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Bollettino U. M. I.
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Mean Curvature and Least Energy Solutions
for the Critical Neumann Problem with Weight.

J. CHABROWSKI

Sunto. – In questo articolo consideriamo il problema di Neumann che richiede un’e-
sponente di Sobolev critico. Noi investighiamo l’effetto combinato del coefficiente
della non linearità critica e della curvatura media della frontiera sull’esistenza e
sull’inesistenza di soluzioni.

Summary. – In this paper we consider the Neumann problem involving a critical
Sobolev exponent. We investigate a combined effect of the coefficient of the critical
Sobolev nonlinearity and the mean curvature on the existence and nonexistence of
solutions.

1. – Introduction.

In this paper we investigate the existence of solutions of the following non-
linear Neumann problem:

.
/
´

2Du1lu4Q(x) u 2y21

¯u

¯n
40

in V ,

on ¯V , uD0 on V ,
(1)

where lD0 is a parameter, n is the unit outward normal at the boundary ¯V.
We assume that V%RN is a bounded domain with a smooth boundary ¯V. The
coefficient Q is Hölder continuous on V and Q(x)D0 for x�V. Further condi-
tions guaranteeing the solvability of problem (1) will be formulated later. Here

2x denotes the critical Sobolev exponent, that is, 2x4
2N

N22
, NF3.
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By H 1 (V) we denote the usual Sobolev space equipped with norm

VuV24s
V

(N˜uN21u 2) dx .

Solutions of (1) will be found as minimizers of the variational problem

Sl4 infm s
V

(N˜uN21lu 2) dx ; u�H 1 (V), s
V

Q(x)NuN2y dx41n .

A suitable multiple of a minimizer for Sl is a solution of problem (1). These
solutions are called the least energy solutions. Let Qm4 max

x�¯V
Q(x) and

QM4max
x�V

Q(x). In a recent paper [8] we investigated problem (1) in two cases:

(i) QMG22/(N22) Qm and (ii) QMD22/(N22) Qm . In case (i) we proved that if

SlE
S

22/N Qm
(N22)/N

,(2)

then Sl has a minimizer. Here S denotes the best Sobolev constant

S4 inf{ s
RN

N˜uN2 dx ; u�D 1,2 (RN ), s
RN

NuN2y dx41} ,

where D 1,2 (RN ) is the Sobolev space obtained as the completion of C0
Q (RN )

with respect to the norm

VuV2
D 1,24s

RN

N˜uN2 dx .

In the second case (ii) we showed that if

SlE
S

QM
(N22)/N

,(3)

then Sl has a minimizer. Obviously both conditions (2) and (3) are satisfied for
small lD0. Under some additional assumption on Q the inequality (2) is satis-
fied for every lD0. Namely, (2) is satisfied for every lD0 if

(A) NQ(x)2Q(x0 )N4o(Nx2x0N) for some x0�¯V , with Q(x0 )4Qm and
H(x0 )D0.

Here H(y) denotes the mean curvature of ¯V at y�¯V related to the
inner normal to ¯V at y. In case (ii) we showed that there exists 0ELEQ

such (3) holds for l� (0 , L) and Sl4
S

QM
(N22)/N

for lFL. Moreover, we
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showed that the least energy solution exists also for every l4L and
there are no least energy solutions for lDL.

This contrasts with the case where Q(x)f1. In this case problem (1) al-
ways has a nonconstant solution for large lD0 [3], [6], [21]. Further exten-
sions of these results can be found in the papers [14], [22], [23], [24], [25], [26]
and [27], where the existence of symmetric and multi-peak solutions have been
investigated. The main ingredient in these papers lies in the fact that a bound-
ed and smooth domain in RN has points on the boundary with the positive
mean curvature. This allows us to show with the aid of instantons that SlE

S

22/N
for every lD0. This inequality ensures the existence of a minimizer for

Sl . In the case of a nonconstant coefficient Q , a new phenomenon arises,
namely, the effect of the shape of the graph of this coefficient on the existence
of the least energy solutions.

