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Observations on W 1, p Estimates
for Divergence Elliptic Equations with VMO Coefficients.

P. AUSCHER - M. QAFSAOUI

Sunto. – In questo lavoro esponiamo alcune osservazioni circa il lavoro di Di Fazio ri-
guardante le stime W 1, p per 1EpEQ per soluzioni di equazioni ellittiche del tipo
div A˜u4div f su un dominio V con dati di Dirichlet nulli, A nella classe VMO ed
f in L p . Si considera il caso in cui i coefficienti della parte principale sono com-
plessi e la frontiera di V è di classe C 1 . Si considera inoltre il caso del problema di
Neumann non omogeneo e si dimostrano risultati analoghi. Il principale stru-
mento utilizzato è una conveniente formula di rappresentazione per la funzione di
Green e di Neumann.

Summary. – In this paper, we make some observations on the work of Di Fazio concern-
ing W 1, p estimates, 1EpEQ, for solutions of elliptic equations div A˜u4div f ,
on a domain V with Dirichlet data 0 whenever A�VMO(V) and f�L p (V). We wea-
ken the assumptions allowing real and complex non-symmetric operators and C 1

boundary. We also consider the corresponding inhomogeneous Neumann problem
for which we prove the similar result. The main tool is an appropriate representa-
tion for the Green (and Neumann) function on the upper half space. We propose
two such representations.

Introduction.

In recent years, there has been a wide interest for elliptic equations with
discontinuous coefficients that belong to VMO , [1], [4], [5], [6], [8], [7], [11],
[12], [13], [15], [16], [18], [20], [21]. In particular, it is shown in [11] that for
1EpE1Q and f�L p (V), the inhomogeneous Dirichlet problem

.
/
´

div A˜u4div f in V

u�W 1, p
0 (V)

(1)

has a unique solution, and V˜uVpGCV f Vp with C independent of f , provided V is
a smooth (e.g. C 1, 1) bounded open set in Rn , nF2, and A is a real, symmetric,
uniformly elliptic matrix with coefficients in VMO(V)OL Q (V). We recall that
a locally integrable function g on V is in the space BMO(V) if

sup
B

1

NBN
s

B

Ng(x)2gBNdxfVgV*E1Q ,
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where B ranges over balls B%V and gB denotes the mean of g on B. For g�
BMO(V) and rD0, we set

h(r)4 sup
rGr

1

NBrN
s

Br

Ng(x)2gBNdx .

Here r denotes the radius of Br . A function g�BMO(V) is in VMO(V) if
lim
rK0

h(r)40 and we call h the vmo modulus of continuity of g. Our observations

will be the followings.

1) We remove the hypothesis that A be real and symmetric and allow
complex coefficients: Our assumptions on A(x)4 (ajk (x) )1G j , kGn are

.
/
´

ajk (x)�C and VajkVQGd21 ,

A(x)1A *(x)F2dId a.e.

ajk�vmo(V)

(2)

for some dD0 called the ellipticity constant of A.
What is really at stake is the representation of the Green function G(x , y)

for constant coefficients operators on the upper half space as the one chosen in
[11] cannot extend to all matrices A satisfying (2).

Here, we use two different representations: one is taken from [14], [22]; Lp

boundedness of the operator with kernel ˜x ˜y G(x , y) follows from classical
theory for singular integrals of convolution type. The other originates from
[2]; it uses the reflection principle and Lp boundedness is a consequence of the
T(1) theorem [10].

2) There is a technical step in [11] which can be avoided. We establish a
representation of solutions that is simpler to use for obtaining interior and
boundary a priori estimates via commutator results between Calderón-Zyg-
mund operators and VMO functions [9].

3) We make clear that the proof works for C 1 domains by controlling the
constants. Note that in [22], the similar problem with continuous coefficients
was treated on C 1 domains. Our assumption on V is:

V is a bounded, open, connected set with C 1 boundary .(3)

4) We can treat in the same way the corresponding inhomogeneous
Neumann problem:

.
/
´

div A˜u4div f in V

u�W 1, p (V) and n . A˜u4n . f on ¯V
(4)

where n is the outward unit normal. To avoid defining n . A˜u as a distribution
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on the boundary of V we mean (4) variationally:

u�W 1, p (V) and (W�Lip(V) s
V

A˜u˜W4s
V

f˜W .(5)

Note that, similarly, (1) is equivalent to

u�W 1, p
0 (V) and (W�Lip (V), Supp W%V s

V

A˜u˜W4s
V

f˜W .(6)

The main result of this paper is

THEOREM 1. – Let A satisfy (2) and V satisfy (3), 1EpE1Q and f�
L p (V). Then there exist a unique solution uD of (1) and a unique solution uN

of (4) modulo constant. Moreover, the operators fO˜uD and fO˜uN are
bounded on L p (V), with norm bounded by a constant depending on n , d , p ,
the VMO modulus of continuity of A , ¯V and NVN.

1. – Estimates for constant coefficients operators.

In this section A denotes a constant complex matrix satisfying (2).

1.1. Main results.

The fundamental solution of 2div A˜42!
j , k

¯j (ajk ¯k ) is given by, for
xc0,

G A (x)4
1

(n22) v n ( det S)1/2
(S 21 x , x)(22n) /2 if nF3 ,(7)

G A (x)42
1

4p ( det S)1/2
log (S 21 x , x) if n42 .(8)

Here, S4
A1tA

2
is the symmetric part of A , log z denotes the principal branch

of the logarithm and z a4e a log z for z�C0R2 and a�R. This is well known
when A is real and symmetric, and can be easily checked in general. From this
we obtain

ND a G A (x)NG
C

NxNn221NaN
, xc0 ,(9)

for NaN41, 2 , 3 and C depends only on dimension and ellipticity, and D a is
the usual symbol for the partial derivative associated with a.

