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A Unified Convergence Theory for LR and QR Algorithms
Applied to Symmetric Eigenvalue Problems.

R. I. PELUSO - G. PIAZZA

Sunto. – In questo articolo si considera il problema degli autovalori matrici simmetri-
che definite positive. In particolare si deducono le proprietà di convergenza per il
metodo QR senza shift ed il metodo LR di Cholesky sia in versione restoring che in
versione non restoring, considerando le proprietà di convergenza di opportune suc-
cessioni di matrici triangolari. Per generiche matrici si ottengono alcuni risultati
circa la velocità di convergenza del metodo di Cholesky in funzione dello shift pre-
scelto. Tali risultati seguono dall’assoluta convergenza di serie numeriche associa-
te a successioni di matrici. Applicando tale teoria si ricavano proprietà di conver-
genza del metodo QR per il calcolo degli autovalori di matrici normali e del metodo
QR per il calcolo dei valori singolari di matrici complesse. Per ogni metodo oltre
alle successioni di matrici ad esso associate si considera una successione conver-
gente di matrici diagonali. Le proprietà di convergenza dei metodi seguono poichè
le serie di matrici definite dalla differenza dei termini delle due successioni sono
assolutamente convergenti.

Summary. – In this paper we consider the eigenvalue problem for positive definite
symmetric matrices. Convergence properties for the zero shift QR method and the
shift LR Cholesky method both in restoring and in non restoring version are de-
duced from the convergence properties of triangular matrices sequences. For gene-
ral matrices we obtain some results on the convergence speed of the Cholesky method
as a function of the chosen shift. These results follow from the absolute convergence
of numerical series associated to matrices sequences. Concerning this theory we de-
rive also convergence properties of the QR method for the computation of the eigen-
values of normal matrices and of the QR method for the computation of the singu-
lar values of complex matrices. For each method, together with the sequences of as-
sociated matrices, we consider a convergent sequence of diagonal matrices. Conver-
gence properties of the methods follow since the matrices series defined by the dif-
ferences of the terms of the two sequences are absolutely convergent.

1. – Introduction.

In many papers concerning the computation of eigenvalues and singular
values of a complex matrix, an important rule is reserved to the methods based
on the LR and QR factorizations. The relation between these methods is shown
for example in [5] and [6], and, successively, investigated in [1] and [2]. In partic-
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ular for positive definite symmetric matrices it is well known that two steps of
the zero-shift Cholesky method are equivalent to one step of the zero-shift QR
method (see [6]). Hence a proof of the convergence of the LR Cholesky method is
also a convergence proof of the QR method and vice versa. The aim of this paper
is to analyze the convergence properties of a particular sequence of triangular
matrices, from which it is possible to deduce, throught an unique and simple
methodology, the convergence property of the following methods:

1. The LR Cholesky method with shift for eigenvalues of Hermitian
definite positive matrices both in restoring and non restoring versions;

2. The constant shift QR method for the computation of eigenvalues of
the normal matrices;

3. The QR method for the computation of the singular values of general
complex matrices.

Since we study the QR method without shift in this theory there is not the
convergence proof of the QR method for symmetric tridiagonal matrices with
the shift of Wilkinson (see [7]). We give some results on the convergence
speed of Cholesky method related to the choice of the shift. These results con-
cern however general matrices more than tridiagonal ones. The main difficulty
in the study of the convergence of sequences of triangular matrices arises
from the singular values of the initial matrix with multiplicity greater than 1.
This implies that the positive definite symmetric matrices have multiple eigen-
values. The paper is organized as follows. Sections 2 and 3 are dedicated to the
analysis of the convergence of a sequence of triangular matrices that is the
unifying element of this theory. The main results are given in Theorems 2 and
3. In Section 4 the results obtained are applied to the study of the convergence
of the LR Choesky method with shift (Theorem 4). The results about the con-
vergence speed in the case of positive shift are deduced from Theorem 3 (see
(38)). In Section 5 the results are applied to prove the convergence of the QR
method for the computation of the eigenvalues of normal matrices and to
prove the convergence of the QR method for the computation of the singular
values of a complex matrix (see Theorems 5 and 5). Finally Section 6 is an ap-
pendix where some preliminary results used in Sections 2 and 3 are proved
dealing in particular with the case of multiple eigenvalues.

2. – The iterative process and the convergence properties.