The main purpose of this article is to show that if the assumption (A) in the
case (i) is not satisfied, then the least energy solutions exist only for l belong-

ing to an interval (0 , l] and Sl4
S

22/N Qm
(N22)/N

for lF l. The interesting feature

of Theorems 3.4 and 3.5 (in Section 3) is that they give the existence of a mini-
mizer up to the limiting value for l , which means that the optimal Sobolev in-
equality has an extremal. This is a result of an interaction of the mean curva-
ture of ¯V and the shape of the graph of the coefficient Q , in the case where
QN¯V attains its maxiumum Qm on ¯V only at points where the mean curvature
changes the sign. Obviously, this phenomenon does not occur if the coefficient
Q is constant [9], [11]. For the existence of extremal functions for optimal
Sobolev inequalities we refer to the papers [10] and [15], where the existence
of extremals is related to the geometry of manifolds. Throughout this paper
we denote strong convergence by «K» and the weak convergence by «�».
The norms in the Lebesgue space L q (V) are denoted by V Q QVq .

2. – Estimates of the energy of instantons.

The best Sobolev constant S is achieved by

U(x)4 y N(N22)

N(N22)1NxN2
z(N22)/2

.

The function U , called an instanton, satisfies the equation

2DU4U 2y21 in RN .
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We also have s
RN

N˜UN2 dx4 s
RN

U 2y dx4S N/2. We set

Ue,y (x)4e2(N22) /2 Ug x2y

e
h

for y�RN , eD0. If y40 we write Ue4Ue,0 . Let

Jl (u)4s
V

(N˜uN21lu 2) dx

for u�H 1 (V). In what follows we denote by H(y) the mean curvature of ¯V at
y�V related to the inner normal to ¯V at y.

PROPOSITION 2.1. – Suppose that NF5. Let y�¯V be such that H(y)E0.
Then there exist constants aE0, e 0D0 and CD0 such that

Jlu Ue,y

VUe,y V2x
vF S

22/N
2aH(y) e1Cle 21O(e 2 )

for all 0EeGe 0 . If H(y)E0 for y�B(y0 , r)O¯V , y0�¯V , for some rD0,
then the constants a and C can be chosen independently of y.

PROOF. – A related estimate from above in the case H(y)D0 can be found
in the paper [1]. This estimate was proved under the assumption that all prin-
cipal curvatures are positive. We follow some ideas from the paper [21]. With-
out loss of generality we may assume that y40 and that near 0 the boundary
¯V is represented, changing coordinates if needed, by

xN4h(x 8 )4
1

2
!
i41

N21

a i xi
21O(Nx 8N3 )

for x 84 (x1 , R , xN21 )�D(0 , a) for some aD0, where D(0 , a)4B(0 , a)O

(xN40). Then the mean curvature H(0) is given by H(0)4 1

N21
!

i41

N21

a i . Let

g(x 8 )4 1

2
!

i41

N21

a i xi
2 . Then

s
V

N˜UeN
2 dx4

1

2
s

R1
N

N˜UeN
2 dx(4)

2 s
D(0 , a)Og(x 8 )D0

dx 8 s
0

g(x 8 )

N˜UeN
2 dxN

1 s
D(0 , a)Og(x 8 )E0

dx 8 s
g(x 8 )

0

N˜UeN
2 dxN
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1 s
D(0 , a)

dx 8 s
g(x 8 )

h(x 8 )

N˜UeN
2 dxN1o(e N22 )

4
1

2
K12 s

RN21Og(x 8 )D0

dx 8 s
0

g(x 8 )

N˜UeN
2 dxN

1 s
RN21Og(x 8 )E0

dx 8 s
g(x 8 )

0

N˜UeN
2 dxN

1 s
D(0 , a)

dx 8 s
g(x 8 )

h(x 8 )

N˜UeN
2 dxN1o(e N22 ) ,

where K14 s
RN

N˜UN2 dx. We now estimate the last integral on the right side of

(4). Since NF5, we get

(5) N s
D(0 , a)

dx 8 s
g(x 8 )

h(x 8 )