Consider now the Green function GA (x , y) and the Neumann function
NA (x , y) for L42div A˜ on R1

n , that is for all y�R1
n ,

.
/
´

Lx GA (x , y)4d x (y)

GA (x , y)40

in D8 (Rn
1 )

if x�¯R1
n

(10)
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and

.
/
´

Lx NA (x , y)4d x (y)

n . A˜x NA (x , y)40

in D8 (Rn
1 )

if x�¯R1
n

(11)

and n4 (0 , R , 0 , 21).
Assume for a moment that A is real and symmetric. Then GA (x , y) can be

computed as

GA (x , y)4G A (x2y)2G A (T(x)2y) , x , y�R1
n ,(12)

where T is the orthogonal symmetry with respect to ¯R1
n 4Rn21 in the inner

product induced by the inverse of A. It is characterized by

TNRn214Id , T 24Id , tTA 21 T4A 21 ,(13)

(tT is the transpose of T) and calculations yield

T(x)4x *2xn v ,(14)

where x *4 (x1 , R , xn21 , 2xn ) if x4 (x1 , R , xn21 , xn ) and v�Rn21 with

vk4
2akn

ann

, 1GkGn21 .

Formula (12) extends to matrices A for which one can find T of the form (14)
such that G A i T4G A . In (13), tTA 21 T4A 21 must be replaced by TS tT4S ,

where S4
A1t A

2
. One finds

vk4
ank1akn

ann

, 1GkGn21 ,(15)

so that A must satisfy ank1akn�Rann for T to be a map on Rn.
The Neumann function when A is real symmetric is given by

NA (x , y)4G A (x2y)1G A (T(x)2y) , x , y�R1
n .(16)

One checks that this formula is valid for any A provided akn4ank�Rann ,
1GkGn21.

One must therefore find another representation for GA and NA to remove
these algebraic constraints on A. We achieve this goal by presenting two diffe-
rent approaches (see section 1.2, section 1.3). This enables us to prove the fol-
lowing results.
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PROPOSITION 2. – There is a constant C depending only on dimension and
ellipticity of A such that

ND a GA (x , y)N1ND a NA (x , y)NG
C

Nx2yNn221NaN
(17)

whenever x , y�R1
n , xcy and a�N2n , NaN41, 2 , 3 and D is any partial of

order 1 in x and y.

O f c o u r s e , o n e c a n d i f f e r e n t i a t e i n d e f i n i t e l y b u t t h e n t h e c o n s t a n t C d e -
pends also of NaN. Note also that these estimates hold up to the boundary of Rn

1 .
Define GA and 8A as follows: for all g , h� D(R1

n ), valued in Cn ,

(GA g , h)42 ss
R1

n 3R1
n

˜y GA (x , y). g(y) div h(x) dx dy ,(18)

(8A g , h)42 ss
R1

n 3R1
n

˜y NA (x , y). g(y) div h(x) dx dy .(19)

Note that the above integrals exist in the Lebesgue sense by (17). The main
result is

THEOREM 3. – For all p� (1 , 1Q), there exists C depending on dimen-
sion, ellipticity and p such that for all g� D(R1

n ), valued in Cn ,

VGA gVp1V8A gVpGCVgVp .(20)

1.2. Fourier transform method.

In this section we prove Proposition 2 and Theorem 3 using an algorithm
based on the Fourier transform. We follow [14] to compute the Green function
(and correct a mistake in that paper). Actually, such computations already ap-
peared in [22]. We use similar ideas to compute th Neumann function. To this
end, it is convenient to write x�Rn

1 as x4 (x 8 , t) with x 8�Rn21 and t4xnF0
is the nth coordinate of x. Functions f (x) defined on Rn will be denoted as
f (t)(x 8 ) and the variable x 8 will often be omitted.

Again, we assume A to be constant. We have

( j�Rn , G A
×(j)4 (Aj . j)21

where f× is the Fourier transform of f in Rn (formally f×(j)4sRn f (x) e 2ix . j dx).
Write j4 (j 8 , t)�Rn213R. For fixed j 8�Rn21 , there exist t 1 (j 8 ) and
t 2 (j 8 ) with 4m t 1 (j 8 )D0 and 4m t 2 (j 8 )E0 such that

Aj . j4ann (t2t 1 (j 8 ) )(t2t 2 (j 8 ) ) .
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As functions of j 8 , t 1 (j 8 ) and t 2 (j 8 ) are homogeneous of degree 1 on Rn21 ,
C Q (Rn21 0]0() and there exist m , MD0 depending only on n and d such that
for all j 8�Rn21

.
/
´

4m t 1 (j 8 )FmNj 8N , 4m t 2 (j 8 )G2mNj 8N ,

Nt 1 (j 8 )N1Nt 2 (j 8 )NGMNj 8N .
(21)

The Fourier transform of G A (t) (in Rn21) is given by

G A (t)
43

(j 8 )4
1

2p
s

2Q

1Q

e itt

ann (t2t 1 (j 8 ) )(t2t 2 (j 8 ) )
dt

and by the calculus of residues we find

G A (t)
43

(j 8 )4
ie itt6 (j 8 )

ann (t 1 (j 8 )2t 2 (j 8 ) )
,(22)

where t 1 (j 8 ) occurs when tF0 and t 2 (j 8 ) occurs when tG0.
The solution of the homogeneous Dirichlet problem div A˜v40 in Rn

