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Intersecting Maximals.

A. L. GILOTTI (*) - U. TIBERIO (**)

Sunto. – Data una classe X di gruppi finiti e un gruppo finito G gli autori studiano il
sottogruppo X(G) intersezione dei sottogruppi massimali non appartenenti a X.

Summary. – Given a class X of finite groups and a finite group G , the authors study
the subgroup X(G) intersection of maximal subgroups that do not belong to X.

Introduction.

Let X be a class of finite groups and let G be a finite group.
Let us denote by X(G) the intersection of all maximal subgroups of G not

belonging to X . If G is a group of X or if G is minimal non-X, set
X(G)4G.

With this notation S(G) will denote the intersection of the insoluble maxi-
mal subgroups of G, Hp (G) will denote the intersection of the non p-nilpotent
maximal subgroups of G and S(G) the intersection of the non-supersoluble
maximal subgroups of G.

Further H(G) , M(G) , C(G) will denote respectively the intersection of the
non-nilpotent, non-abelian, non-cyclic maximal subgroups of G.

Most of the time these subgroups coincide among themselves and very of-
ten they coincide with the Frattini subgroup of G. However if they do not coin-
cide and if at least one of them contains properly the Frattini subgroup then
there are consequences on the structure of G. Problems of this type and the
characterization of the structure of these subgroups have been studied in vari-
ous papers and by various authors (cf. [1], [2], [3], [4], [5]).

With the usual notation, let F *(G) be the generalized Fitting subgroup
and E(G) the maximal normal semisimple subgroup of the finite group G. If
the class X is a formation, G X will denote the X-residual of G.

The main results of the first section of this paper are the following:

a) Suppose that F(G)%
c

S(G)%
c

H2 (G)%
c

G , then S(G) is nilpotent, G H24

G S and S(G)4G S F(G).

(*) Member of the G.N.S.A.G.A. of C.N.R.
(**) Research partially supported by ex 40%, 60% MURST funds.
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(where S is the formation of the supersoluble groups.)

b) If G is insoluble and if F(G)%
c

S(G)’F *(G) then S(G)4
E(G) F(G)4G S F(G).

Note that b) extends to an insoluble group G and its subgroup S(G) the re-
sults on S(G) of theorem 4 of [3].

The results of the second section deal with C(G) and M(G). In particular
we characterize finite groups in which F(G)%

c

C(G) and nilpotent groups such
that F(G)%

c

M(G).
The non nilpotent case for M(G) was already studied in [4]. Precisely we

prove that if G is a p-group F(G)%
c

M(G) implies M(G)4G. If G is nilpotent
but not a p-group, then there exists a prime p dividing the order of G such that
the Sylow p-subgroup P of G is minimal non-abelian and every other Sylow q-
subgroup of G is abelian.

Notation and preliminaries.

All groups considered in this paper are finite and notation is usually stan-
dard (cfr [6])

DEFINITION 1. – Let X be a class of groups. Denote by X(G) the intersec-
tion of the maximal subgroups of G not belonging to X.

If no such a subgroup exists, i.e., if G belongs to X or if G is minimal non-
X let us set X(G)4G.

Let S be the class of supersoluble groups, S be the class of soluble groups,
Hp be the class of p-nilpotent groups (p a prime), H be the class of nilpotent
groups, M be the class of abelian groups and C be the class of cyclic groups.
For the convenience of the reader later on we point out that H2’ S. Corre-
spondingly, according to the Definition 1, we will get the subgroups S(G),
S(G), Hp (G), H(G), M(G) and C(G).

We recall the following lemma (see [3])

LEMMA 1. – Let G be a finite group and let X be a quotient-closed class of
finite groups. If F(G)%

c

X(G) then:

i) G4 X(G) M where M is a maximal subgroup belonging to X.

ii) If G is soluble, then G4QN , where Q is a normal q-subgroup of G
and N is a maximal subgroup of G belonging to X.