N˜UeN
2 dxNNG

e N22 aN s
RN21

y 1

[e 2 N(N22)1Nx 8N2 ]N21
1

e 2 (N22) N

[e 2 N(N22)1Nx 8N2 ]N
z3

Ng(x 8 )2h(x 8 )Ndx 840(e 2 ) ,

where aN4 (N22)2 [N(N22) ]N22. Setting

I 2 (e)4 s
RN21Og(x 8 )E0

dx 8 s
g(x 8 )

0

N˜Ue (x)N2 dxN

and

I 1 (e)4 s
RN21Og(x 8 )D0

dx 8 s
0

g(x 8 )

N˜Ue (x)N2 dxN ,

we rewrite (2) as

K1 (e)4s
V

N˜UeN
2 dx4

1

2
K11I 2 (e)2I 1 (e)1O(e 2 ) .(6)
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In a similar way we check that

K2 (e)4s
V

Ue
2y dx4

1

2
s

R1
N

U 2y dx(7)

2 s
D(0 , a)Og(x 8 )D0

dx 8 s
0

g(x 8 )

Ue
2y dxN

1 s
D(0 , a)Og(x 8 )E0

dx 8 s
g(x 8 )

0

Ue
2y dxN1 s

D(0 , a)

dx 8 s
g(x 8 )

h(x 8 )

Ue
2y dxN

1o(e N )4
1

2
K22 s

RN21Og(x 8 )D0

dx 8 s
0

g(x 8 )

Ue
2y dxN

1 s
RN21Og(x 8 )E0

dx 8 s
g(x 8 )

0

Ue
2y dxN1O(e 2 )

4
1

2
K22P1 (e)1P2 (e)1O(e 2 ),

where K24 s
RN

U 2y dx ,

P1 (e)4 s
RN21Og(x 8 )D0

dx 8 s
o

g(x 8 )

Ue
2y dxN

and

P2 (e)4 s
RN21Og(x 8 )E0

dx 8 s
g(x 8 )

0

Ue
2y dxN .

We now observe that

lim
eK0

e21 (P2 (e)2P1 (e) )4

2 s
RN21Og(x 8 )E0

g(x 8 ) U 2y (x 8 ) dx 82 s
RN21Og(x 8 )D0

g(x 8 ) U 2y (x 8 ) dx 84

2 s
RN21

g(x 8 ) U 2y (x 8 ) dx 8 .
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Since

s
RN21

x1
2 U 2y (x 8 ) dx 84R4 s

RN21

xN21
2 U(x 8 )2y dx 8 ,

we can write the above limit as

lim
eK0

e21 (P2 (e)2P1 (e) )42a N H(0) ,(8)

for some positive constant a N depending only on N. Following the argument
from the paper [21] we show that

lim
eK0

I 2 (e)2I 1 (e)

P2 (e)2P1 (e)
4

s
RN21

N˜U(x 8 )N2 (2g(x 8 ) ) dx 8

s
RN21

U(x 8 )2y (2g(x 8 ) ) dx 8
(9)

D
(N22) K1

NK2

.

Indeed, changing variables, we obtain

s
RN21

(2g(x 8 ) )N˜U(x 8 )N2 dx 8

s
RN21

(2g(x 8 ) ) U 2y (x 8 ) dx 8
4 (N22)2

s
0

Q r N12

(11r 2 )N
dr

s
0

Q r N

(11r 2 )N
dr

.

Hence, using the formula (3.18) from the paper [21] we get

lim
eK0

I 2 (e)2I 1 (e)

P2 (e)2P1 (e)
D (N22)2 N11

N23
.