1 ,
v4g on Rn21 and v40 at Q is given by v(t)4 Pt xg where x is the convolution
on Rn21 and Pt is the Poisson kernel. Using Fourier transform in Rn21 one
has

Pt
×(j 8 )4e itt1 (j 8 ) , tF0 , j 8�Rn21 .(23)

Then GA (x , y) can be computed as

GA (x , y)4 (G A (t2s)2Pt xG A (2s) )(x 82y 8 )(24)

4G A (x2y)2 (Pt xG A (2s) )(x 82y 8 ) ,

where x4 (x 8 , t), y4 (y 8 , s)�Rn
1.

To compute the Neumann function, we construct the Neumann to Dirichlet
boundary operator as follows. We look for NA (x , y) in the form

NA (x , y)4 (G A (t2s)2Pt xh(s) )(x 82y 8 )

for x4 (x 8 , t), y4 (y 8 , s)�Rn
1 . The condition on h is that

( sD0, 2n . A˜G(t2s)Nt40
42n . A˜Pt xh(s)Nt40

,(25)

where ˜4˜x4g˜x 8 ,
¯

¯t
h and n4 (0 , R , 0 , 21). Set B1 , B2 the boundary

operators with symbols b1 , b2 given by

b6 (j 8 )4 ig !
k41

n21

ank j k1ann t 6 (j 8 )h
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with j 84 (j 1 , R , j n21 )�Rn21. Then (25) is equivalent to

( sD0 , B1 h(s)4B2 G(2s) .

LEMMA 4. – The symbols b1 , b2 are C Q (Rn21 0]0() and homogeneous of
degree 1 with

( j 8�Rn21 , mNj 8 NENb6 (j 8 )NGMNj 8 N ,

where m , M depend only on n and d in (2).

PROOF. – We only consider b1 . It is clear that b1�C Q (Rn21 0]0(), and the
upper bound for b1 is obvious from (21). Next we study the lower bound. Fix
j 8�S n22 and let V : C2KCn be linear defined by Ve 14j 8 , Ve 24en , when
(e 1 , e 2 ) is the canonical basis of C2 and (e1 , R , en ) the canonical basis of Cn.
Since Vj 8 V41, V is unitary so that

( v�C2 , De tVAVv . vFdVVvV24dVvV2 ,

where d is the ellipticity constant of A. The matrix representing tVAV is given
by

.
`
´

!
1G j , kGn21

ajk j k j j

!
k41

n21

ank j k

!
k41

n21

akn j k

ann

ˆ
`
˜

and by definition of t 1 (we drop j 8) and b1 we have

tVAVg 1

t 1

h4g2t 1 b1

b1

h .

Thus d(11Nt 1N2 )Gb1 (2t 11t 1)42 2 ib1 (4mt 1 ) and the lower bound
for b1 follows from the properties of t 1 . r

Set m4b1
21 b2 . Using [23], p. 75, and the properties (9) on G A (2s), we see

that h(s)4P.V.Km xG A (2s)1cm G A (2s) on Rn21 , where Km is a Calderón-
Zygmund kernel on Rn21 and cm�C. Hence,

NA (x , y)4G A (x2y)2 ( Pt x(P.V.Km1cm d 0 ) xG A (2s) )(x 82y 8 ) .(26)

Note that GA (x , y) in (24) and NA (x , y) in (26) are of the same type.
We now turn to the proof of Proposition 2. Since the estimates on D a G have

been already observed, it remains to obtain estimates for functions of the
form

fa (s , t , x 8 )4D a (Pt x (P.V.K1cd 0 ) xG(2s) )(x 8 )
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where c�C , a�Nn11 , NaN41, 2 , 3 and D is any of Dxj
, 1G jGn21, Dt , Ds ,

and K�C Q (Rn21 0]0() is a Calderón-Zygmund kernel on Rn21. To see this
we observe after straightforward computations using (21), (22), (23) and Lem-
ma 4 that

fa (s , t , x 8 )4
1

(2p)n21
s

Rn21

e itt1 (j 8 )2 ist2 (j 8 ) L a (j 8 ) e ix 8 . j 8 dj 8 ,

where L a is a homogeneous function of degree NaN21 and L a�
C Q (Rn21 0]0() with NL a (j 8 )NGMNj 8NNaN21 and M depends only on n and d.
Using the fact that 4mt 1 (j 8 )FmNj 8N and 4mt 2 (j 8 )G2mNj 8N, we routi-
nely obtain

fa (s , t , x 8 )NG
M

(s1 t1Nx 8N)n211NaN
(27)

for all sD0, tD0, x 8�Rn21 and M depends only on n and d if NaN is restric-
ted to 1, 2 or 3. It is then easy to deduce Proposition 2 from (27), and we skip
further details.

It remains to prove Theorem 3. First we have

N s
Rn
1

g s
Rn
1

˜y (G A (x2y) ). g(y) dyh div h(x) dxNGC(n , d , p)VgVp VhVp 8(28)

for all g , h� D(Rn
1 ), valued in Cn. Indeed, integrating by parts, the expression

in the left hand side is equal to

lim
eK0

ss
Nx2yNFe

((˜˜G A )(x2y) g(y) ) . h(x) dx dy2s
Rn
1

C g(x). h(x) dx ,(29)

where C is the constant matrix with entries

cjk4 s
S n21

(Dk G)(t) tj ds (t)

and s is the surface measure on S n21. Classical Calderón-Zygmund theory
yields (28).