Finally we denote by h(G) the nilpotent length (Fitting height) of G and
by lp (G) the p-length of G. For the definition see for instance [8]



INTERSECTING MAXIMALS 737

Section 1.

In this section we deal with S(G), S(G), Hp (G), H(G). In [1] Shidov proves
that in insoluble groups H(G) is nilpotent. Indeed it is immediate that it coin-
cides with F(G) (see next Proposition 1). In [2] we have shown that Hp (G)4
F(G) in a non p-soluble group, if p is a odd prime. However there exist insolu-
ble groups such that F(G)cS(G). (see [3]). Also there exist insoluble groups
in which H2 (G) or S(G) don’t coincide with F(G). An example is PGL(2 , 9 ),
where H2 (G)4S(G)4PSL(2 , 9 ). Observe that a double uncoincidence im-
plies the solubility of G.

We begin with the easy:

PROPOSITION 1. – Let G be a finite group. Then

i) H(G)cF(G) implies that G is soluble and h(G)G2

ii) Hp (G)cF(G) implies that G is p-soluble and lp (G)G2 if p is a odd
prime.

PROOF. – i) By [1] (Shidov) G is soluble. So by Lemma 1 ii) G4QN where Q
is a q-group (q a prime) and N is nilpotent. It follows that h(G)G2.

ii) By [2] (Gilotti-Tiberio) G is p-soluble. By [2] (Theorem 2) either Hp (G) is
p-nilpotent or G4Op (Hp (G) )M, M is a p-nilpotent group. In both cases we
easily get lp (G)G2. r

As we have already observed Proposition 1 i) does not hold for S(G), H2 (G)
or S(G), and Proposition 1 ii) does not hold for p42. But we can easily get the
following two propositions:

PROPOSITION 2. – Let G be a finite group such that F(G)%
c

S(G) )%
c

X(G)
where X is either S or H2 . Then G is soluble and h(G)G3.

PROOF. – If the maximal subgroups of G belong to X then X(G)4G. There
are two cases: either G� X or G is minimal non2X. In the first case G is solu-
ble and so by Lemma 1 ii) G4QM where Q is a normal q-subgroup (q a prime)
and M is supersoluble. So in this case G/F(G) is supersoluble and h(G)G3. If
G is minimal non2X, we have G4S(G)M with M� X. Since X ’ S, M is solu-
ble and since the proper subgroups of G are in X, S(G)� X and so G is soluble.
If X 4 S this is a contradiction. If X 4 H2 , by [10] 10.3.3 (Ito) G minimal non2
H2 implies G minimal non2H and so S(G)4G, again a contradiction. If
X(G)cG, there exists at least one maximal subgroup M of G that does not be-
long to X. On the other hand, since X(G)cS(G) there exist a maximal sub-
group N of G which is not supersoluble, but belongs to X. It follows S(G)’N
so S(G)� X. Since G4S(G)L, where L is supersoluble, G is soluble. This is a
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contradiction if X 4 S. If X 4 H2, then G4QL, where Q is a q-subgroup (q a
prime) and L is supersoluble, by Lemma 1 ii). So again G is soluble and
h(G)G3. r

PROPOSITION 3. – Let G be a finite group such that

F(G)%
c

H2 (G)%
c

S(G)

Then G is soluble and l2 (G)G2.

PROOF. – If G4S(G) then either G is soluble or G is minimal insoluble. In
the first case by lemma 1 ii) G4QN, where Q is a normal q-subgroup and N is
2-nilpotent. It follows l2 (G)G2. In the second case, since G4H2 (G) N, where
N is 2-nilpotent and since H2 (G) is a proper subgroup of G, we deduce that G is
soluble, a contradiction.

It follows that we may assume S(G)cG. Since S(G)cH2 (G), there exist
maximal subgroups of G that are soluble but not 2-nilpotent. It follows then
that H2 (G), being contained in them, is soluble. Since G4H2 (G)N, where N is
2-nilpotent, this implies G soluble, which is a contradiction. r

PROPOSITION 4. – Let G be a finite group such that

G&
c

H2 (G)&
c

S(G)&
c

F(G)

then S(G) is nilpotent and G H24G S. Further S(G)4G S F(G).