Starting from the non singular lower triangular complex matrix L (0) of or-
der n , let us consider the following iterative process:

L (k11) L (k11)*4L (k)* L (k)2m 2
k I , k40, 1 , 2 , R(1)



A UNIFIED CONVERGENCE THEORY ETC. 563

0Gm kEs min (L (k) )(2)

L (k)4 [li , j
(k)] .

We observe that the sequence generated from (1)-(2) is well defined and
unique if we impose, for example, lii

(k)D0, (i , (uniqueness of the Cholesky
factorization).

Let s i
(k) , i41, R , n , k40, 1 , 2 , R, be the the singular values of L (k) or-

dered as usual in decreasing way:

s 1
(k)Fs 2

(k)FRFs n
(k) .

Then from (1) it follows

s i
(k11)24s i

(k)22m 2
k , i41, R , n .(3)

Consequently we put

si4 lim
kKQ

s i
(k) , i41, R , n(4)

and

m 24 !
k40

Q

m k
2 .

Then we obtain

s i
(0)2

4si
21m 2 i41, R , n .(5)

The real nonnegative number m is the total shift and it results sn40 if and
only if m4s n

(0).
The following theorem states convergence properties of the sequence

]L (k)(.

THEOREM 1. – The real nonnegative lj , j41, R , n , exist such that

lim
kKQ

Nljj
(k) N4 lj

and for each ic j , it results

!
k40

Q

Nlij
(k) N2E1Q .

PROOF. – From (1), we obtain,

!
i41

j

Nlji
(k11) N24 !

i4 j

n

Nlij
(k) N22m k

2 , j41, R , n .(6)
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For j41 in (6) we obtain

Nl11
(k11)N22Nl11

(k)N21m k
24 !

i42

n

Nli1
(k)N2 .(6)

Consequently, each of the n21 series of the general term Nli1
(k)N2 has bounded

partial sums and therefore they are convergent series. Then also the serie
with general term Nl11

(k11)N22Nl11
(k)N2 is convergent and therefore it exists

l14 lim
kKQ

Nl11
(k)N .

Now we observe that from (6) it follows:

Nljj
(k11) N22Nljj

(k) N21m k
21 !

i41

j21

Nlji
(k11)N24 !

i4 j11

n

Nlij
(k)N2 j42, R , n21

and

m k
21 !

j41

n21

Nlnj
(k11)N24Nlnn

(k)N22Nlnn
(k11)N2 .

The thesis can then be completed by induction on index j. r

REMARK 1. – Let G (k) be, for k40, 1 , R , the diagonal and unitary matri-
ces such that the diagonal elements of G (k) L (k) are real positive (G (k)

fI if we
have selected lii

(k) , i41, R , n , real positive). Then, from Theorem 2 it
results

lim
kKQ

G (k) L (k)4L .(7)

Where L4diag (l1 , R , ln ) and li , i41, R , n , are defined in Theorem 1.

REMARK 2. – Since the singular values of G (k) L (k) are the same of L (k) , it
exists a permutation matrix P such that

L4PSP T

where S4diag (s1 , R , sn ). Putting

S (k)4us 1
(k)

0

Q Q
Q

0

s n
(k)

v ,
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let

L (k)4ul1
(k)

0

Q Q
Q

0

ln
(k)

v
such that

L (k)4PS (k) P T .

We observe that

)k , li
(k)4 lj

(k) ` (k , li
(k)4 lj

(k) ` li4 lj .

Now we are about to prove the absolute convergence of the series lij
(k). Before

we consider two preliminary lemmas.

LEMMA 1. – For all i , j such that lic lj , we have

!
k40

Q

Nlij
(k)NE1Q .

PROOF. – From (1) we deduce

!
h41

j

lih
(k11) l jh

(k11)4 !
h4 i

n

lhj
(k) l hi

(k) , jE i42, R , n .(8)

Then

lij
(k11) l jj

(k11)2 lij
(k) l ii

(k)1d k40

and, from Theorem 1

!
k40

Q

Nd kNEQ .

From hypotheses and from Theorem 1 both sequences Nljj
(k)N and Nlii

(k)N con-
verge to different limits. Hence the thesis follows from the convergence prop-
erties of a more general sequence satisfying a two terms recurrence relation
(see Lemma 10). r

REMARK 3. – Before proving next lemma we recall the following result (see
[4]). If

s 1 (A)Fs 2 (A)FRFs n (A)
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and

s 1 (B)Fs 2 (B)FRFs n (B)

are the singular values of complex matrices of order n A and B respectively,
then

Ns i (A)2s i (B)NGVA2BV2G !
r , s41

n

Nars2brsN i41, R , n .

