.14) holds, then j is non-increasing in [t 0 , t *]. From

(3.12) it then follows for t�]t 0 , t *] that

h(t)Ej(t)2dGj(t 0 )2dGh(t 0 ) .

We now apply Lemma 3.2 to conclude that Mh , e
2 (t *) has positive measure for

the same e as above. But for almost every t�Mh , e
2 (t *) there holds

h(t)2j(t)Fv(t)1s2e2 (u(t)1r)F2Vu2vV[0 , T]2e1s2r

F2d02eF2d ,

which again contradicts (3.12). In other words, (3.10) cannot hold for any t 1�
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]0 , T], hence

j(t)2h(t)Gd for all t� [0 , T] .

As this is valid for each dDd0 , we obtain (3.9) and the proof is com-
plete. r

5. – Further properties.

In this section, we give the proofs of Corollaries 1.4-1.6.

PROOF OF COROLLARY 1.4. – Put j r »4]r [h 0 , u] and j r1h »4]r1h [j 0 , u].
Since j r belongs to LBV(0 , T), we have r(j r )40 and h h »4]h [j 0 , j r ] is well
defined. By Theorem 1.2 we have h h�LBV(0 , T) and

Vu2h h V[0 , T]GVu2j r V[0 , T]1Vj r2h h V[0 , T]Gr1h ,

hence h h� Br1h (j 0 , u). Moreover, j r1h�LBV(0 , T) satisfies j r1h (0)4j 0

and (1.6) entails that

Vj r2j r1h V[0 , T]Gh .

Consequently, j r1h� Bh (j 0 , j r ), and (1.5) guarantees that

Var
[0, t]

h hGVar
[0, t]

j r1h4 inf mVar
[0, t]

h ; h� Br1h (j 0 , u)nGVar
[0, t]

h h

for every t� [0 , T], hence h h� Pr1h (j 0 , u). By Theorem 1.2 we readily con-
clude that h h4j r1h and Corollary 1.4 is proved. r

PROOF OF COROLLARY 1.5. – Consider u�L Q (0 , T), h 0�R and a sequence
]hn( of positive real numbers such that hnK0 as nKQ . For every n we can
define j n »4]r(u)1hn

[h 0 , u] and we have by (1.6) that

Vj n2j m V[0 , T]GNhn2hmN .(4.1)

Consequently, ]j n( is a Cauchy sequence in L Q (0 , T) and its limit which we
denote by j Q is independent of the specific choice of the sequence ]hn(.
Putting ]r(u) [h 0 , u] »4j Q we thus obtain (1.8). Moreover, as a uniform limit of
functions from LBV(0 , T), the function ]r(u) [h 0 , u] belongs to LG(0 , T). Fi-
nally, passing to the limit in (1.7) as rKr(u)1 we obtain (1.9) and the proof is
complete. r

PROOF OF COROLLARY 1.6. – Let k� ]1, R , l( be arbitrary and assume for
instance that u is non-decreasing in [tk21 , tk ]. Put

h k (t) »4
.
/
´

j(t)

max ]j(tk21 ), u(t)2r(

for t� [0 , tk21 ] ,

for t�] tk21 , tk ] ,
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and

t »4max ]t� [tk21 , tk ]; u(t)2rGj(tk21 )( .

Since both j and u are left-continuous, we have u(t)2rGj(t)Gu(t)1r for
every t� [0 , T], in particular j(tk21 )Gu(tk21 )1rGu(t)1r for t�] tk21 , tk ].
Consequently u(t)2rGh k (t)Gu(t)1r for every t� [0 , tk ]. Moreover,

Var
[0, t]

j

Var
[0, t]

j

F

F

F

Var
[0, tk21 ]

j4Var
[0, t]

h k

Var
[0, tk21 ]

j1j(t)2j(tk21 )

Var
[0, tk21 ]

j1u(t)2r2j(tk21 )4Var
[0, t]

h k

for t� [tk21 , t] ,

for t�] t, tk ] ,

and Theorem 1.2 implies that h k4j in [0 , tk ]. The argument is similar if u is
non-increasing in [tk21 , tk ] and the assertion follows easily. r
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