PROOF. – With an argument used several times we easily get that S(G) is 2-
nilpotent, so S(G)4KQ2 where K is the Hall 28-subgroup of S(G) normal in
G and Q2 is a Sylow 2-subgroup of S(G). If K’OF(G) then G4KN, where N
is a maximal subgroup not containing K, and for this reason, supersoluble
and therefore 2-nilpotent. Since G4KN and K is a 28-subgroup, we have that
G is 2-nilpotent in contradiction with the assumption that G%

c

H2 (G). So K%
F(G) and S(G)4F(G)Q2. By Frattini’s argument, G4S(G)NG (Q2 )4
F(G)NG (Q2 )4NG (Q2 ) so Q2 is normal in G. It follows S(G) nilpotent. By The-
orem 4 in [3], S(G)4G S F(G). Since S% H2 , G H2’G S.

Since G H2’OF(G), there exists a maximal subgroup M such that G H2’OM. It
follows G4G H2 M and so G4G S M.

Since S(G)4G S F(G), G4S(G) M so M is supersoluble. It follows that
G/G H2 is supersoluble, and so G S’G H2 . Then G S4G H2 . r

The following two theorems extend to S(G) in an insoluble group the re-
sults obtained for S(G) in a soluble group (cf. [3] Theorem 4).

Recall that F *(G) denotes the generalized Fitting subgroup of G and
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E(G) is the maximal normal semisimple subgroup of G (for the definitions
see [8] chapter 6, paragraph 6). It holds F *(G)4E(G) F(G).

THEOREM 1. – Let G be a finite insoluble group such that

F(G)%
c

S(G)’F *(G) .

Then

S(G)4E(G) F(G)4G S F(G) .

PROOF. – Claim a): S(G)OF(G)4F(G).
Obviously F(G)’S(G)OF(G). If F(G)%

c

S(G)OF(G), we could find a max-
imal subgroup M such that G4 (S(G)OF(G))M. So G4S(G)M, which im-
plies M soluble. Since S(G)OF(G) is nilpotent, we get G soluble, in contradic-
tion with the assumption. So claim a) is proved.

Claim b) E(G)’S(G).
Since G/S(G) is soluble (S(G)E(G) ) /S(G)CE(G) /(S(G)OE(G) ) is soluble.

Since E(G) has no soluble proper quotients, we have E(G)4S(G)OE(G) so
S(G)*E(G). Claim b) is proved.

Now we prove that S(G)4E(G) F(G). Since S(G)’F *(G), by using claim
a), claim b) and Dedekind modular law we have:

S(G)OF *(G)4S(G)O (F(G) E(G) )4E(G)(S(G)OF(G) )4E(G) F(G) .

It remains to prove that G S F(G)4S(G). We obviously have G S’S(G) and so
G S F(G)’S(G).

Since G/G S F(G) is soluble, S(G) /G S F(G) is also soluble and so

(E(G)F(G) )/G S F(G)

is soluble. But

E(G) F(G)

G S F(G)
C

E(G) F(G)

F(G) N G S F(G)

F(G)

so it is isomorphic to a soluble quotient of

(E(G) F(G) )/F(G)CE(G) /(E(G)OF(G) ) .

But this last group does not have any proper soluble quotient. So
E(G) F(G)4G S F(G) as we wanted. r

The following theorem is a sort of converse of the previous theorem:

THEOREM 2. – Let G be a finite (insoluble) group such that

S(G)4G S F(G) .
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then

S(G)

F(G)
’F *g G

F(G)
h .

PROOF. – Since S(G)4G S F(G) we have G/S(G) soluble and G non soluble.
Since S(G)&

c

F(G), G4S(G) M where M is a maximal soluble subgroup of G.
We distinguish two cases:

a ) S(G)OF *(G)’OM b ) S(G)OF *(G)’M .