Next, set H(x , y)4 (Pt xG(2s) )(x 82y 8 ) for x4 (x 8 , t) and y4 (y 8 , s)�
Rn

1 . Then for g , h� D(Rn
1 ) valued in Cn ,

2s
Rn
1

g s
Rn
1

˜y H(x , y). g(y) dyh div h(x) dx4

s
Rn
1

s
Rn
1

(˜x ˜y H(x , y) g(y) ) . h(x) dx dy ,
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the last integral being non singular since, by (27),

N˜x ˜y H(x , y)NG
M

Nx2y * Nn
, M4C(n , d) .(30)

It is classical that (30) gives an upper bound of the form C(n , d , p)VgVp VhVp 8

for the last integral by using Hardy inequality (see [5], or [3] for a short
proof). This proof applies with H(x , y) replaced by HA(x , y)4
(Pt x (P . V . Km1cm d 0 ) xG(2s) )(x 82y 8 ). This finishes the proof of Theorem
3 by this method.

1.3. Reflection principle method.

Here, we use the good old reflection principle across the boundary and
then rely on estimates for fundamental solution of a specific class of elliptic
operators studied in [2]. We will deduce Theorem 3 from the T(1) theorem. As
for Proposition 2, we only obtain part of it. We miss some cases in (17), not be-
cause they cannot be obtained by this method, but because we feel that such
calculations are out of the core of this article.

Define the orthogonal symmetry S of Rn across ¯Rn
1 by

S(x1 , R , xn21 , xn )4 S(x 8 , xn )4 (x 8 , 2xn )(31)

and let

A l--l(x)4
.
/
´

A

S A S

if xnF0

if xnE0 .
(32)

Recall that A is constant, but A l--l(x) may no longer be constant. Let bjk (x)
be the coefficients of A l--l(x). We have

.
/
´

bjk (x)4ajk

bjk (x)4ajk sign (xn )

if 1G j , kGn21 or j4k4n ,

otherwise ,

therefore, the coefficients of A l--l depend only on xn . Furthermore A l--l is unifor-
mly elliptic on Rn with the same ellipticity constant d as A. The class of elliptic
operators L 42div A˜ on Rn associated with bounded uniformly elliptic ma-
trices A depending on one coordinate variable is studied in [2] and in particu-
lar estimates are obtained for derivatives of the kernel of e 2t L.

In our case, this gives us enough information to apply the T(1) theorem. Set
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L l--l42div A l--l˜ and introduce the vectors fields

.
`
/
`
´

Xk4
¯

¯xk

for 1GkGn21 ,

Xn4bn1
¯

¯x1

1R1bnn
¯

¯xn

,

and

.
`
/
`
´

Xl
A

4
¯

¯xl

for 1G lGn21 ,

Xn
A

4b1n
¯

¯x1

1R1bnn
¯

¯xn

.

For tD0, let Kt (x , y), M k
t (x , y) and MAk

t (x , y) be respectively the kernels
of e 2tL l--l

, t 1/2 Xk e 2tL l--l
and t 1/2 e 2tL l--l tX

A
k , 1GkGn (here, tXAk is the transpose

of XAk).

LEMMA 5 ([2], Ch IV, Lemma 24 and Appendix B). – We have for h� (0 , 1 ),
say h41/2 ,

NKt (x , y)NG
C

t n/2
expg2 aNx2yN2

t
h

NM k
t (x , y)N1NMAk

t (x , y)NG
C

t n/2
expg2 aNx2yN2

t
h

NM k
t (x1h , y)2M k

t (x , y)N1NMAk
t (x , y1h)2MAk

t (x , y)NG
C

t n/2 g NhN

t 1/2 hh

,

where CF0 and aD0 depend only on n and d.

Define

Rkl4Xk (L l--l)21 tX
A

l4 s
0

1Q

Xk e 2tL l--l tX
A

l dt .

This is a formal definition. In fact, we have

Rkl4 lim
eK0

Rkl
e
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and

Rkl
e 4s

e

1/e

Xk e 2tL l--l tX
A

l dt , eD0 .

The limit is taken in the strong topology of B(L 2 (Rn ) ) once uniform estimates
with respect to e are obtained. Since this is a standard step in Calderón-Zyg-
mund theory we ignore it and think Rkl as Rkl

e in the sequel.
Denote by Kkl (x , y)� D8 (Rn3Rn ) the distribution kernel of Rkl .

PROPOSITION 6. – There is a constant C depending only on n and d such
that for all x , y�Rn , xcy ,

NKkl (x , y)NG
C

Nx2yNn
,(33)

NKkl (x1h , y)2Kkl (x , y)NG
C

Nx2yNn11 g NhN

Nx2yN
hh

,(34)

NKkl (x , y1h)2Kkl (x , y)NG
C

Nx2yNn11 g NhN

Nx2yN
hh

,(35)

when NhNG 1

2
Nx2yN.

PROOF. – Using e 2tL l--l
4e 2(t/2 ) L l--l

e 2(t/2 ) L l--l , we write

Kkl (x , y)42 s
0

1Qg s
Rn

M k
t/2 (x , z) MAl

t/2 (z , y) dzh dt .

The proof follows from the preceding lemma and routine computa-
tions. r

PROPOSITION 7. – Rkl is a Calderón-Zygmund operator on Rn : for all
p� (1 , 1Q), there exists a constant C depending only on n , d and p such
that

VRkl f VpGCV f Vp

for f�L 2 (Rn )OL p (Rn ).