On the other hand, as demonstrated in [21], we have

(N22) K1

NK2

4 (N22)2

and inequality (9) follows. It follows from (6) and (7) that

(10)
K1 (e)

(K2 (e) )(N22)/N
4

dK11I 2 (e)2I 1 (e)1O(e 2 )

(dK21P2 (e)2P1 (e)1O(e 2 ) )(N22)/N
4

g 1

2
K11I 2 (e)2I 1 (e)1O(e 2 )h3
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yg 1

2
K2h2(N22) /N

2
N22

N
g 1

2
K2h(22N12)/N

(P2 (e)2P1 (e) )1O(e 2 )z4
dK1

(dK2 )(N22)/N
1g 1

2
K2h2(N22)/N

(I 2 (e)2I 1 (e) )2

(N22) K1

2N
g K2

2
h2(2N12)/N

(P2 (e)2P1 (e) )1O(e 2 ) .

According to (9) there exist constants rD0 and e 0D0 such that

I 2 (e)2I 1 (e)Dg (N22) K1

NK2

1rh (P2 (e)2P1 (e) )

for 0EeGe 0 . Using this and the fact that K1

K2
(N22)/N

4S , we derive from (10)
that

K1 (e)

K2 (e)(N22)/N
D

S

22/N
1 y (N22) K1

NK2
g 1

2
K2h2(N22)/N

1rg 1

2
K2h2(N22)/N

2
(N22) K1

2N
g K2

2
h2(2N12N)/Nl (P2 (e)2P1 (e) )1O(e 2 )

4
S

22/N
1rg K2

2
h2(N22)/N

(P2 (e)2P1 (e) )1O(e 2 ) .

Combining this with (8) the result readily follows. r

We now establish an analogue of Proposition 2.1 in the case when ¯V has a
flat part. We assume that

(H0) D(0 , a)%¯V for some aD0, where D(0 , a)4B(0 , a)O ]xN40(.

PROPOSITION 2.2. – Let NF5 and suppose that (H0 ) holds. Then there exist
constants CD0 and e 0D0 such that

Jlu Ue,y

VUe,y V2x
vF S

22/N
1lCe 2

for all y�D g0, a

2
h and 0EeGe 0 .

PROOF. – Using notations from Proposition 2.1 we have

K1 (e)4s
V

N˜Ue,yN
2 dx4

1

2
K11O(e N22 )
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and

K2 (e)4s
V

Ue,y
2y dx4

1

2
K21O(e N ) .

Since

K1 (e)

K2 (e)(N22)/N
4

dK1

(dK2 )(N22)/N
1O(e N22 ) ,

the result easily follows. r

3. – Existence and nonexistence results for least energy solutions.

We commence by showing that SlE
S

22/N Qm
(N22)/N

for l� (0 , l) and Sl4
S

22/N Qm
(N22)/N

for lF l. We proceed by contradiction and use a blow-up tech-

nique. By rescaling we may assume that Qm41. We need some technical
lemmas:

LEMMA 3.1. – Suppose that QME22/(N22) Qm . Let l kD0 and let ]uk(%
H 1 (V) be a sequence, weakly convergent to zero, of positive solutions of

2Du1l k u4m k Q(x)u 2y21 ,
¯u

¯n
40 ,

with

s
V

Q(x) uk
2y dx41, 0Em 0Gm kG

S

22/N Qm
(N22)/N

for all k and some constant m 0 . Then there exist a sequence of points xkKy0�
¯V , xk�¯V and a sequence of numbers e kK0, e kD0 such that Q(y0 )4Qm

and

lim
kKQ

s
V

N˜(m k
1(2x22) uk2Ue k , xk

)N2 dx40 .

PROOF. – The function vk4m k
1/(2x22) uk satisfies

.
/
´

2Dvk1l k vk

vkD0 on

4Q(x) vk
2y21 in V ,

V and
¯vk

¯n
40 on ¯V .

We let Mk4max
x�V

vk4vk (xk ) for some xk�V. It is easy to check that MkKQ
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as kKQ . We set e k4Mk
21/(N22) and V k4

V2xk

e k

and

wk (x)4e k
(N22)/2 vk (e k x1xk ) for x�V k .

Thus we have

.
/
´

2Dwk1l k e k
2 wk

0Ewk (x)Gwk (0)

4Q(e k x1xk ) wk
2y21 in V k ,

41 in V k and
¯wk

¯n
40 on ¯V k .