Moreover if B is a complex matrix obtained from A setting as zero row or a
column of A then

s i (A)Fs i (B)Fs i11 (A) i41, R , n21 .

LEMMA 2. – For all i , j , such that iD j , li4 lj

!
k40

Q

Nlpq
(k)NE1Q p41, R , i21, q41, R , p21, (if iD2) ,

we have

!
k40

Q

Nlij
(k)NE1Q .

PROOF. – For every r , such that rc j , rc i and lr4 li we want to annihilate
the element lir

(k) , if rE i , or the element lri
(k) and lrj

(k) otherwise, preserving
exactly two singular values equal to li

(k). From Remark 2 and from the second
part of Remark 2 this is obtained zeroing the r-th column or the r-th row
respectively. The matrix B (k) obtained after this process converges, when
kKQ , to a diagonal matrix C. This matrix is obtained from L in the same way
and it possesses exactly two singular values equal to li . Now let A (k) be ob-
tained from B (k) zeroing the rows and columns i and j but not the elements lii

(k) ,
lij

(k) and ljj
(k). The singular values of

E (k)4uljj
(k)

lij
(k)

0

lii
(k)
v

are also the singular values of A (k) (see Lemma 9), convergent to li . From hy-
pothesis and Lemma 1 it results

!
k40

Q

!
r , s41

n

Nars
(k)2brs

(k)NE1Q .
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From a result on lower triamgular matrices of order 2 (see Lemma 8) it
is

Nlij
(k) NGNs 1 (E (k) )2s 2 (E (k) )NGNs 1 (E (k) )2 li

(k) N1Ns 2 (E (k) )2 li
(k)N .(9)

Using (9) for k large, and from the first part of Remark 3 the thesis
follows. r

We end this section with the announced convergence theorem, taking in
mind that we denote by NAN the matrix whose elements are Naij N.

THEOREM 2. – Referring to sequence L (k) defined in (1) and (2) and to ma-
trices G (k) and L defined in Remarks 2 and 3 respectively, it results

!
k40

Q

NG (k) L (k)2L (k)NE1Q .

PROOF. – From Lemmas 1 and 2, using induction on i

!
k40

Q

Nlij
(k) NE1Q , j41, R , i21 .(10)

Through let

A (k)4diag (Nl11
(k)N , R , Nlnn

(k)N) .

From (10), using, for k large, the first part of Remark 3, with A4A (k) and B4

G (k) L (k) it follows

!
k40

Q

Nli
(k)2Nlii

(k)NNE1Q i41, R , n . r

For Section 4 it is useful the following result.

COROLLARY 1. – In the same hypotheses of Theorem 2

!
k40

Q

NL (k) L (k)*2L (k)2
NEQ .

PROOF. – It follows from Theorem 2 considering the entries (i , j), for every
i , j , of matrix L (k) L (k)*2L (k)2. r

The result given in Theorem 2 is stronger than (7). Nevertheless in the
next section we shall improve (7) in

lim
kKQ

Nlii
(k)N2 li

(k)

li
(k)

40 i41, R , n .(11)
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Moreover, putting

j i
(k)2

4 !
h4k11

Q

Nlni
(h)N2 i41, R , n21

it is obvious that, from Theorem 1,

lim
kKQ

j i
(k)40 .

We want to prove the following relation

lim
kKQ

j i
(k)

ln
(k)

40 .(12)

These results improve (7) if li40 or ln40. But it happens when sn40, i.e. m k

is sufficiently close to s n (L (k) ), (for example see [7]).

3. – Further convergence properties.

In this section we start proving (11) and (12) as a consequence of the more
general Theorem 3. Finally we shall give some general condition so that

l1F l2FRFR ln .(13)

REMARK 4 (See [4]). – Let A be an n order complex matrix, s i and l i be re-
spectively the i-th singular value and eigenvalue of A ordered as

s 1Fs 2FRFs n

and

Nl 1NFNl 2NFRFNl nN .

Then

»
i41

k

Nl iNG »
i41

k

s i k41, R , n .

Moreover if A is a order n complex triangular matrix. Then

s 1 (A)4s max (A)Fmax
i

NaiiNFmin
i

NaiiNFs n (A)4s min (A).

THEOREM 3. – Referring to the sequence L (k) defined in (1) and (2), and to
L (k) defined in Remark 2, it results

!
k40

Q

N Nlii
(k)N2 li

(k)

li
(k) NE1Q i41, R , n(14)
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and

!
k40

Q
j i

(k)2

ln
(k)2

E1Q .(15)

PROOF. – Let

J4]i� ]1, R , n(Nli40( .