PROOF. – The argument is divided into four cases: we apply the T(1) theo-
rem to obtain L 2 boundedness. Then the L p estimate is a classical consequence
of Proposition 6. In this argument, the spaces are defined on Rn.
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˜ Case 1: 1Gk , lGn21.

Since Xk4
¯

¯xk

and Xl
A

4
¯

¯xl

, we have that Rkl (1)4R*kl (1)40. Thus Rkl is

bounded by using the T(1) theorem (we recall the reader that the weak boun-
dedness property follows from Rkl (1)40 or R*kl (1)40 by standard arguments
[10]).

˜ Case 2: k4n and 1G lGn21.

We have

Rn , l4Xn (L l--l)21 t X
A

l42s
0

Q

gbn1
¯

¯x1

1R1bnn
¯

¯xn
h e 2tL l--l ¯

¯xl

dt

and thus Rn , l (1)40 (and Rn , l has the weak boundedness property). On the
other hand

R*n , l42s
0

Q

¯

¯xl

e 2t(L l--l)*g ¯

¯x1

bn11R1
¯

¯xn

bnnh dt .

Since bnn is constant we have

R*n , l (1)4 !
j41

n21

R*j , l (bnj) .

By the first case and Calderón-Zygmund theory we know that, for 1GjGn21,
the operators R*j , l extends boundedly from LQ to BMO. Hence R*n , l(1)�BMO.
Thus Rn , l is bounded by invoking again the T(1) theorem.

˜ Case 3: 1GkGn21 and l4n.

We have

Rk , n42s
0

Q

¯

¯xk

e 2tL l--lg ¯

¯x1

b1n1R1
¯

¯xn

bnnh dt .

Again Rk , n* (1)40 and since bnn is constant

Rk , n (1)4 !
j41

n21

Rk , j (bjn ) .

As for the case 2, we have that Rk , n (1)�BMO. Hence Rk , n is bounded by the
T(1) theorem.
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˜ Case 4: k4 l4n.

We have

Rn , n42s
0

Q

gbn1
¯

¯x1

1R1bnn
¯

¯xn
h e 2tL l--lg ¯

¯x1

b1n1R1
¯

¯xn

bnnh dt

and

Rn , n (1)4 !
j41

n21

Rn , j (bjn ) .

For the same reasons above, we have that Rn , n (1)�BMO. The same holds for
Rn , n* :

R*n , n (1)4 !
j41

n21

Rj , n (bnj) ,

and R*n , n (1)�BMO.
It remains to prove the weak boundedness property for Rn , n . We

have

Rn , n42s
0

Q

bnn
¯

¯xn

e 2tL l--lg ¯

¯x1

b1n1R1
¯

¯xn

bnnh dt1Rn ,

where

Rn4 !
j41

n21

bnj Rj , n .

We have that Rn is bounded on L 2 since the Rj , n are bounded on L 2 and bnj�
L Q. Let B be a ball (with center x0 and radius r) and W , c� C1 compactly sup-
ported in B. We have

N(Rn W , c)NGVRn V2, 2 VWV2 VcV2

GCn r n
VRn V2, 2 VWVQ VcVQ .

On the other hand, since

((Rn , n2Rn ) W , c)4bnns
0

Q

ge 2tL l--l tX
A

n W ,
¯

¯xn

ch dt

and taking into consideration the estimates on the kernel of t 1/2 e 2tL l--l tX
A

n and
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the fact that

s
0

1Q

1

t (n11) /2
e 2(Nx2yN2 /t) dtG

C

Nx2yNn21
,

it then follows

N ((Rn , n2Rn ) W , c)NGCNBNVWVLQ (B)V

1

Nx2yNn21 VLy
1 (B)

V

¯c

¯xn
V

LQ (B)

GCr n11
VWVQV

¯c

¯xn
V

Q
,

Hence

N(Rn , n W , c)NGCr n
VWVQ (VcVQ1rV˜cVQ ) .

This shows the weak boundedness property for Rnn and ends the proof of Pro-
position 7. r

If G A l--l denotes the fundamental solution for the operator L l--l42div (A l--l˜)
then the Green and the Neumann functions are respectively given by

GA (x , y)4G A l--l (x , y)2G A l--l (x , y *) ,(36)

and

NA (x , y)4G A l--l (x , y)1G A l--l (x , y *) .(37)

Let X4 (X1 , R , Xn ), XA4 (XA1 , R , XAn ) and define for x�Rn

J(x)4J4

.
`
`
`
´

1
0

QQ
Q

0
bn1

0
1

QQ
Q

0
bn2

0
0

QQ
Q

0
bn3

. . .

. . .

. . .

. . .

. . .

0
0

QQ
Q

1
bn , n21

0
0

QQ
Q

0
bnn

ˆ
`
`
`
˜

,

JA(x)4JA4

.
`
`
`
´

1
0

QQ
Q

0
b1n

0
1

QQ
Q

0
b2n

0
0

QQ
Q

0
b3n

. . .

. . .

. . .

. . .

. . .