Since l k e k
2GQM , we may assume that l k e 2Ka. Furthermore, we may assume

that xkKy0 and
dist (xk , ¯V)

e k

Ka. Let V Q4]x�RN ; xND2a(. By the elliptic

regularity theory we have wkKw in Cloc
2 (V Q ) and

.
/
´

2Dw1aw

0Gw(x)Gw(0)

4Q(y0 ) w 2y21 in V Q

41 in V Q ,
¯w

¯n
40 on ¯V Q .

Since ]wk( is bounded in H 1 (V) we have

s
VQ

N˜wN2 dxG lim
kKQ

s
V k

N˜wkN
2 dx4 lim

kKQ
s

V

N˜vkN
2 dxEQ

and

s
VQ

NwN2y dxG lim
kKQ

s
V k

NwkN
2y dx4 lim

kKQ
s

V

NvkN
2y dxEQ .

By Pohozaev’s identity a40, w(x)4Q(y0 )21/(2x22) Ue , z . Since w(0)41, we de-
duce that z40, e4Q(y0 )21/2 and a40 or a4Q. If a4Q , then

Q(y0 )22/(2x22) S N/24Q(y0 )22/(2x22)s
RN

N˜UN2 dxG lim
kKQ

s
V k

N˜wkN
2 dxG

S N/2

2Qm
(N22)/2

.

This yields that Q(y0 )2/(2x22)F2Qm
(N22)/2 , that is, QMFQ(y0 )F22/(N22) Qm ,

which is impossible. Therefore, a40, V Q4R1
N , y0�¯V with

Q(y0 )22/(2x22) S N/2

2
G

S N/2

2Qm
(N22)/2

implying that Q(y0 )FQm , so Q(y0 )4Qm41. As

in the paper [4] we show that xk�¯V for large k. This completes the
proof. r

To proceed further we some results from the paper [4] (see also [28]). We
define a set

M 4]CUe , y ; C�R , eD0, y�¯V( .
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LEMMA 3.2. – Let dD0 and ]zn(%H 1 (V) be such that zn �0 in H 1 (V)
and

d(zn , M)GV˜zn V2
222d .

where d(u , M)4 inf ]V˜(u2z)V2
2 ; z�H 1 (V)(. Then there exists l0D0, such

that for all lF l0 , d(zl , M) is attained by some Cl Ue l , yl
. Moreover, if wl is de-

fined by

zl4Cl Ue l , yl
1wl ,

then for a subsequence

(i) lim
lKQ

e l40,

(ii) if d(zl , M)K0 as lKQ , then lim
lKQ

Cl4C0c0,

(iii) we also have

s
V

wl Ue l , yl
2y21 dx4b(e l )Vwl V ,

where

b(e)4

.
`
/
`
´

e 1/2

eglog
1

e
h2/3

e

if N43

if N44

if NF5 .

Suppose that for each lD0 there exists the least energy solution ul . Let
l kKQ and set uk4ul k

. We apply Lemma 3.1 with m k4Sl k
and set vk4

Sl k
1/(2x22) uk . Since

V˜(vk2Ue k , xk
)V2

2K0 ,

it follows from Lemma 3.2 that there exist sequences ]d k( and ]yk( such that
d kK0, yk�¯V and

vk4Ck Ud k , yk
1wk .(11)

As in Lemma 2.3 of the paper [4] we check that CkK1, and e k

d k

K1. Therefore,
we may assume that (11) holds with d k4e k and xk4yk .
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LEMMA 3.3. – There exists a constant dD0 such that

s
V

(N˜wkN
21l k wk

2) dxF (2x211d)s
V

Ue k , yk
2y22 wk

2 dx1O(b(e k )2
Vwk V

2)

for every k.

For the proofs of Lemmas 3.2 and 3.3 we refer the reader to the paper [4].
We are now in a position to prove the main result of this paper. We need the
following assumptions:

(Q1 ) NQ(x0 )2Q(x)N4o(Nx2x0N) as Nx2x0NK0 for every x0�¯V such that
Qm4Q(x0 ).