In case a) G4 (S(G)OF *(G) ) M and GO(S(G)OF *(G) ) is soluble. It follows
that G S’S(G)OF *(G) and so S(G)4G S F(G)’S(G)OF *(G). So S(G)’
F *(G). Hence

S(G)

F(G)
’

F *(G)

F(G)
’F *g G

F(G)
h

So assume that we are in case b) S(G)OF *(G)’M. So S(G)OF *(G) is solu-
ble. It follows that S(G)OF *(G)’F(G).

On the other hand

F *(G)

F *(G)OS(G)
C

S(G) F *(G)

S(G)
G

G

S(G)

so it is soluble. It follows that F *(G) is soluble, so F *(G)4F(G). Obviously
F(G)’S(G)OF *(G). If F(G)%

c

S(G)OF(G), with the same reasoning as in
Theorem 1, we would obtain G soluble. So F(G)4S(G)OF(G).

Now we proceed by induction on the order of G. If F(G)c1, let us denote
G/F(G)4G. Then GS4 (G S F(G) )/F(G) (cf. [6] p. 272) and S(G)4S(G) /F(G).
So GS4S(G) (remember that in this case F(G)41).

So G verifies the same hypothesis as G. By induction we get

S(G)

F(G)
’F *(G /F(G) ) ,

i.e.

S(G/F(G) )’F *(G/F(G) )

as we wanted.
So we may assume F(G)41. It follows then:

S(G)OF *(G)4S(G)OF(G)4F(G)41 .

We then obtain [S(G), F(G) ]41 and so S(G)’CG (F(G) )’F *(G) as we
wanted. r

To finish this section we observe that while Theorems 1 and 2 of [2] do not
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hold for p42, Theorem 3 of [2] is valid even for p42. The proof can be done in
the same way as in [2], by using Lemma 1 ii) of this paper instead of Theorem 2
of [2].

In addition, an example, similar to Example 1 of [2], can be provided of a fi-
nite soluble group G in which H2 (G) is neither 2-nilpotent nor it has a normal
Sylow 2-subgroup.

EXAMPLE. – Let

M4 aa , b , cNa 34b 34c 841, [a , b]41, [a , c]4b , b c4ab

It is easy to see that M is a non supersoluble 2-nilpotent group. Since O2 (M)4
1, M possesses a faithful irreducible GF(2)-module V (see f.i. [6] p. 177).

Let G4VM. Obviously (NGN , r2 (G) )c1. (For the definition of the arith-
metical p-rank rp (G) see [11] VI 8.2 p. 712). We have G4O2, 28 , 2 (G) and X4

H2 (G) is a maximal subgroup of G of index 2, so it is not 2-nilpotent and it does
not have normal Sylow 2-subgroup.

Also, since M is a maximal subgroup of G and M is non-supersoluble,
S(G)4H3 (G)4F(G)41.

Section 2.

In this section we deal with C(G), the intersection of maximal non-cyclic
subgroups of a finite group G and with M(G), the intersection of non-abelian
maximal subgroups of G.

The first three theorems characterize non-abelian groups G, in which
C(G)cF(G) (the abelian case being obvious).

We begin with p-groups, p a prime, with the following easy theorem:

THEOREM 3. – Let G be a non-abelian group of order p n, p a prime.
Then C(G)cF(G) if and only if G is isomorphic to one of the following

(classes of) groups:

a) G4aa , bNa p n21
4b p41, a b4a 11p n22

b where nF3 if pD2 and nD3
if p42

b) GCQ the quaternion group of order 8.

PROOF. – Let C(G)cF(G). Suppose first that pD2, obviously nD2. By
[11] III. 8.4 C(G)cG. It follows that there exist a maximal cyclic subgroup A
of order p n21 and G4C(G)A. By [12] (Theorem 4.4 p.193) GCMn (p), i.e. to
the group described in a). Conversely, with very easy calculation we can prove
that aa p , bb is the unique non-cyclic maximal subgroup of G and that every
other maximal subgroup is cyclic.