If J4¯ (14) is a consequence of Theorem 2, otherwise first we observe that for
every j�J , lj

(k)4s min(L (k)) (see Remark 2). Hence from Remark 3, (i�J,

Nlii
(k) N »

p�J
Nlpp

(k)NGNli
(k)N »

p�J
lp

(k) , Nlii
(k)NF li

(k) .

Then if m is the number of indexes that do not belong to J , ( k ) h such
that

0G
Nlii

(k)N

li
(k)

21G
lh

(k)m

Nlhh
(k)mN

21GcNNlhh
(k)N2 lh

(k) NGc !
r41

n

NNlrr
(k)N2 lr

(k) N .

Since every lrr
(k) converge to a non zero limit, the constant c can be chosen in-

dipendent from k. Then (14) is a consequence of Theorem 2.
To prove (15) we observe that from (6) with j4n , and from (3) it is

!
i41

n21

Nlni
(h11)N24Nlnn

(h)2
N2Nlnn

(h11)2
N2m h

2 4

4 (Nlnn
(h)2

N2 ln
(h)2

)2 (Nlnn
(h11)2

N2 ln
(h11)2 ).

From the definition it follows

j i
(k)2

GNlnn
(k)2N2 ln

(k)2
i41, R , n21 .

Hence, dividing for ln
(k) , (15) follows from (14), taking in mind that

sup
k

Nlnn
(k)N1 ln

(k)

ln
(k)

421sup
k

Nlnn
(k)N2 ln

(k)

ln
(k)

E1Q . r

To prove (13) first it is necessary to find the singular values decomposition
(briefly SVD) of every matrix L (k) in sequence (1). For this purpose let U (21)

and U (0) be two unitary matrices such that

U (21)* L (0) U (0)4S (0) ( the SVD of L(0) ) .(16)

Having observed that

U (0)4L (0)* U (21) S (0)21 ,
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we define the following sequence of matrices:

U (k)4L (k)* U (k21) S (k)21 , k40, 1 , R(17)

If U (k21) and U (k) are unitary matrices the equation (17) it is equivalent to

U (k21)* L (k) U (k)4S (k)(18)

that is the SVD of L (k). Hence the following lemma holds.

LEMMA 3. – All the matrices defined by equation (17) are unitary.

PROOF. – By induction, supposing that U (k21) and U (k) are unitary from
(18) we observe that

U (k)* L (k)* L (k) U (k)4S (k)2

and, from (1)

U (k)* L (k11) L (k11)* U (k)4S (k11)2 .

Then, using the definition for U (k11)

U (k11)* U (k11)4S (k11)21 (U (k)* L (k11)* L (k11) U (k)) S (k11)21
4

4S (k11)21
S (k11)2

S (k11)21
4I . r

From here to the end of the paper given a complex matrix A of order n we
shall denote by Aii , i41, R , n , the leading submatrix of order i , hence the
leading minors of A are just det Aii .

THEOREM 4. – Referring to sequence defined in (1) and (2), and to matrices
L and S defined in Remarks 1 and 2 respectively, if matrix U (0) in (16) has
non-zero leading minors, it results S4L .

PROOF. – If Uii
(0) , for i41, R , n , are the principal minors there exists cD0

such that

Ndet Uii
(0)NFc , (i .

Now from

L (k) U (k)4U (k21) S (k)

it follows

»
h41

i

Nlhh
(k)NNdet Uii

(k)N4Ndet Uii
(k21)N »

h41

i

Ns h
(k)N .
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Consequently from Remark 4, we have

Ndet Uii
(k)NFcD0, (kF1.

Having seen that

U (k)* L (k)* L (k) U (k)4S (k)2

the thesis is a consequence of a general results on the sequences of diagonaliz-
able matrices given in Lemma 7. r

4. – The LR Cholesky method.