0
0

QQ
Q

1
bn21, n

0
0

QQ
Q

0
bnn

ˆ
`
`
`
˜

,

where J and JA have bounded coefficients. We have X4J˜ , XA4 JA˜. Here we
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understand X , XA and ˜ as column vectors. Thus

˜(L l--l)21 t˜4 s
0

1Q

(J 21 X) e 2tL l--l
(tX
A t J

A21 ) dt ,

Let K(x , y) be the distribution kernel of R4s0
1Q Xe 2tL l--l tX

A
dt. Note that

J(x) and JA(x) are constant on Rn
1 and on Rn

24Rn 0Rn
1. Thus

2˜x ˜y G A l--l (x , y)4J 21 (x) K(x , y) tJ
A21 (y) ,(38)

where the equality holds in D8 (Rn
63Rn

6 ). If HA4 GA or 8A , we have for all g ,
h� D(Rn

1 ), valued in Cn ,

(HA g , h)42 ss
R1

n 3R1
n

˜y (G A l--l (x , y)6G A l--l (x , y *) ). g(y) div h(x) dx dy

where 2 (resp. 1) occurs when HA4 GA (resp. HA48A). It follows from (38)
that

(HA g , h)4 (R tJA21 g ,tJ 21 h)6 (R tJA21 Ug ,tJ 21 h)

where Ug(x)4 S g(S x) and S is defined in (31). Hence, by Proposition 7 we
obtain

N(HA g , h)NGCVgVL p (Rn
1 ) VhVL p 8 (Rn

1 ) .

This proves Theorem 3.

REMARK. – Using the fact that A l--l, J and JA are constant on Rn
1 and on Rn

2 ,

this formalism can be used to obtain ND a G A l--l (x , y)NG C

Nx2yNn211NaN
, with

(x , y)�Rn
63Rn

6 and D a is any derivative in x and y. This would give another
proof of Proposition 2.

2. – Variations on commutator results.

Let (X , d , m) be a space of homogeneous type with m(X)41Q. In our ap-
plication X is the half-space R1

n .
Let T be a bounded operator on some L r (X), 1ErEQ , with norm boun-

ded by 1 and assume that T is associated with a kernel k(x , y) in the sense
that

Tf (x)4s
X

k(x , y) f (y) dm(y) for a.e. x�supp f , f�L r (X) ,(39)
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and that k satisfies Nk(x , y)NGd(x , y)2n and for some nD0,

Nk(x , y)2k(x 8 , y)NG
d(x , x 8 )n

d(x , y)n1n
(40)

for every x , x 8 , y�X such that
d(x , x 8 )

d(x , y)
G

1

2
. Here n is the homogeneous

dimension.

PROPOSITION 8. – Let T and k be as above. Then, there exists C0 such that
for all rDr and all ball B in X if g4T( (a2a2B ) f ) with f�L r (X), supp f
compact, and x�B ,

inf
c�C

1

NBN
s

B

Ng2cNdmGC0 VaV* (M(NfNr )(x) )1/r .

Here, M is the maximal operator

Mh(x)4 sup
B�x

1

NBN
s

B

Nh(y)Ndm(y) .

This is classical and we include a proof adapted from [5], Theorem 3.19, for the
reader’s convenience.

PROOF. – Write g4g11g2 where g14T( (a2a2B ) x 2B f ) and g24T( (a2
a2B ) x c (2B) f ). We have

1

NBN
s

B

Ng1NdmGg 1

NBN
s

B

Ng1N
r dmh1/r

Gg 1

NBN
s

2B

Na2a2BN
r NfNr dmh1/r

GCVaV*g 1

N2BN
s

2B

NfNr dmh1/r

by the boundedness of T , John-Nirenberg inequality and Hölder inequality.
Next, set cB4sy�2B k(xB , y)(a(y)2a2B ) f (y) dm(y) where xB is the center

of B (cB exists by using the pointwise estimate on k and the assumption on the
support of f ). Then

Ng2 (x)2cBNG s
y�2B

d(x , xB )n

d(x , y)n1n
Na(y)2a2BNNf (y)Ndm(y) ,

so that using d(x , xB )GR (=radius of B) and d(x , y)Fc1 d(xB , y)

1

NBN
s

B

Ng2 (x)2cB Ndm(x)Gcr n s
d(y , xB )F2R

1

d(y , xB )n1n
Na(y)2a2B NNf (y)Ndm(y) .
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Breaking the integral in rings 2k RGd(y , xB )G2k11 R , kF1, and using

1

m(2k B)
s

2k B

Na2a2BNdmGc ln (k11)VaV*

we obtain

1

NBN
s

B

Ng2 (x)2cBNdm(x)Gc!
k41

Q

ln (k11)VaV*22kn 1

m(2k11 B)
s

2k11 B

Nf (y)Ndm(y)

so that

1

m(B)
s

B

Ng22cBNdmGcVaV* Mf (x) ,

for all x�B and Proposition 8 follows.

3. – A priori estimates.

Let B 1
s 4BsORn

1 , where Bs is a ball of radius s in Rn. Let pD2, u , f , f0

be compactly supported in BsORn
1 with u�W 1, p (B 1

s ), f� [L p (B 1
s ) ]n and

f0�L p * (B 1
s ), p *4

np

n1p
D1. Assume A satisfy (2) in Rn

1 with, in addition,

A�BUC (Rn
1 ). Suppose that

.
/
´

div A˜u42 div f1 f0

u40

in Rn
1

on ¯Rn
1

in the sense that for all W�Lip (Rn
1 ), Supp W%Rn

1 ,

s
Rn
1

A˜u˜W4 s
Rn
1

f˜W1s
Rn
1

f0 W .