So it holds C(G)cF(G).
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Now suppose p42, and C(G)cF(G). By [11] III. 8.4 either C(G)cG or G
is the quaternion group of order 8. So either exist a maximal cyclic subgroup of
order 2n21 and nF3 or G is the quaternion group of order 8.

In the first case, by [12] (Theorem 4.4), if n43 G is either the quaternion
group Q or the dihedral group D of order 8. But D cannot occur since if GCD ,
C(G)4F(G) as it is easily seen. If nD3 then G is isomorphic to Mn (2), Dn (di-
hedral group D of order 2n), Qn (generalized quaternion group of order 2n ) or
Sn (the semidihedral group of order 2n). But only Mn (2) can occur, since for
nD3 in all other case C(G)4F(G), as it is easily seen. So G is either Q or, if
nD3, Mn (2).

Conversely both of these groups verify the condition C(G)cF(G), since
they have a unique maximal non cyclic subgroup. r

Next two theorems concern groups with composite order. Obviously if
C(G)4G, i.e., if G is cyclic or minimal non cyclic, the condition C(G)cF(G) is
automatically satisfied. So we are interested in the case GcC(G). So under
the assumption F(G)%

c

C(G)%
c

G,by lemma 1)i, we have G4C(G)N where N is
a cyclic maximal subgroup of G.

We study separately the cases: N normal in G and no such N normal in G
exists.

THEOREM 4. – Let G be a non abelian group. Then G4C(G)N , C(G)cG ,
N cyclic maximal normal subgroup of G if and only if G is isomorphic to one
of the following groups:

A) G4 ax , yNx m414y p n
, y 21 xy4x r b where (m , p)41, r p

f

1)mod p) and (r21, m)c1.

B) G is nilpotent, G4K3P where K, the p 8-Hall subgroup, is cyclic
and where P, the Sylow p-subgroup, is a p-group described in Theorem 3 a),
i.e.

P4 ay , zNy p4z p n21
41, y 21 zy4z 11p n22

b

PROOF. – Suppose GcC(G), G4C(G)N, where N is a cyclic, normal, maxi-
mal subgroup of G. Since N is maximal G/N does not have any proper sub-
group, so [G : N]4p for a prime p.

Distinguish two cases: i) all Sylow subgroups of G are cyclic; ii) there exists
at least one Sylow subgroup of G, which is not cyclic.

Suppose we are in the case i). N4K3P1, where K is the Hall p 8-subgroup
of N (of G) and P1 is the Sylow p-subgroup of N. Suppose that P is a Sylow p-
subgroup of G containing P1, then P4 ayb, P14 ay p b. If K4 axb, [y p , x]41. If
NKN4m, we have:

G4KP4 ax , yNx m4y p n
41, y 21 xy4x r b, (m , p)41, r p

f1( mod m) .
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We have G 84 a[x , y]b4 ax r21 b. So if (r21, m)41, we would have G 84K%
C(G). So K would be contained in every non-cyclic maximal subgroup of G. But
G/KCP is cyclic, so N is the unique maximal subgroup containing K and this is
a contradiction. So (r21, m)c1 as required in A).

Suppose now we are in the case ii). Since [G : N]4p and N is cyclic, the
only non-cyclic Sylow subgroups can be those relative to the prime p. Also,
with the some notations introduced above, P is metacyclic with a cyclic maxi-
mal subgroup NOP. Let azb4PON. Distinguish the cases pc2 and
p42.

If pD2 by Theorem 14.9 [11], P4 ay , zNy p4z p n21
41, y 21 zy4z 11p n22

b
(see the previous theorem 3) C(P)4 ay , z p b is a non-cyclic maximal subgroup
of P. If we let K be the Hall p 8-subgroup of G, T4KC(P) is a maximal non
cyclic-subgroup of G. As before let K4 axb. If [y , x]c1 we would also have
[yz , x]c1 since [x , z]41. So M4 ax , yzb would be a non-cyclic maximal sub-
group of G different from T. So

C(G)’TOM4Kay , z p bOKayzb4K(ay , z p bO ayzb)4KF(P)4Kaz p b’N .