Let A be an Hermitian definite positive matrix of order n. The Cholesky
method in the no restoring version for the computation of the eigenvalues
l 1 (A)Fl 2 (A)FRFl n (A)D0 is the following:

A (k)2zk I4L (k) L (k)* ( Cholesky factorization ) A (0)4A(19)

A (k11)4L (k)* L (k) k40, 1 , 2 , R(20)

where L (k) is a lower triangular matrix. While in the Cholesky LR method in
the restoring version (20) is replaced by

A (k11)4L (k)* L (k)1zk I , k40, 1 , 2 , R(21)

Putting

l i
(k)4l i (A (k) ) i41, R , n

l 1
(k)Fl 2

(k)FRFl n
(k)D0,(22)

l i
(0)4l i4l i (A), i41, R , n ,

the shift zk is such that

0GzkEl n (A (k) ).(23)

In non restoring version it results evidently

A (k11)4L (k)21
A (k) L (k)2zk I k40, 1 , 2 , R(24)

while in restoring one it is

A (k11)4L (k)21 A (k) L (k) k40, 1 , 2 , R(25)

In the first case we have

l i
(k11)4l i

(k)2zk , k40, 1 , 2 , R i41, R , n

while in the second one it is l i
(k)4l i , for i41, R , n and k40, 1 , 2 , R.
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Hence in the non restoring algorithm it is

l i
(k)4l i

(0)2 !
h40

k21

zh , k41, 2 , R , i41, 2 , R , n(26)

and it is necessary to introduce the total shift zGl n ,

z4 !
k40

Q

zk .(27)

Hence it results

lim
kKQ

l i
(k)4 l×i , i41, 2 , R , n

where

l×i4l i2z .(28)

In the case of restoring algorithm we observe that at step k11 there is no rea-
son to choose a shift smaller than the one taken at step k since the shift has be
to chosen as close as possible to l n. Then having no other choice one can take
zk114zk. Then replacing (27) we introduce zGl n as

z4 lim
kKQ

zk .(29)

In the non restoring case we put

D4diag (l×1 , l×2 , R , l×n )(30)

and

D (k)4diag (l 1
(k) , l (k)

2 , R , l (k)
n ) .(31)

In the other case we introduce simply

D4diag (l 1 , l 2 , R , l n ) .(32)

To relate the LR Cholesky shift method with the sequence (1) defined in Sec-
tion 2, we observe that from (19), with k11 replacing k , (20) and (21):

L (k11) L (k11)*4L (k)* L (k)2zk11 I(33)

L (k11) L (k11)*4L (k)* L (k)2 (zk112zk ) I , k40, 1 , R zk112zkF0(34)

in the non restoring and restoring versions respectively.
The two sequences (33) and (34) are like (1) and the diagonal elements of

each triangular matrix are real positive. In (33), from (20), we have

s i
2 (L (k) )4l i

(k11) , i41, R , n
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while in (34), from (21)

s i
2 (L (k) )4l i2zk , i41, R , n .

Then referring to matrices S (k) and S of Remark 2 it results for the sequence
(33)

(S (k) )24D (k)2zk I , S 24D(35)

while for sequence (34)

(S (k) )24D2zk I , S 24D2zI .(36)

Now we show how the well-known convergence properties of Cholesky
method in both versions can be derived using the theory exposed in Section 2.
We start with the following theorem.

THEOREM 5. – Let A be a positive definite Hermitian matrix with
eigenvalues

l 1Fl 2FRFl n .

The sequences defined by (19), (20), (23) converge for kKQ to a diagonal ma-
trix. Similarly the sequence defined by (19), (21) and (23) converges to a diag-
onal matrix. In both the cases the limit matrix G verifies

G4PDP T(37)

where P is a permutation matrix and D is given by (30) for the first sequence
and from (32) for the second one. In (30) l×i are given by (28) with z , total shift,
defined by (27).

PROOF. – The matrix sequence L (k) in (33), as in (34), converges, applying
Remark 1 to a diagonal matrix L (different in the two cases). If (20) holds then
A (k) converges to G4L 2 , while if (21) holds, it converges to G4L 21zI ,
where z is defined by (29). The equation (37) follows from (35), or (36), and
from Remark 2. r

Theorem 5 can be generalized in the following result.

THEOREM 6. – In the same hypotheses of Theorem 5, let

G (k)4PD (k) P T

with D (k) defined by (31). Hence for the sequence (19), (20) and (23) it is

!
k40

Q

NA (k)2G (k)NE1Q ,
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while for the other one it is

!
k40

Q

NA (k)2GNE1Q .

PROOF. – Referring to matrix L (k) of Remark 2, if (35) holds then

L (k)2
1zk I4G (k) ,

otherwise if (36) holds, it is

L (k)2
1zk I4G .

Then the thesis follows from (19) and from Corollary 1. r

Also in the theory developed in Sections 2 and 3 we can give some general
conditions such that G4D , that is P4I. It is well-known that for the LR
method, when it converges, the limit matrix is a diagonal one with entries or-
dered in decreasing way (see [6]). In fact the following theorem holds.