We claim that

V˜uVL p (Bs
1 )GCVAV* V˜uVL p (Bs

1 )1CV f VL p (Bs
1 )1CV f0 VL p

* (Bs
1 ) ,(41)

with C depending only on p , n and d.
Note that if Bs%Rn

1 we obtain an interior estimate, while if BsO¯Rn
1c¯

we obtain a boundary estimate. We do them in the same flow.
Let B be a ball in Rn with center in Rn

1 and B 14BORn
1 (those B 1 are the

balls B used in section 2 on the space X4Rn
1). If A2B1 is the mean of A over
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2B 1 , we have

.
/
´

2div A2B1˜u42div f2div ( (A2B12A) ˜u)1 f0

u40

in Rn
1

on ¯Rn
1 .

Thus for all x�Rn
1 , if G4GA2B1 ,

u(x)4 s
Rn
1

˜y G(x , y) f(y) dy1s
Rn
1

˜y G(x , y)(A2B12A(y) ) ˜u(y) dy1

s
Rn
1

G(x , y) f0 (y) dy .

For h�L p (Rn
1 ) with compact support and since N˜y G(x , y)NG C

Nx2yNn21
, we

have that xO sRn
+
˜y G(x , y) h(y) dy�L 1

loc (Rn
1 ). Also, since NG(x , y)NG

C

Nx2yNn22
(or CNlnNx2yNN if n42), we have xO sRn

1
G(x , y) f0 (y) dy�

L 1
loc (Rn

1 ). Taking derivatives in D8 (Rn
1 ) and using the bounded extension of

G 4 GA2B1 (see Theorem 3) to L p (Rn
1 ), we have

˜u(x)4 G f(x)1G( (A2B12A) ˜u)(x)1ID f0 (x) in D8 (Rn
1 ) .

This is where it is convenient to have A�BUC (Rn
1 ) since the term G( (A2B12

A) ˜u) is defined as (A2B12A) ˜u�L p (Rn
1 ). Here the integral (ID h)(x)4

sRn
1
˜x G(x , y) h(y) dy defines a bounded operator from L p * (Rn

1 ) into L p (Rn
1 )

since 1Ep * and pE1Q using (17) with NaN41. By Theorem 3

V˜uVpGCV f Vp1VG( (A2B12A) ˜u)Vp1CV f0 Vp *
,(42)

where C depends only on p , n and d (note that the ellipticity constant of A2B1

is uniformly controlled by the one of A , hence the estimate does not depend on
the choice of B). By Proposition 8, if g4 G( (A2B12A) ˜u) and 1ErEp , for
all x�B 1 ,

inf
c�Cn

1

NB 1N
s

B1

Ng2cNGCVAV* (M1 (N˜uNr )(x) )1/r .

Here we used VAV*4 sup
B1

1

NB 1N
sB1 NA2AB1 N where the supremum is taken

over all B 14BORn
1 , B being an Euclidean ball with center in Rn

1 . [It is easy
to see that this norm is equivalent to the usual norm defined in the intro-
duction, where the balls B are contained in Rn

1 ]. Also M1 (h)(x)4
sup

B1�x

1

NB 1N
sB1 NhN.
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Fixing x and taking the supremum over B 1�x leads to

g l--l(x)GCVAV* (M1 (N˜uNr )(x) )1/r ,

where g l--l is the Fefferman-Stein sharp function on Rn
1 . Using VgVpGCp Vg l--l

Vp

and the Hardy-Littlewood theorem, since rEp , yields VgVpGCVAV* V˜uVp. This
proves (41).

Next, let us consider the Neumann problem. With the same hypotheses on
u , f , f0 and A , we assume

.
/
´

2div A˜u42div f1 f0

n . A˜u4n . f

in Rn
1

on ¯Rn
1 .

Again this is interpreted in the variational sense. Then we have

V˜uVL p (Bs
1 )GCVAV* V˜uVL p (Bs

1 )1CV f VL p (Bs
1 )1CV f0 VL p

* (Bs
1 ) ,(43)

with C depending only on p , n and d. The argument is entirely similar to the
preceding one and is skipped.

4. – Proof of Theorem 1.

Now, we wish to prove Theorem 1 in its full generality. We only consider
the existence issue when pD2. Indeed, uniqueness (modulo constant) follows
easily from the p42 case. Then a duality argument ends the proof when pE2.
We henceforth suppose that pD2.

First assume that V has C Q boundary, that A�C Q (V) and that f�C0
Q (V).

Let us consider first the Neumann problem. By Lax-Milgram lemma, we have
a solution u�W 1, 2 (V) with sV u40 such that

s
V

A˜u˜v4s
V

f˜v , ( v�Lip (V) .

Classical interior and boundary elliptic regularity tells us that u�C Q (V).
Hence ˜u�L p (V) but we wish to prove

V˜uVL p (V)GCV f VL p (V)(44)

with C depending only on n , d , p , the VMO modulus of continuity of A , NVN

and the C 1 modulus of continuity of ¯V which we can define as the modulus of
continuity of the outward unit normal on ¯V.

Fix u�C Q
0 (Bs ) where Bs is a ball in Rn. We get

s
VOBs

AA˜(uu) ˜v4 s
VOBs

fA˜v1 s
VOBs

fA0 v , (v�Lip (V) ,(45)
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where fA4uf1A˜uu and fA04 f˜u2A˜u˜u and AA4Ax1I(12x) where
x�C Q

0 (B2s ) and xf1 on supp u. Note that AA�C Q (V) and if s is chosen small
enough we have that VAA V* is small, as it is controlled by the VMO modulus of
continuity of A.