This is a contradiction with the assumption C(G) N4G. So [y , x]41 and G is
nilpotent, and we get the case B).

Let now p42. The P can be dihedral, semidihedral, generalized quater-
nion group and for nD3, Mn (2).

In the first three cases there are in P at least two maximal non-cyclic sub-
groups P1 and P2 such that P1OP24F(P)’N. As before C(G)’N a contra-
diction. So PCMn (2), nD3. By the same reasoning as in case pD2, we get G
nilpotent and so case B).

Conversely now suppose that G belongs to the class described in A) and let
M be a non-cyclic maximal subgroup of G. M cannot have index p in G, in fact
otherwise M4 ax , y p b would be cyclic. [G : M]4s, where s is a prime differ-
ent from p, MOaxb4 ax s b. Without loss of generality y�M and since M is not
cyclic, [x s , y]c1. But [y , x s ]4x s(r21) so [y , x s ]� ax s bO ax r21 b. If (s , r2
1)41 we would get [y , x s ]41 a contradiction. So s divides r21. So G 84

ax r21 b’M which is normal in G. It follows that ayb4P’M for each M non-
cyclic maximal subgroup of G.So P’C(G). It follows then, that, if we set N4

ax , y p b, N is a cyclic, normal maximal subgroup of P and C(G)N4PN4G.
Let now be G as in B). If M is a cyclic maximal subgroup of G such that
[G : M]4p we have MOP non-cyclic so MOP4ay , z p b. So M4K3C(P).

If T is an other non-cyclic maximal subgroup of G different from M, T must
contain P. It follows that F(K)3C(P)’C(G). Since y�C(P), y�C(G) so if
N4 ayzb, G4C(G)N as we wanted. r

THEOREM 5. – Let G be a finite (non-abelian) group. Then G4C(G)N,
where C(G)cG and N is a cyclic non-normal maximal subgroup of G, if and
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only if Z(G) is cyclic, G/Z(G) is primitive G/Z(G)4 (M/Z(G) )(N/Z(G) ), where
M/Z(G) is the unique minimal normal subgroup of G/Z(G) of order p n, N is a
cyclic maximal subgroup of G and (p , NN/Z(G)N)41.

PROOF. – Suppose first G4C(G)N, C(G)cG, N cyclic non-normal maximal
subgroup.

By Proposition 1.3 of [13] (G/Z(G) )4 (M/Z(G) )(N/Z(G) ) with the de-
scribed properties. Observe that Z(G)’N so Z(G) is cyclic.

Conversely let (G/Z(G) )4 (M/Z(G) )(N/Z(G) ) be primitive and N be a
cyclic non normal maximal subgroup of G, and M/Z(G) be the unique minimal
normal subgroup of G/Z(G). Let T be a maximal non cyclic subgroup of G. If
T*Z(G), since it is not conjugate to N, T*M*G 8. If T*OZ(G), TZ(G)4G so T
is normal in G, T*G 8. In any case C(G)*G 8. It follows then that C(G)cF(G)
since N is a maximal and non normal. So G4C(G) N. r

REMARK. – We have learnt from by Prof. V. Zambelli that a student of hers,
Dott. Cristina Mataloni, has obtained in her degree dissertation, results simi-
lar to ours concerning C(G).

In [4] non-nilpotent groups with M(G)cF(G) have been characterized.
Now we want to complete the classification in the nilpotent case. Everything is
based on the following lemma.

LEMMA 2. – Let G be a p-group, p a prime, that has non-abelian maximal
subgroups. Then M(G)4F(G).

PROOF. – If all maximal subgroups of G are non-abelian, the lemma is triv-
ial. So we may assume that there exist abelian maximal subgroups.