(H) ]x�¯V ; H(x)E0(c¯ and ]x�¯V ; Q(x)4Qm(%]x�¯V ; H(x)E0(

THEOREM. – 3.4. – Let NF5 and QMG22/(N22) Qm . Suppose that (H) and

(Q1 ) hold. Then there exists lD0 such that SlE
S

22/N Qm
(N22)/N

for all 0ElE l

and Sl4
S

22/N Qm
(N22)/N

for lF l. Furthermore, Sl is achieved iff l� (0 , l].

PROOF. – First we consider the case QME22/(N22) Qm . Assuming that the
least energy solutions exist for each lD0 we define a sequence vk described in
the paragraph preceding Lemma 3.3. Using the decomposition (11) we
have

(12) Jl k
u uk

(s
V

QNukN
2y dx)1/2x

v4Jl ku vk

(s
V

QNvkN
2y

dx)1/2xv4
1

(s
V

QNvkN
2y dx)2/2x

kCk
2 Jl k

(Ue k , yk
)1V˜wk V2

21l k Vwk V2
212l k Cks

V

wk Ue k , yk
dxz .

It follows from (Q1 ) that

s
V

Q(x) Ue k , yk
2y dx4Q(yk )s

V

Ue k , yk
2y dx1o(e k ) .(13)

We now apply Lemma 3.5 from [4] and deduce that

g s
V

QNvkN
2y dxh22/2x

4Ck
22g s

V

QUe k , yk
2y dxh22/2x

3
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y11 2x (2x21)s
V

QUe k , yk
2y22 wk

2 dx

2Ck
2s
V

QUe k , yk
2y dx

1O(b(e k )Vwk V1Vwk V
r )z22/2x

4

Ck
22g s

V

QUe k , yk
2y dxh22/2x{12

(2x21)s
V

QUe k , yk
2y22 wk

2 dx

Ck
2s
V

QUe k , yk
2y dx

1O(b(e k )Vwk V1Vwk V
r )}

for some 2ErE2x. This, combined with (12), gives

(14) Jl ku uk

(s
V

QNukN
2y dx)1/2x v4

{Jl ku Ue k , yk

(s
V

QUe k , yk
dx)1/2x

v1 V˜wk V2
21l k Vwk V2

212Ck l ks
V

Ue k , yk
wk dx

Ck
2 (s

V
(QUe k , yk

2y dx) )2/2x
}3

3{12
(2x21)s

V
QUe k , yk

2y22 wk
2 dx

Ck
2s
V

QUe k , yk
2y dx

1O(b(e k )Vwk V1Vwk V
r )} .

Let NF7, then

s
V

Ue k , yk
wk dx4O(e k

2
Vwk V) .(15)

(see estimate (2.32) in [4]). Hence by (14) we get

(16) Jl ku uk

(s
V

Quk
2y dx)1/2x v4Jl ku Ue k , yk

(s
V

QUe k , yk
2y dx)1/2x

v2

(2x21)

Ck
2

Jl ku Ue k , yk

(s
V

QUe k , yk
2y dx)1/2x

v sV QUe k , yk
2y22 wk

2 dx

s
V

QUe k , yk
2y dx

1

V˜wk V2
21l k Vwk V2

21O(l k e k
2
Vwk V)

Ck
2 (s

V
QUe k , yk

2y dx)2/2x
1

O(Vwk V
21b(e k )Vwk V1Vwk V

r )(V˜wk V2
21l k Vwk V2

21O(l k e k
2
Vwk V))1

O(b(e k )Vwk V1Vwk V
r )1O(b(e k )Vwk V1Vwk V

r )(O(e k )1l k Ck e k
2 ) .
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It follows from Proposition 2.1 and (13) that

(17) Jl ku Ue k , yk

(s
V

QUe k , yk
2y dx)1/2x

vF S

22/N Q(yk )(N22)/N
2aAH(yk ) e k1l k Ce k

2

for some constant aAD0 and e kD0 sufficiently small. According to Lemma 3.3
we can find 0ErE1 and 0Ed 1Ed such that

(12r)s
V

(N˜wkN
21l k wk

2 ) dxF (2x211d 1 )s
V

Ue k , yk
2y22 wk

2 dx1O(b(e k )2
Vwk V

2 ) .