If Bs%V then we can consider Bs in a half-space so that either a priori esti-
mate (41) or (43) yields

V˜(uu)VL p (Bs )GC(V fA VL p (Bs )1V fA0 VL p
* (Bs ) )(46)

and C depends uniquely on p , n , d and VAA V*.
If BsO¯Vc¯ with s small enough, then we use a local CQ chart W : Rn

1KV
to flatten the boundary. Then one can pull back the a priori estimate (43) to
(uu) i W , fA i W , f0 i W and AA

A
on V replaced by another C Q matrix AA

A
on Rn

1 and
the important point is that VAA

A
V*GCVAA V* where C depends on dimension and

on the C 1 modulus of continuity of ¯V (this is because BUC3(VMOOL Q )%
(VMOOL Q )). Thus we also have (46) with C depending on p , n , d , the VMO
modulus of continuity of A and the C 1 modulus of continuity of ¯V.

From here, it suffices to iterate as in [11], p. 416, to obtain

V˜uVL p (V)GC(V˜uVL 2 (V)1V f VL p (V)1VuVL p (V) ) .

Poincaré-Sobolev inequality (valid for connected lipschitz sets, if sV u40)
yields

VuVL p (V)GCV˜uVL p
* (V)

and a second iteration yields

V˜uVL p (V)GC(V˜uVL 2 (V)1V f VL p (V) ) .

Lastly the L 2 theory yields

V˜uVL 2 (V)GCV f VL 2 (V)GCNVN1/221/p
V f VL p (V)

and (44) follows with the expected behavior of C.
The proof for the Dirichlet problem is entirely similar and skipped.
It remains to remove the a priori assumptions on V , A , f. Assume that A

and V satisfy (2) and (3) and that f�L p (V).
Dirichlet problem: Let Ak�C Q (V) satisfying (2) uniformly such that AkK

A a.e. on V and AkKA in BMO(V) and fk�C Q
0 (V) with fkK f in L p (V). Choo-

se also an increasing sequence of C Q subdomains V k converging to V , with C 1

modulus of continuity of ¯V k uniform in k , that is sup
k

v V k
GCv V (this can be

done using a regularized distance function to ¯V). One can arrange supp fk%
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V k . Let uk�C Q (V k ) be the solution of uk40 on ¯V k

s
V k

Ak ˜uk ˜W4s
V k

fk ˜W

for all W�C Q
0 (V k ). Extend uk to be 0 outside of V k . Then, using our a priori

estimate on V k ,

V˜uk VL p (V)GV˜uk VL p (V k )GCV fk VL p (V k )GC sup
k

V fk VL p (V)GCV f VL p (V) .

Thus (uk ) has a weakly converging subsequence in W 1, p
0 (V). In particular,

there exists u�W 1, p
0 (V) such that, up to extraction, ˜uk �˜u weakly in

L p (V) and we obtain

s
V

A˜u˜W4s
V

f˜W , (W�C Q
0 (V) .

This shows the existence part of Theorem 1 in the case pD2 for the Dirichlet
problem.

Neumann problem: Pick fk�C Q
0 (V) with fkK f in L p (V) and Ak�C Q (Rn )

with sup
k

VAk VLQ (Rn )G2d , Ak uniformly elliptic on Rn , with ellipticity constant
d

2
, AkKA a.e. on V and AkKA in BMO(V). Now let (V k ) be a decreasing se-

quence of C Q domains converging to V with C 1 modulus of continuity of ¯V k

uniform in k.
Let uk�W 1, 2 (V k ) with s

V

uk40 be the unique solution of

s
V k

Ak ˜uk ˜W4s
V k

fk ˜W (W�C Q (V k) .

Since V%V k and supp fk%V ,

V˜uk VL p (V)GV˜uk VL p (V k )GCV fk VL p (V k )GC sup
k

V fk VL p (V)GCV f VL p (V)

with C uniform in k. Thus (uk ) has a weakly converging subsequence in
W 1, p (V) and there exists u�W 1, p (V) such that, up to extraction, ˜uk �˜u
weakly in L p (V). Now, for all W�C Q (V), write

s
V k

Ak ˜uk ˜W2s
V

A˜u˜W4s
V

(Ak2A) ˜uk ˜W1s
V

A(˜uk2˜u) ˜W1

s
V k 0V

Ak ˜uk ˜W .

The first term tends to 0 by dominated convergence since NsV (Ak2

A) ˜uk ˜WNGV˜uk VL p (V) V(Ak2A) ˜WVL p 8 (V) , the second by weak convergence
and the last by VAk ˜uk VL p (V k )G2d sup

k
V˜uk VL p (V) and V˜WVL p 8 (V k 0V)K0. Since
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sV k
fk ˜W tends to sV f˜W , the proof of Theorem 1 for the existence of a sol-

ution when pD2 for the Neumann problem is finished. Taking into account
the starting comments of this section Theorem 1 has been completely
proved.

5. – Concluding remark.

One cannot take V with arbitrary lipschitz boundary. Indeed, already for
L42D , W 1, p estimates for both (1) and (4) are restricted to pEp0 for some
p0E1Q ([17], [19]). However, it is plausible that p0 tends to 1Q with the lip-
schitz constant of ¯V tending to 0 (i.e. ¯V tends to a C 1 boundary), whenever
A�VMO(V). Also for a given p , one can replace the hypothesis «A�
VMO(V)» by «the distance of A to VMO(V) in BMO(V) being small enough
depending on the value of p» (see [8] where this is observed for non divergen-
ce equations).
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