Distinguish two cases:

1) G has more than one abelian maximal subgroup.

2) G has a unique abelian maximal subgroup.

Let us begin with the case 1). We easily get that NG/Z(G)N4p 2 and that
Z(G) coincides with the intersection of all abelian maximal subgroups of G.
Therefore F(G)’Z(G) and F(G)4M(G)OZ(G). If F(G)4Z(G), all maximal
subgroups of G are abelian, in contradiction with our hypothesis. It follows
that F(G)%

c

Z(G). If M(G)’Z(G), we get F(G)4M(G) and the lemma is
proved. So assume Z(G)%

c

M(G)Z(G). If

NG/F(G)N4p n , NZ(G) /F(G)N4p n22

so suppose that ]a1 F(G), a2 F(G), R , an22 F(G)( is a basis of Z(G) /F(G).
There exists at least one element a�M(G) such that a�Z(G). Let b be
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another element in such a way that

]a1 F(G), a2 F(G), R , an22 F(G), aF(G), bF(G)(

is a basis of G/F(G). Since G is non abelian, [a , b]c1.
Also ]a1 , a2 , R , a , b( is a generating system for G. Let j be an index, j�
]1, R , n22( and set aj4x.

The subgroup M14 aa , b , a1 , a2 , R , x×, R , an22 , F(G)b (where x is re-
moved) is a maximal non abelian subgroup of G.

Also M24 aax , b , a1 , a2 , R , x×, R , an22 , F(G)b (where x is removed) is
non-abelian and it is also maximal in G since

]axF(G), bF(G), a1 F(G), a2 F(G), R , xF(G), R , an22 F(G)(

is a basis of G/F(G). Since a�M1 and a�M2 we have a�M(G). So this is a
contradiction.

So we may suppose we are in case 2).
Let A be the unique maximal abelian subgroup of G. If M(G)’A, M(G)4

F(G) and the lemma is proved. So suppose M(G)’OA and G4M(G)A4 ab , Ab
where b�M(G).

If NG/F(G)N4p n, then G/F(G) will have a basis of the following shape:

]a1 F(G), a2 F(G), R , an21 F(G), bF(G)(

where, for 1G iGn21, ai�A. Let j be an index, j� ]1, R , n21( and set
aj4x. As in the first case of the proof, consider the following two sub-
groups:

M14 ab , a1 , a2 , R , x×, R , an21 , F(G)b
M24 abx , a1 , a2 , R , x×, R , an21 , F(G)b (where x is removed) M1 and M2

are non-abelian maximal subgroups of G and b�M2 .
It follows that b�M(G), a contradiction. The lemma is proved. r

An equivalent formulation of the previous lemma is:

COROLLARY 1. – If G is a p-group, p a prime, such that M(G)cF(G), then
M(G)4G, i.e. G is a minimal non-abelian group.

THEOREM 6. – Let G be a nilpotent group. Then M(G)cF(G) if and only if
there exists a prime p dividing the order of G such that the Sylow p-subgroup
of G is minimal non abelian, while all the other Sylow q-subgroups (qcp) of
G are abelian.

PROOF. – Let M(G)cF(G). Since, then, there exists an abelian maximal
subgroup A, [G : A]4p, for every different q from p, the Sylow q-subgroup of
G is abelian. Let P be the Sylow p-subgroup of G. If P has non-abelian maximal
subgroups, by lemma 2, F(P)4M(P). But, if K is the Hall p 8-subgroup of G, it
is immediate that KF(P) coincides with the intersection of all maximal non-
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abelian subgroups of index p. On the other hand the maximal subgroups that
contain P are all non-abelian and their intersection is F(K)P. So M(G)4
KF(P)OF(K)P4F(K)3F(P)4F(G), a contradiction. So P is minimal
non-abelian.

Conversely if G4K3P, K abelian, P minimal non-abelian, every non-
abelian maximal subgroup of G contains P, so
P’M(G).

Thus M(G)cF(G).
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