Thus,

(12r)V˜wk V2
21l k Vwk V2

2

Ck
2 (s

V
QUe k , yk

2y dx)2/2x
2

2x21

Ck
2

Jl ku Ue k , yk

(s
V

QUe k , yk
2y dx)1/2x

v3
s

V
QUe k , yk

2y22 wk
2 dx

s
V

QUe k , yk
2y dx

Fs
V

QUe k , yk
2y22 wk dx3

y 2x211d 1

Ck
2 (s

V
QUe k , yk

2y dx)2/2x
2

(2x21)

Ck
2s
V

QUe k , yk
2y dx

Jl ku Ue k , yk

(s
V

QUe k , yk
2y )1/2x

vz1
O(b(e k )2

Vwk V
2 )4Dk1O(b(e k )2

Vwk V
2 ) ,

where DkD0 for large k. Since Vwk VK0, by (16) and (17) we have for some
constants a*D0, CAD0 and rAD0

Jl ku uk

(s
V

Quk
2y dx)1/2x vF S

22/N
2a* H(yk ) e k1l k CAe k

2

1Dk1rA
V˜wk V2

21l k Vwk V2
2

Ck
2 (s

V
QUe k , yk

2y dx)2/2x
1O(b(e k )Vwk V)

for large k. Using the Young inequality, we deduce from this that

Jl ku uk

(s
V

Quk
2y dx)1/2x vD S

22/N
,

which is impossible. If N45, 6 , we use, instead of (15), the following estimate

(see [23] or [24]): for q�g N

N22
, 2hOg 2N

N12
, 2h there exist constants C(q)D0
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and a4a(q)� [0 , 1 ) with a(q)4 Nq22N12q

2q
such that for every gD1

Ns
V

Ue k , yk
wk dxNGg12 a

2
h C(q) g 2/(22a) e k

2
Vwk V2x

q(12a) /(22a)1
a

2

1

g 2/a
Vwk V2

2 .

We choose g so that a

2g 2/a
Er and an obvious modification of the previous ar-

gument leads to the inequality (18). This completes the proof in the case QME

22/(N22) Qm . If QM422/(N22) Qm , then the sequence of instantons which is close
to the sequence ]vk( concentrates either on the boundary or at a point y�V
with Q(y)4QM . In the first case we argue as in the first part of the proof. If
the concentration occurs in V we apply Proposition 4.2 of the paper [24] to get
a contradiction. The existence of the least energy solutions for l� (0 , l) fol-
lows from [8] (see also Introduction). Finally, we show that the least energy
solution exists for l4 l. First, we consider the case QME22/(N22) Qm . Let
l kK l and l kE l. By the first part of the proof for each k there exists a least
energy solution uk4ul k

. Since ]uk( is bounded in H 1 (V), then up to a subse-
quence uk �u in H 1 (V). It is sufficient to show that ug0. Then by the concen-
tration-compactness principle u is the least energy solution corresponding to
l. Arguing by contradiction assume that uf0. Let Mk4max

x�V
uk (x)4uk (xk ),

xk�V. Then MkKQ. We set

vk4e k
(N22)/2 uk (e k x1xk ) for x�V k4

V2xk

e k

,

where e k4Mk
22/(N22). The function vk satisfies

.
/
´

2Dvk1l k e k
2 vk

¯vk

¯n
40 on V

4Sl k
Q(e k x1xk ) vk

2y21 in

and vk (0)41 .