THEOREM 7. – Let Q be an unitary matrix such that

Q * AQ4diag (l 1 , R , l n )

and

det Qiic0 i41, R , n21 .

Then both for sequences (19), (20) and (23) as for (19), (21) and (23) it is

lim
kKQ

A (k)4D

where D is given by (30) for the sequence (19), (20) and (23), and by (32) for the
sequence (19), (21) and (23).

PROOF.

Q *(A2z0 I) Q4Q * L (0) L (0)* Q4D .

The matrix U (0)4D 21/2 Q * L (0) is unitary and verifies

U (0)* L (0)* Q4D 1/2 .

Hence

U (21) L (0) U (0)4D 1/2 , Q4U (21)

is the SVD of L (0).
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Now the leading minors of U (0) are not zero if and only if are not zero the
leading minor of Q. The thesis is a consequence of the hypothesis on Q and of
the theorem 4. r

The strategies in the choice of the shift in LR and QR methods are well
known, expecially for tridiagonal matrices (see [3], [5], [6] and [7]). In LR
Cholesky method it is necessary required the bound given by (23) and it could
be found z4l n . For example in restoring method, since the sequence A (k) is
convergent it can be obtained using Gershgorin-type theorems (for general
matrices). When at each step the shift is sufficiently close to the smallest
eigenvalue so that z4l n , using Theorem 4 we could estimate the convergence
to zero of the extradiagonal elements in the last column of A (k).

In fact

Nain
(k11) N4Nani

(k11) N4Nlni
(k)NNlnn

(k)N i41, R , n21(38)

and from Theorem 3 we could furnish an indication of how ani
(k11) approaches

to zero.

5. – The QR method for eigenvalues and singular values.

Let A be an n order complex nonsingular matrix. It is well known that
there exists the A4QR factorization, with Q unitary matrix and R upper tri-
angular matrix. The diagonal elements of R are defined up to a constant of
modulus 1. The QR method to compute the eigenvalues of a complex matrix A
is defined by the recursive scheme (see [6]):

A (k)2m k I4Q (k) R (k) A (0)4A

A (k11)4R (k) Q (k)1m k I , k40, 1 , R
(39)

Inside the theory developed in Sections 2 and 3 we can define also for the QR
method a series of matrices absolutely convergent. A strong limit is that we
have to consider only normal matrices and to take a constant shift. In fact the
following theorem holds.

THEOREM 8. – Let us suppose the shift in sequence (39) to be constant (i.e.
m k4m for every k) and A to be a normal matrix (i.e. A * A4AA *), and to
choose the diagonal elements of each R (k) , real and definitely of the same sign
(not necessarly the same for each index i). Then there exist real numbers
r1 , R , rn such that, putting

D4diag (r1 , R , rn ) ,
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we have

!
k40

Q

NR (k)2DNE1Q .(40)

The values NriN , for i41, R , n , are the singular values A2mI (i.e. the mod-
uli of eigenvalues of A2mI).

PROOF. – If the shift is constant, from (39) we have

(A (k11)2mI)*(A (k11)2mI)4R (k11)* R (k11)

(A (k11)2mI)(A (k11)2mI)*4R (k) R (k)* .

From (39) it results

A (k11)4Q (k)* A (k) Q (k) ,

and, since A is normal, also A (k) is normal for every k. Then

R (k11)* R (k11)4R (k) R (k)* .

Equation (40) follows from Theorem 2 with L (k)4R (k)* , k40, 1 , 2 , R.
The rest of the thesis holds since, for every k , R (k) has the same singular

values of A2mI. r

As for the LR Cholesky method, the results shown in Section 3 give gener-
al conditions such that

Nr1NFNr2NFRFNrnN .(41)

In fact the following theorem holds.

THEOREM 5.9. – In the same hypotheses of Theorem 8, let V * AV4J be the
spectral decomposition of A , with diagonal elements of J ordered with the
modulus in decreasing way. If det Viic0, for i41, 2 , R , n , then inequality
(41) holds.

PROOF. – It exists an unitary diagonal matrix S , such that, from (39)

V * Q (0) R (0) VS4NJN .