As in the proof of Lemma 3.1 we show, after scaling Qm41, that

lim
kKQ

s
V

N˜(Sl k
1/(2x22) uk2Ue k , xk

)N2 dx40 ,

with xkKx0 , Q(x0 )4Qm , x0�¯V. Moreover, xk�¯V for large k. Using the de-
composition (11) we show that, as in the proof of Theorem 3.4, that

Jl ku uk

(s
V

Quk
2y dx)1/2x vD S

22/N

for large k , which is impossible. If QM422/(N22) Qm we distinguish two cases:
(i) ]uk( is close to instantons concentrating on the boundary ¯V or (ii) ]uk( is
close to instantons concentrating at interior point x0 with QM4Q(x0 ). If (i) oc-
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curs we argue as in the first part of the proof. If the case (ii) prevails we modi-
fy the previous argument by considering the set of instantons

M14]CUe , y ; CD0, eD0, y�V(

and apply Proposition 4.2 from the paper [24] to arrive at a contradic-
tion. r

To illustrate Theorem 3.4 we consider the following example. Let V4

B(0 , R)2B(0 , r), 0ErER. Then H4
1

R 2
on ¯B(0 , R) and H42

1

r 2
on

¯B(0 , r). If NF5, ]x�¯V ; Q(x)4Qm(%¯B(0 , r) and QME22/(N22) Qm , then,
by virtue of Theorem 3.4, there exists a number lD0 such that problem (1)
has the least energy solutions only for l� (0 , l]. However, if V4B(0 , R) and
QME22/(22N) Qm . then problem (1) has the least energy solutions for every
lD0.

To establish a similar result in the flat case we need the following
assumption:

(Q2 ) ]x�¯V ; Q(x)4Qm(%D g0, a

2
h and for every x0�D g0, a

2
h ,

Q(Nx2x0N)4o(Nx2x0N
2 ) for x near x0

THEOREM 3.5. – Let NF4 and let QMG22(N22) Qm . Suppose that (H0 ) and
(Q2 ) hold. Then there exists l*D0 such that

SlE
S

22/N Qm
(N22)/N

for 0ElEl*

and

Sl4
S

22/N Qm
(N22)/N

for lFl*.

Furthermore, the least energy solutions exist for l� (0 , l*] and there are no
least energy solutions for lDl*.

PROOF. – We may assume that Qm41. Let QME22/(N22). Arguing indirectly
assume that SlE

S

22/N
for each lD0. Let l kKQ and let uk4ul k

be the corre-
sponding sequence of the least energy solutions. Applying Lemmas 3.1 and 3.2
we obtain the decomposition (11). As in the proof of Theorem 3.4 we get the re-
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lation (16). Since ykKy0�D g0, a

2
h , the inequality (17) in this case takes the

form

Jl ku Ue k , yk

(s
V

QUe k , yk
2y dx)1/2y

vF S

22/N
1lC1 e k

2

for large k (see Proposition 2.2). Hence as in the proof of Theorem 3.4 we ob-
tain the estimate (18), however without the term aAH(yk ) e k on the right side.
From this estimate, using the Hölder inequality, we deduce that

Jl ku uk

(s
V

Quk
2y dx)1/2x vD S

22/N

for large k , which is a contradiction. If QM422/(N22) , we argue as in the second
part of Theorem 3.4. r

4. – Remark on Sobolev inequalities.

Theorem 3.4 and 3.5 give rise to the following inequalities

COROLLARY 4.1. – Let NF5. Suppose that QMG22/(N22) Qm and that (H)
and (Q1 ) hold. Then there exists a constant L 14L 1 (V)D0 such that

g s
V

QNuN2y dxh2/2x

G
22/N Qm

(N22)/N

S
s

V

N˜uN2 dx1L 1s
V

u 2 dx

for every u�H 1 (V).

COROLLARY 4.2. – Let NF5. Suppose that QMG22/N2 Qm and that (H0 ) and
(Q2 ) hold. Then there exists a constant L 2 (V)D0 such that

g s
V

QNuN2y dxh2/2x

G
22/N Qm

(N22)/N

S
s

V

N˜uN2 dx1L 2s
V

u 2 dx

for every h�H 1 (V).
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