Hence, putting U (21)4 (VS)* , U (0)4Q (0)* V , U (21) L (0) U (0) is the SVD of
L (0)4R (0)* . The thesis follows from Theorem 4 having observed that the lead-
ing minors of U (0) are non null if and only if so are the ones of V. r

It is known (for example see [6]) that when QR method converges,
the limit matrix is usually a block diagonal one. To obtain a similar result
in this contest, we shall give in Section 6 a general theorem concerning
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sequences of matrices. Using this results it is possible to prove the following
theorem.

THEOREM 10. – In the same hypotheses of Theorems 8 and 9, if the se-
quence R (k) is such that

Nrii
(k)N4Nrjj

(k)N ` rii
(k)4rjj

(k) ,

then

lim
kKQ

A (k)4V(42)

where V is a block diagonal matrix whose eigenvalues are the same of A. If l i

and l j , ic j , are eigenvalues of a diagonal block then

Nl i2mN4Nl j2mN .

PROOF. – From (39) it is

A (k11)4R (k) A (k) R (k)21 .

Since (40) holds, equation (42) follows from the more general Lemma 11. Since
the entry (i , j) of matrix V is zero if ricrj , and the moduli of ri are the moduli
of the eigenvalues of A2mI , the last of the thesis follows. r

We end the section proving that also for the convergence of the QR method
for the singular values it is possible to apply the theory developed in Sections 2
and 3.

If A is an order n nonsingular complex matrix, starting from QA4R , with
Q unitary and R upper tridiagonal matrix, the scheme of the method is the
following

R (k11)4Q (k) R (k)* , k40, 1 , 2 , R R (0)4R(43)

where each Q (k) is unitary and each R (k) is upper triangular. Then the follow-
ing theorem holds.

THEOREM 11. – If in the scheme (43) we impose that the diagonal elements
of each R (k) are real positive, it results

lim
kKQ

R (k)4diag (r1 , r2 , R , rn )4L

and

!
k40

Q

NR (k)2LNE1Q .(44)



R. I. PELUSO - G. PIAZZA578

PROOF. – From (43) we have

R (k11)* R (k11)4R (k) R (k)* , k40, 1 , 2 , R(45)

and the thesis follows from Theorem 2. r

The values ri are clearly the singular values of A and of R (k) , for every k ,
but to obtain the SVD of A it is necessary the following lemma.

LEMMA 4. – Let ]hm(m�N be an increasing sequence. Then the se-
quence

mPm »4 »
i41

m

Q (hi )n
m�N

is convergent.

PROOF. – First, we observe that VP (m)2P (m21)
V24VQ (hm )2IV2. From (43)

we have

(R (k11)2R (k)* )R (k)2*4Q (k)2I .

Since

VR (k11)2R (k)
V2GVR (k11)2LV21VR (k)2LV2

sup VR (k)21
V2EQ

and from (44) the thesis follows. r

The construction of the SVD of A needs the following lemma.

LEMMA 5. – Put

U4 lim
kKQ

Q (2k) Q (2k22)
RQ (0)

V4 lim
kKQ

Q (2k21) Q (2k23)
RQ (1)

we have

VRU *4L

and

UR * V *4L .

PROOF. – The thesis is an immediate consequence of the following
relations:

R (2k11)4Q (2k) Q (2k22)
RQ (0) R * Q (1)* Q (3)*

RQ (2k21)* , k41, 2 , R

R (2k)4Q (2k21) Q (2k23)
RQ (1) RQ (0)* Q (2)*

RQ (2k22)* , k40, 1 , R r
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REMARK 5. – Since A4Q * R , it follows that

A4 (VQ)* LU ,

that however is not the SVD of A since the the singular values must be or-
dered in decreasing way.

The next lemma solves this question.

LEMMA 6. – Let

P * AT4S

be the SVD of A. If the leading minors of T are non zero, S4L.

PROOF. – From A4Q * R then

(PQ)* RT4S

is the SVD of R and

T * R *(PQ)4S

is the SVD of R *.
Now, the leading minors of T are non zero if and only if PQ has non zero

leading minors. From Theorem 4 it follows S4L . r

6. – Appendix.

In this section we prove some preliminary results.

LEMMA 7. – Let ]A (k)(, ]P (k)(, k40, 1 , R , be two sequences of order n
complex matrices such that

1. lim
kKQ

A (k)4diag (l 1 , l 2 , R , l n ), l i�C , i41, R , n ;

2. P (k) is a bounded sequence;

3. )cD0 such that

(k�N : Ndet Pii
(k)NFc , i41, 2 , R , n ;

where det Pii
(k) is the leading order i principal minor of P (k) ;

4. (k�N ,

P (k)21
A (k) P (k)4L (k) ,

where L (k) is a diagonal matrix, and

lim
kKQ

L (k)4L4diag (g 1 , g 2 , R , g n ) g i�C , i41, R , n .
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Then

L4diag (l 1 , l 2 , R , l n ).

PROOF. – For a suitable increasing sequence kn let

lim
nKQ

P (kn )4P .

From 4. we have,

lim
nKQ

A kn P kn4 lim
nKQ

P kn L kn .

Then

diag (l 1 , R , l i ) Pii4Pii diag (g 1 , R , g i ), i41, R , n .

From 3., det Piic0 (i , and

»
j41

i

l j4 »
j41

i

g j , i41, R , n ;

then, if det Lc0,

l i4g i , i41, R , n .

If det L40 then the hypotheses are still valid for A (k)1eI , with e such that
det (L1eI)c0. r

LEMMA 8. – Let

E4ga
b

0

g
h

be a 232 complex matrix and s 1Fs 2 be the singular values of E.
Then

NbNGs 12s 2 .

PROOF. – From

s 1
21s 2

24a 21b 21g 2

and

s 1 s 24NagN ,

it follows

(s 12s 2 )24 (NaN2NgN)21b 2Fb 2 . r
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LEMMA 9. – Let A4 [aij ] be a complex matrix of order n such that:

apj4aqj40

aip4aiq40

j41, R , n

i41, R , n

except at the most for j4p , and j4q ,

except at the most for i4q , and i4p

and qDp. Then the singular values of

E4uapp

aqp

apq

aqq

v
are also the singular values of A.

PROOF. – It is not difficult to construct a permutation matrix P , such
that

PAP T4g E O

O ˜
hN

where «˜» denotes a not essential matrix. Then the thesis is a trivial conse-
quence of the structure of PAP T and of the property of invariance of the sin-
gular values under unitary transformations. r

LEMMA 10. – Let ]yn(n�N be a complex sequence generated through the two
terms recurrence relation

a n yn111b n yn1d n40 ,

where a n , b n , d n�C , (n�N and y0�C , also

1.

lim
nKQ

Na nN4a , lim
nKQ

Nb nN4b , acb ,

and

2.

!
n40

Q

Nd nNE1Q

3.

sup
n�N

NynNE1Q .

Then

!
n40

Q

NynNE1Q .
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PROOF. – Fixed eENa2bN/2 , for large n we have:

a2e

b2e

GNa n N

GNb n N

Ga1e

Gb1e .

If aDb , a2eD0, from

Na nNNyn11NGNb nNNynN1Nd nN

we have

(a2e)Nyn11NG (b1e)NynN1Nd nN

or, equivalentely

( (a2e)2 (b1e) )Nyn11NG (b1e)(NynN2Nyn11N)1Nd nN .

Then

Nyn11NG ( (b1e)(NynN2Nyn11N)1Nd nN) /h , h4a2b22eD0,

from which the thesis follows.
Analogously, if bDa , we have

(b2e)NynNG (a1e)Nyn11N1Nd nN

and

NynNG ( (a1e)(Nyn11N2NynN)1Nd nN) /h , h4b2a22eD0,

from which also in this case the thesis follows. r

LEMMA 11. – Let ]P (k)( be a sequence of nonsingular complex matrices of
order n such that

!
k40

Q

NP (k)2DNE1Q

with D4diag (d1 , R , dn ), det Dc0, and

NdiN4NdjN ` di4dj (i , j .

Moreover for a fixed n order complex matrix A the sequence ]A (k)( generated by

A (k11)4P (k) A (k) P (k)21 , A (0)4A

let be bounded.
Then the sequence ]A (k)( is convergent and

dicdj , ic j

implies that the entry (i , j) in the limit matrix is zero.
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PROOF. – From

A (k11) P (k)4P (k) A (k) ,

we have

aij
(k11) pjj

(k)2aij
(k) pii

(k)1d k40, ((i , j),

where, from hypotheses

!
k40

Q

Nd kNE1Q .

From lemma 6, if dicdj

lim
kKQ

aij
(k)40 .

Moreover, if i4 j , for k large, mENpii
(k)N exists such that

!
k40

Q

Naii
(k11)2aii

(k)NE
1

m
!
k40

Q

Nd kN .

Finally if di4dj for ic j , since

!
k40

Q

Npii
(k)2pjj

(k)NE1Q ,

we have always

!
k40

Q

Naij
(k11)2aij

(k)NE1Q . r
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